JPH04132655A - Mgo-cao-c-based refractory - Google Patents

Mgo-cao-c-based refractory

Info

Publication number
JPH04132655A
JPH04132655A JP2256473A JP25647390A JPH04132655A JP H04132655 A JPH04132655 A JP H04132655A JP 2256473 A JP2256473 A JP 2256473A JP 25647390 A JP25647390 A JP 25647390A JP H04132655 A JPH04132655 A JP H04132655A
Authority
JP
Japan
Prior art keywords
cao
clinker
mgo
weight
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2256473A
Other languages
Japanese (ja)
Inventor
Kosuke Kurata
倉田 浩輔
Koji Kono
幸次 河野
Shigeyuki Takanaga
茂幸 高長
Mineo Uchida
内田 峯夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Krosaki Harima Corp
Original Assignee
Kyushu Refractories Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Refractories Co Ltd, Nippon Steel Corp filed Critical Kyushu Refractories Co Ltd
Priority to JP2256473A priority Critical patent/JPH04132655A/en
Publication of JPH04132655A publication Critical patent/JPH04132655A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain the title refractory improved in corrosion and sublimation resistance at elevated temperatures by incorporating a specified amount of a carbonaceous material in a mixture comprising MgO-CaO clinker with CaO distributed on periclase crystal grain boundary and magnesia clinker at specified proportion. CONSTITUTION:The objective refractory can be obtained by incorporating (A) 100 pts.wt. of a mixture of (1) 30-70wt.% of MgO-CaO clinker and (2) 70-30wt.% of magnesia clinker with (B) 3-40 pts.wt. of a carbonaceous material. Said MgO-CaO clinker is 1-10wt.% in CaO content and >=150mum in the size of periclase crystal grains, having a structure with CaO distributed on the periclase crystal grain boundary. The present refractory will cause no degradation of corrosion resistance to low basic slag at elevated temperatures, also being excellent in sublimation resistance.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は高温度での低塩基度スラグに対する耐用性の
高いMgO−CaO−C系耐火物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an MgO--CaO--C refractory having high resistance to low basicity slag at high temperatures.

〈従来の技術〉 近年、転炉をはじめ電気炉、取鍋、精錬鍋、RHなどの
溶融金属容器の内張つれんがとしてMg0−Cれんがが
広(使用されるようになってきた。
<Prior Art> In recent years, Mg0-C bricks have come to be widely used as lining bricks for molten metal containers such as converters, electric furnaces, ladles, refining ladle, and RH.

また、最近では低塩基度スラグ下でのステンレスなどの
溶製用内張りれんがとしてMgO−CaO系れんがも一
部で使用されている。
Recently, MgO--CaO bricks have also been used as lining bricks for melting stainless steel under low basicity slag.

〈発明が解決しようとする課題〉 このMgO−Cれんがもステンレス溶製の場合のように
超高温下での操業に加えて低塩基度スラグ下での操業が
加わると、スラグによる溶損、スラグや空気中の酸素に
よる酸化反応に加えて高温下においてマグネシアとカー
ボンとが反応し、その結果、還元されたマグネシウムが
気化飛散する現象(MgO+C−C0十MgT )が発
生(以下、マグネシア・カーボン反応という)し、組織
が劣化することが加わって激しく損耗するのである。
<Problem to be solved by the invention> When this MgO-C brick is operated under low basicity slag in addition to ultra-high temperature operation as in the case of stainless steel melting, slag erosion and slag In addition to the oxidation reaction caused by oxygen in the air, magnesia and carbon react at high temperatures, and as a result, a phenomenon in which reduced magnesium vaporizes and scatters (MgO + C-C0 + MgT) occurs (hereinafter referred to as the magnesia-carbon reaction). ) and the tissue deteriorates, resulting in severe wear and tear.

このような苛酷な条件下での操業に対処するため、金属
粉末の添加(例えば、特開昭55107749号公報な
ど)、高純度グラファイトの使用(例えば、特開昭57
=1833.59号公報など)、電融マグネシアクリン
カ−の使用(例えば、特開昭57−34074号公報な
ど)などが行なわれている。しかし、このようなMgO
−、Cれんがの改良も、超高温下低塩基度スラグ下のよ
うな操業条件の苛酷化には十分ではなく、さらに高性能
なれんがの開発が強(望まれている。
In order to cope with operations under such harsh conditions, the addition of metal powder (for example, Japanese Patent Application Laid-Open No. 55107749, etc.) and the use of high-purity graphite (for example, Japanese Patent Application Laid-Open No. 57-198)
1833.59, etc.), and the use of electrofused magnesia clinker (for example, Japanese Patent Laid-Open No. 57-34074, etc.). However, such MgO
Improvements in - and C bricks are not sufficient to cope with harsher operating conditions such as under ultra-high temperatures and low basicity slag, and there is a strong desire to develop bricks with even higher performance.

一方、特開昭61−146755号公報に示される・よ
うなMg0=CaOれんがは低塩基度スラグには強いが
、その反面耐消化性に弱く、かつスラグ中のFe20a
やM2O3成分の影響を受は易い欠点を有し、溶融金属
の操業方法によっては容器用内張りれんがとして使用に
は限界がある。
On the other hand, Mg0=CaO bricks such as those shown in JP-A No. 61-146755 are strong against low basicity slag, but on the other hand, they have poor digestion resistance and Fe2a in the slag.
It has the disadvantage that it is easily influenced by molten metal and M2O3 components, and there are limits to its use as a container lining brick depending on the method of operating the molten metal.

〈課題を解決するための手段〉 このような溶融金属容器用内張りれんかに必要な条件と
しては、高温下で安定な材料であることに加えてスラグ
に対する耐食性の高い材料であることが必要であり、現
在のところやはりカーボンを含有したれんが以外には最
適な材料は見当たらない。特開昭61−141663号
公報にはMgO−CaOクリンカーとカーボンを組合わ
せたれんがが示されているが、このれんがでも高温下低
塩基度スラグに対する耐食性は十分ではない。
<Means for solving the problem> The necessary conditions for such a lining brick for molten metal containers are that it is a material that is stable at high temperatures and has high corrosion resistance against slag. However, at present, there is no optimal material other than carbon-containing bricks. JP-A-61-141663 discloses a brick made of a combination of MgO--CaO clinker and carbon, but even this brick does not have sufficient corrosion resistance against low basicity slag at high temperatures.

そこで、本発明者らは低基度スラグに対する耐食性の高
い成分としてこのCaOに注目し、特定のMgO−Ca
Oクリンカーとカーボンとを組合わせてこの発明を完成
させたものである。
Therefore, the present inventors focused on this CaO as a component with high corrosion resistance against low-base slag, and
This invention was completed by combining O clinker and carbon.

即ち、この発明はCaO含有量が1〜10重量%で、ペ
リクレス結晶粒の大きさが150am以上であり、ペリ
クレス結晶粒界にCaOが分布した構造を有するMgO
−CaOクリンカー30〜70重量%とマグネシアクリ
ンカ−70〜30重量%との混合物100重量部に対し
て炭素材料3〜40重量部を添加したMgO−CaO−
C系耐火物を提供するものである。
That is, the present invention uses MgO having a CaO content of 1 to 10% by weight, a Pericles crystal grain size of 150 am or more, and a structure in which CaO is distributed at the Pericles grain boundaries.
-MgO-CaO- in which 3-40 parts by weight of carbon material is added to 100 parts by weight of a mixture of 30-70% by weight of CaO clinker and 70-30% by weight of magnesia clinker.
It provides C-based refractories.

〈作用〉 CaO成分を含有する材料としては、合成ドロマイトク
リンカ−1天然ドロマイトクリンカ−あるいはカルシア
クリンカ−等が知られているが、これらのクリンカー中
ではCaO成分は粒として分布しており、スラグ中の[
’e 203やM2O3などの成分と反応して低融点物
質を生成し溶損してしまう。
<Function> Synthetic dolomite clinker, natural dolomite clinker, calcia clinker, etc. are known as materials containing CaO components, but in these clinkers, the CaO component is distributed as particles, and is not present in the slag. of[
'e Reacts with components such as 203 and M2O3 to produce low melting point substances, resulting in melting loss.

一方、マグネシアクリンカー中のMgOは低塩基度スラ
グとはスラグ中の5i02成分と反応して、やはり低融
点物質を生成し溶損してしまうのである。この場合、特
にMgO粒界が溶損される。さらに、MgOと炭素質材
料とが共存すると、1800℃以上の温度では酸化雰囲
気中であってもマグネシア・カーボン反応が顕著となり
損耗が加速される。
On the other hand, MgO in the magnesia clinker reacts with the 5i02 component in the low basicity slag to produce a low melting point substance, resulting in melting loss. In this case, especially the MgO grain boundaries are eroded. Furthermore, when MgO and carbonaceous material coexist, the magnesia-carbon reaction becomes noticeable even in an oxidizing atmosphere at temperatures of 1800° C. or higher, accelerating wear.

この発明のMgO−CaOクリンカーはペリクレス結晶
粒界にCaOを配し、ペリクレス結晶粒子なCaOの網
状の架橋構造によって結びつけた構造を持つものである
。CaOがMgO粒界に存在するためスラグ中の5if
2成分とMgOとの反応およびカーボンとMgOとの反
応を防止し、またCaOが網状の架橋構造を持つため、
スラグ中のFe2O3や5io2成分と反応しに(くな
ると同時にCaOはSiO□と先に反応し、侵入したス
ラグ中に溶は込むとスラグの粘性が大きくなり、クリン
カー粒界やれんが内部へのスラグの浸透を防止する。
The MgO--CaO clinker of the present invention has a structure in which CaO is arranged at Pericles crystal grain boundaries and connected by a network-like crosslinking structure of CaO, which is Pericles crystal grains. 5if in the slag because CaO exists at the MgO grain boundaries.
It prevents the reaction between the two components and MgO and the reaction between carbon and MgO, and since CaO has a network-like crosslinked structure,
As soon as CaO reacts with Fe2O3 and 5io2 components in the slag, it reacts with SiO□ first, and when it melts into the slag, the viscosity of the slag increases, causing the slag to enter the clinker grain boundaries and inside the brick. prevent the penetration of

また、ペリクレス結晶粒界にCaOが存在し、ペリクレ
ス結晶粒同志が直接接触していないため、CaOのクリ
ープ特性のためクリンカーのスポーリングをも防止する
ことができる。
Further, since CaO exists at the Pericles grain boundaries and the Pericles grains are not in direct contact with each other, it is also possible to prevent clinker spalling due to the creep property of CaO.

さらに、CaOが存在することによってれんが表面にお
けるスラグの粘性を上げ、しかも低塩基度スラグとはな
じみが良いので、れんが表面へのスラグコートが良好で
ある。これによって、れんが内部へのスラグ侵入の防止
と同時にれんがの気孔を閉塞するので空気の侵入をも防
止し、カーボンの酸化を防ぎ、更に、密閉された気孔内
部ではマグネシア・カーボン反応によって生じた一酸化
炭素の分圧が上り、マグネシア・カーボン反応の進行を
阻止する。
Furthermore, the presence of CaO increases the viscosity of the slag on the brick surface, and since it is compatible with low basicity slag, the slag coating on the brick surface is good. This prevents slag from entering inside the brick, and at the same time closes the pores of the brick, preventing air from entering and preventing carbon oxidation. The partial pressure of carbon oxide increases and prevents the magnesia-carbon reaction from proceeding.

しかし、これによってMgOの反応が完全に抑えられる
わけではない。このMgOのスラグ成分やカーボンとの
反応はペリクレス結晶の粒径を大きくすることによって
、その反応速度を低下させ見掛上小さくすることができ
る。また、タリン力−がスラグと接触すると、結晶粒よ
り粒界の方がスラグとの反応が速いため、粒界にスラグ
成分が侵入しペリクレス結晶粒間の結合が弱くなり、ス
ラグ中にペリクレス粒が流出して溶損の場合より損耗が
速やかに進行してしまう。従って、クリンカーはペリク
レス結晶粒径が太き(て粒界の少ないものはどスラグに
対する侵食抵抗性が大きいことになる。
However, this does not completely suppress the reaction of MgO. This reaction of MgO with slag components and carbon can be reduced in appearance by decreasing the reaction rate by increasing the particle size of the Pericles crystals. In addition, when the Tallin force comes into contact with slag, grain boundaries react faster with slag than crystal grains, so slag components invade the grain boundaries, weakening the bond between Pericles crystal grains, and causing Pericles grains in the slag. is leaked out and the wear progresses more quickly than in the case of melting damage. Therefore, clinker with large Pericles grain size (and fewer grain boundaries) has greater resistance to erosion by slag.

ところが、CaOの存在はクリンカー製造時のペリクレ
ス結晶の粒成長を抑制する作用があって、MgO−Ca
Oクリンカーの中のペリクレス結晶の結晶粒径はCaO
含有量の増大と共に小さくなるのである。
However, the presence of CaO has the effect of suppressing the grain growth of Pericles crystals during clinker production, and MgO-Ca
The grain size of the Pericles crystal in the O clinker is CaO
It becomes smaller as the content increases.

従って、特開昭61−141663号公報に示されるよ
うなCaO含有量の多いMgO−CaOクリンカーでは
それほど損耗は低下しないのである。即ち、CaOの含
有量は該クリンカーをれんがとして使用する場合には最
適な含有量のあることが判明したのである。
Therefore, with the MgO--CaO clinker with a high CaO content as shown in JP-A-61-141663, wear does not decrease significantly. That is, it has been found that the CaO content is optimal when the clinker is used as a brick.

このようにペリクレス結晶粒の大きいクリンカーを使用
すると、れんが表面のマトリックス部分が先行溶損して
タリン力−粒が露出してもクリンカーの損耗が小さいた
めマトリックスへの楔効果で、マトリックスの溶損を抑
えると同時にスラグコートが良好となり、この点からも
損耗が抑制され、好都合である。
When clinker with large Pericles crystal grains is used in this way, the matrix portion on the surface of the brick is pre-eroded, and even if the grains are exposed, the clinker wear is small, so the wedging effect on the matrix prevents the melting of the matrix. At the same time, the slag coating becomes good, and from this point of view as well, wear and tear is suppressed, which is advantageous.

一方、CaOはMgOと比較した場合、消化速度は格段
に大きく、れんがが間欠操業などで低温になった際には
CaOの消化によりれんが組織が崩壊する危険性がある
。このCaOの消化を考えた場合、CaOがペリクレス
結晶粒界に存在するため、CaOが粒で分布する場合よ
りさらに消化し易(なっている。そのため、この発明に
おいてMgOCaOクリンカーをできるだけ粗粒および
中粒部に使用し、微粉部には該クリンカーを使用せず、
代りにマグネシアクリンカ−を使用することが望ましい
On the other hand, the digestion rate of CaO is much higher than that of MgO, and when bricks are exposed to low temperatures due to intermittent operation, etc., there is a risk that the brick structure will collapse due to the digestion of CaO. Considering the digestion of this CaO, since CaO exists at the Pericles grain boundaries, it is easier to digest than when CaO is distributed in grains.Therefore, in this invention, the MgOCaO clinker is used as coarse and medium grains as possible. The clinker is used in the grain part, and the clinker is not used in the fine powder part.
It is preferable to use magnesia clinker instead.

微粉部にマグネシアクリンカ−を使用すると、スラグに
よる微粉部の先行溶損とマグネシア・カーボン反応が心
配されるが、骨材として使用されたMgO−CaOクリ
ンカー中のCaOによるれんがの焼結を促進する作用と
、上述のスラグコートの促進により微粉部の先行溶損と
マグネシア・カーボン反応は防止でき、れんが自体の損
耗はMg0Cれんがの場合より著しく改善される。
If magnesia clinker is used in the fine powder part, there are concerns about preliminary erosion of the fine part by slag and magnesia-carbon reaction, but the CaO in the MgO-CaO clinker used as aggregate promotes sintering of the bricks. By this action and the above-mentioned promotion of slag coating, advance erosion of the fine powder part and magnesia carbon reaction can be prevented, and the wear and tear of the brick itself is significantly improved compared to the case of Mg0C bricks.

〈発明の構成〉 この発明に用いられるMgO−Ca’0クリンカーはク
リンカー中のCaO含有量が1〜10重量%、好ましく
は3〜7重量%であり、CaOはペリクレス結晶粒界に
分布し、ペリクレスの結晶粒子をCaOの網状の架橋組
織によって結びつけた構造を持つものである。また、ペ
リクレス結晶粒子の大きさは150IIm以上、好まし
くは200 μm以上を必要とする。CaO含有量が1
重量%未満ではペリクレス結晶粒界をCaOが囲みきれ
ず、クリンカーの耐スポーリング性が低下し、またマグ
ネシア・カーボン反応の阻止も不十分となり好ましくな
い。
<Structure of the invention> The MgO-Ca'0 clinker used in this invention has a CaO content of 1 to 10% by weight, preferably 3 to 7% by weight, and CaO is distributed at the Pericles grain boundaries, It has a structure in which Pericles crystal particles are linked by a network-like crosslinked structure of CaO. Further, the size of the Pericles crystal grains needs to be 150 IIm or more, preferably 200 μm or more. CaO content is 1
If it is less than % by weight, CaO cannot completely surround the Pericles grain boundaries, the spalling resistance of the clinker will be reduced, and the magnesia-carbon reaction will not be sufficiently inhibited, which is not preferable.

CaO含有量が10重量%を越えるとペリクレス結晶粒
径が小さくなる。ペリクレス結晶粒子の大きさは150
11m未満ではスラグに対する溶損やマグネシア・カー
ボン反応が増加する。更に、このクリンカーの純度はM
gO+CaOが98重量%以上であることが好ましい。
When the CaO content exceeds 10% by weight, the Pericles crystal grain size becomes small. The size of Pericles crystal grain is 150
If the length is less than 11 m, erosion of the slag and magnesia-carbon reaction will increase. Furthermore, the purity of this clinker is M
It is preferable that gO+CaO is 98% by weight or more.

このMgO−CaOクリンカーには製造方法によって焼
結体と電融体があり、焼結体でも使用可能であるが、焼
結体ではCaOが粒状となりやす(、この発明の目的に
は電融体の方が好ましい。
There are two types of MgO-CaO clinker depending on the manufacturing method: a sintered body and a molten body, and the sintered body can also be used, but CaO tends to become granular in the sintered body (for the purposes of this invention, the molten body is not suitable for the purposes of this invention). is preferable.

この発明のれんかにはこのMgO−CaOクリンカーを
用いるが、その使用量は30〜70重量%であり、残部
にはマグネシアクリンカ−を混合して用いる。MgO−
CaOクリンカーはできるだけ粗粒および中粒部に重点
的に使用し、マグネシアクリンカ−は微粉部に主として
使用する。こうすることにより、MgO−CaOクリン
カー中のCaOの消化を防止することができる。MgO
−CaOクリンカーの使用量が30重量%未満では該ク
リンカーの効用が発揮されず、また、70重量%を超え
ると該クリンカーを微粉部にも多量に使用するようにな
り、耐消化性の点で好ましくない。マグネシアクリンカ
−は通常耐火物に用いられるものが使用できるが、でき
ればMgO含有量98重量%以上の高純度マグネシアク
リンカ−が望ましく、焼結マグネシアでもよいが、でき
れば電融マグネシアが耐溶損性の点で好ましい。
This MgO-CaO clinker is used in the brick of the present invention, and the amount used is 30 to 70% by weight, and the remainder is mixed with magnesia clinker. MgO-
CaO clinker is used mainly in coarse and medium grains, and magnesia clinker is mainly used in fine grains. By doing so, digestion of CaO in the MgO-CaO clinker can be prevented. MgO
-If the amount of CaO clinker used is less than 30% by weight, the effectiveness of the clinker will not be exhibited, and if it exceeds 70% by weight, a large amount of the clinker will be used in the fine powder part, resulting in poor digestion resistance. Undesirable. Magnesia clinker that is normally used for refractories can be used, but if possible, high-purity magnesia clinker with an MgO content of 98% by weight or more is preferable.Sintered magnesia may also be used, but if possible, fused magnesia is preferable because of its corrosion resistance. It is preferable.

炭素材料としては天然黒鉛、人造黒鉛、各種コークス、
カーボンブラックなどを使用するほか、加熱によって炭
素結合を生じる熱硬化性樹脂やピッチなどのバインダー
で兼用することもできる。その使用量はCに換算して、
MgO−CaOクリンカーとマグネシアクリンカ−の含
量100重量部に対し、3〜40@@%、好ましくは1
0〜25重量%である。この使用量が40重量%を超え
ると溶融金属流による摩耗が顕著となり、3重量%未満
ではれんがのスポーリング現象が見られず、いずれも耐
用が低下する。
Carbon materials include natural graphite, artificial graphite, various types of coke,
In addition to using carbon black, it is also possible to use a binder such as thermosetting resin or pitch that forms carbon bonds when heated. The amount used is converted into C,
3 to 40@@%, preferably 1% to 100 parts by weight of MgO-CaO clinker and magnesia clinker.
It is 0 to 25% by weight. If the amount used exceeds 40% by weight, wear due to the molten metal flow becomes noticeable, while if it is less than 3% by weight, no brick spalling phenomenon is observed, and in either case, the durability decreases.

この発明のれんがの製造法は、MgO−CaOクリンカ
ー、マグネシアクリンカ−1炭素材料等の原料に熱硬化
性樹脂やピッチなどのバインダーを添加し、常法に従っ
て混練、成形、熱処理して製造される、更に、れんがの
酸化防止として金属粉末などの既知の材料を添加するこ
とは好ましいことである。
The method for manufacturing bricks of the present invention is to add a binder such as a thermosetting resin or pitch to raw materials such as MgO-CaO clinker and magnesia clinker-1 carbon material, and then knead, mold, and heat-treat the bricks according to conventional methods. Furthermore, it is advantageous to add known materials such as metal powders to prevent oxidation of the bricks.

また、この発明のれんがは転炉、電気炉、取鍋、精錬鍋
、タンデイツシュなどの各種の溶融金属容器の内張り用
として広い範囲に使用できるものである。
Furthermore, the bricks of the present invention can be used in a wide range of applications as linings for various molten metal containers such as converters, electric furnaces, ladles, smelting pots, and tundishes.

〈実施例〉 以下、実施例によってこの発明をより詳細に説明する。<Example> Hereinafter, the present invention will be explained in more detail with reference to Examples.

以下の実施例で使用されるCaO含有クリンカーは(A
) Mg094重量%、CaO3重量%、その他の成分
1重量%の組成でCaOがMgO粒界において網状の架
橋構造を有した電融のMgO−CaOクリンカーであっ
て、ペリクレス結晶粒径範囲200〜300 pmのも
の、(B) MgO54重量%、Ca045重量%、そ
の他の成分1重量%の組成でCaOがMgO粒界で網状
の架橋構造を有している電融MgOCaOタリン力−で
ペリクレス結晶粒径が50〜100 amのもの、(C
) Mg075重量%、CaO24重量%、その他1重
量%の組成の焼成MgO−にa。
The CaO-containing clinker used in the following examples was (A
) An electrofused MgO-CaO clinker with a composition of 94% by weight of Mg0, 3% by weight of CaO, and 1% by weight of other components, in which CaO has a network crosslinked structure at the MgO grain boundaries, and has a Pericles crystal grain size range of 200 to 300. pm, (B) Pericles crystal grain size with talin force, in which CaO has a network-like crosslinked structure at the MgO grain boundaries with a composition of 54% by weight of MgO, 45% by weight of Ca0, and 1% by weight of other components. is 50 to 100 am, (C
) Calcined MgO- with a composition of 75% by weight of Mg0, 24% by weight of CaO, and 1% by weight of other a.

クリンカーであってペリクレス結晶粒径が10〜20+
+mのものである。また、マグネシアクリンカ−は何れ
もMg098重量%以上の高純度クリンカーを使用した
Clinker with Pericles grain size of 10-20+
+m. Further, as the magnesia clinker, high purity clinker containing Mg098% by weight or more was used in all cases.

第1表に示す配合のれんがを常法に従って混練成形した
後、300℃で熱処理した後の物性、および塩基度(C
a O/ SiO□)1.3の転炉スラグによるスラグ
テストを1900℃で5 hrs行なった。
The physical properties and basicity (C
A slag test using converter slag with a O/SiO□) 1.3 was conducted at 1900° C. for 5 hrs.

その結果も第1表に示した。The results are also shown in Table 1.

また、1000℃で2 hrs熱処理を行ない、50℃
で飽和水蒸気中に8日間放置した消化試験の結果も同じ
(第1表に示した。
In addition, heat treatment was performed at 1000℃ for 2 hrs, and 50℃
The results of a digestion test in which the samples were left in saturated steam for 8 days were also the same (shown in Table 1).

〈発明の効果〉 この発明のCaO含有量が従来品より少なく、ペリクレ
ス結晶粒径の大きなMgO−CaOクリンカーを用いた
MgO−CaO−C系耐火物に実施例1〜4にみられる
ように、何れも高温下での低塩基度スラブに対して大き
な耐食性の低下はなく、耐消化性もよいことがわかる。
<Effects of the Invention> As seen in Examples 1 to 4, the MgO-CaO-C refractory using the MgO-CaO clinker having a smaller CaO content and a larger Pericles crystal grain size than conventional products of the present invention, It can be seen that there is no significant decrease in corrosion resistance compared to low basicity slabs under high temperatures, and the digestion resistance is also good.

方、CaO含有量が多(、従ってペリクレス結晶粒径の
小さいMgO−CaOクリンカーを用いた耐火物(比較
例1)では耐食性および耐消化性に劣り、CaOが粒状
で存在するドロマイトクリンカ−を用いたれんが(比較
例2)では何れも低塩基度スラグに対する耐食性に劣り
、また、この発明のクリンカーであっても微粉域まで使
用すると(比較例5)、特に耐消化性が低下し、高温下
での低塩基度スラグに対するこの発明のれんがの優秀さ
が示された。
On the other hand, refractories using MgO-CaO clinker with high CaO content (and therefore small Pericles crystal grain size (Comparative Example 1) have poor corrosion resistance and digestion resistance, and dolomite clinker with CaO present in granular form is inferior in corrosion resistance and digestion resistance. All of the bricks (Comparative Example 2) have poor corrosion resistance against low basicity slag, and even the clinker of the present invention, when used in the fine powder range (Comparative Example 5), has particularly low digestibility and is difficult to resist under high temperature conditions. The superiority of the bricks of this invention for low basicity slags was demonstrated.

Claims (1)

【特許請求の範囲】[Claims]  CaO含有量が1〜10重量%で、ペリクレス結晶粒
の大きさが150μm以上であり、ペリクレス結晶粒界
にCaOが分布した構造を有するMgO−CaOクリン
カー30〜70重量%とマグネシアクリンカー70〜3
0重量%との混合物100重量部に対して、炭素材料3
〜40重量部を添加したことを特徴とするMgO−Ca
O−C系耐火物。
MgO-CaO clinker 30-70% by weight and magnesia clinker 70-3 having a CaO content of 1-10% by weight, a Pericles crystal grain size of 150 μm or more, and a structure in which CaO is distributed at the Pericles grain boundaries.
3 parts by weight of the carbon material for 100 parts by weight of the mixture with 0% by weight
MgO-Ca characterized by adding ~40 parts by weight
O-C type refractories.
JP2256473A 1990-09-25 1990-09-25 Mgo-cao-c-based refractory Pending JPH04132655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2256473A JPH04132655A (en) 1990-09-25 1990-09-25 Mgo-cao-c-based refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2256473A JPH04132655A (en) 1990-09-25 1990-09-25 Mgo-cao-c-based refractory

Publications (1)

Publication Number Publication Date
JPH04132655A true JPH04132655A (en) 1992-05-06

Family

ID=17293126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2256473A Pending JPH04132655A (en) 1990-09-25 1990-09-25 Mgo-cao-c-based refractory

Country Status (1)

Country Link
JP (1) JPH04132655A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005060128A (en) * 2003-08-19 2005-03-10 Nippon Steel Corp Refractory
JP2012062233A (en) * 2010-09-17 2012-03-29 Nippon Steel Corp Mgo-c-based refractory

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935062A (en) * 1982-08-23 1984-02-25 九州耐火煉瓦株式会社 Magnesia carbon brick
JPS6096571A (en) * 1983-10-31 1985-05-30 新日本化学工業株式会社 Magnesia clinker
JPS63277557A (en) * 1987-05-07 1988-11-15 Kyushu Refract Co Ltd Brick for lining vessel for fused metal
JPS63303854A (en) * 1987-05-30 1988-12-12 Nisshin Steel Co Ltd Magnesia and carbon double-layered brick

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935062A (en) * 1982-08-23 1984-02-25 九州耐火煉瓦株式会社 Magnesia carbon brick
JPS6096571A (en) * 1983-10-31 1985-05-30 新日本化学工業株式会社 Magnesia clinker
JPS63277557A (en) * 1987-05-07 1988-11-15 Kyushu Refract Co Ltd Brick for lining vessel for fused metal
JPS63303854A (en) * 1987-05-30 1988-12-12 Nisshin Steel Co Ltd Magnesia and carbon double-layered brick

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005060128A (en) * 2003-08-19 2005-03-10 Nippon Steel Corp Refractory
JP4580155B2 (en) * 2003-08-19 2010-11-10 新日本製鐵株式会社 Continuous casting nozzle
JP2012062233A (en) * 2010-09-17 2012-03-29 Nippon Steel Corp Mgo-c-based refractory

Similar Documents

Publication Publication Date Title
US4306030A (en) Carbon-containing refractory
EP0370677B1 (en) Magnesite-carbon refractories
JP5777561B2 (en) Brick for stainless steel refining ladle and stainless steel refining ladle
JPH0753600B2 (en) Molten steel container
US5888586A (en) Use of a water-containing fire-resistant ceramic casting material
JPH04132655A (en) Mgo-cao-c-based refractory
JPH11322405A (en) Low carbon refractory and its production
JP2529501B2 (en) Carbon-containing refractory
JP3124809B2 (en) Refractory brick containing low siliceous magnesia clinker
JPS6143305B2 (en)
JPH0355427B2 (en)
JPS63277557A (en) Brick for lining vessel for fused metal
JP2516187B2 (en) Refractory for molten steel container
JPS6033782B2 (en) Refractories for hot metal pretreatment
JPH078738B2 (en) Refractory brick for refining molten metal containing graphite
Marino Use of Calcium Oxide as Refractory Material in Steel Making Processes
JPS6127349B2 (en)
JPH03232762A (en) Magnesia-containig refractory
JPH01108158A (en) Refractory brick for refining molten metal
JPH04132654A (en) Mgo-cao-c-based brick
JPH0570214A (en) Low silica electromolten magnesia clinker-containing refractory brick
JPH03232761A (en) Magnesia-containing refractory material, production thereof and refractory
JPH0421563A (en) Production of magnesia-chrome-based refractory
JPH02274370A (en) Refractories for vessel for pretreatment of molten iron
JP2001010870A (en) Basic amorphous refractory using magnesia.calcia clinker