JPH04132610A - Production of silicon dioxide powder - Google Patents

Production of silicon dioxide powder

Info

Publication number
JPH04132610A
JPH04132610A JP25497290A JP25497290A JPH04132610A JP H04132610 A JPH04132610 A JP H04132610A JP 25497290 A JP25497290 A JP 25497290A JP 25497290 A JP25497290 A JP 25497290A JP H04132610 A JPH04132610 A JP H04132610A
Authority
JP
Japan
Prior art keywords
powder
metallic
mineral acid
metal silicon
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25497290A
Other languages
Japanese (ja)
Other versions
JPH0761856B2 (en
Inventor
Toshio Shiobara
利夫 塩原
San Abe
賛 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Toyota Motor Corp
Original Assignee
Shin Etsu Chemical Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd, Toyota Motor Corp filed Critical Shin Etsu Chemical Co Ltd
Priority to JP25497290A priority Critical patent/JPH0761856B2/en
Publication of JPH04132610A publication Critical patent/JPH04132610A/en
Publication of JPH0761856B2 publication Critical patent/JPH0761856B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

PURPOSE:To produce SiO2 powder having a specific particle diameter and high purity with simple operation at a low cost by washing metallic Si powder with an aqueous solution of a mineral acid to remove U and Th, introducing the treated metallic Si powder into an O2-containing gas stream and burning the powder. CONSTITUTION:Metallic Si powder is washed with an aqueous solution of a mineral acid to decrease the content of U and Th to <=1ppb each. An aqueous solution of nitric acid of 0.1-5N or thereabout is preferably used as the mineral acid solution at >=50 deg.C or thereabout. The maximum particle diameter and the average particle diameter of the metallic Si powder are preferably about <=100mum and about 1-30mum, respectively. The purified Si powder is supplied from a hopper 4 through a powder-feeding apparatus 5 to a burner 2. The powder is burnt in an O2-containing gas stream in a reaction chamber 10 of a reaction vessel 1. The metallic Si powder is oxidized to SiO2 by this process and the existing impurities are evaporated. The high-purity SiO2 powder F produced by the above process and having an average particle diameter of 0.01-10mum and U and Th content of <=0.5ppb each is recovered with a collector 3 provided with a bag filter 31, a blower 32, etc.

Description

【発明の詳細な説明】 り栗上方腫朋防駅 本発明は、4M−DRAMなど(7)VLSI用封止材
の充填材として好適に利用することができる高純度の二
酸化珪素粉末の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a method for producing high-purity silicon dioxide powder that can be suitably used as a filler in a encapsulating material for (7) VLSI such as 4M-DRAM. Regarding.

二酸化珪素(シリカ)粉末を多量に充填したエポキシ組
成物が利用されている。
Epoxy compositions heavily loaded with silicon dioxide (silica) powder have been utilized.

しかしながら、シリカ粉末によってはウランや1〜リウ
ムなどの放射性元素が多量に含まれており、このため、
この種のシリカ粉末を用いて製造したエポキシ樹脂組成
物でメモリーを封止すると、アルファー線によりメモリ
ーが誤動作するという不具合がある。そこで、従来、こ
のような放射性元素を含まないシリカ粉末の製造方法が
下記の如く多数提案されている。
However, some silica powders contain large amounts of radioactive elements such as uranium and 1-100% lium, and for this reason,
When a memory is sealed with an epoxy resin composition manufactured using this type of silica powder, there is a problem in that the memory malfunctions due to alpha rays. Therefore, many methods for producing silica powder that do not contain such radioactive elements have been proposed as described below.

例えば、特開昭60−81.011号公報などには、天
然高純度石英を原料として高純度溶融シリカを製造する
方法、特開昭61−190556号公報等には、高純度
珪素化合物を原料としてゾル−ゲル法、又は、加水分解
・熱酸化により高純度シリカを製造する方法、特開昭5
8−168267号公報には、天然高純度シリカを化学
処理により高純度化する方法、更に特開昭60−422
1−7号公報には、水ガラスを原料としてこの原料をイ
オン交換樹脂で処理し、その後ゲル化させて焼成するこ
とにより高純度シリカを製造する方法が開示されている
For example, JP-A-60-81.011 discloses a method for producing high-purity fused silica using natural high-purity quartz as a raw material, and JP-A-61-190556 discloses a method for producing high-purity fused silica using a high-purity silicon compound as a raw material. A method for producing high-purity silica by sol-gel method or hydrolysis/thermal oxidation, JP-A No. 5
Publication No. 8-168267 describes a method for highly purifying natural high-purity silica by chemical treatment, and furthermore, Japanese Patent Application Laid-Open No. 60-422
Publication No. 1-7 discloses a method for producing high-purity silica by using water glass as a raw material, treating this raw material with an ion exchange resin, and then gelling and firing.

しかし、現在実用化されている高純度シリカの製造プロ
セスは次の二種である。
However, the following two types of manufacturing processes for high-purity silica are currently in practical use.

〔ゾル−ゲル法〕[Sol-gel method]

アルコキシシラン→反応工程→ゲル化→乾燥→焼成→粉
砕 〔水ガラス方法〕 水ガラス→反応工程→精製→ゲル化→乾燥→焼成→粉砕 従って、このように高純度シリカ粉末の製造方法はいず
れも非常に複雑な工程を経るため多大な工数をかけなけ
ればならず、操作が面倒であるという欠点を有する。
Alkoxysilane → reaction process → gelation → drying → calcination → pulverization [water glass method] Water glass → reaction process → purification → gelation → drying → calcination → pulverization Therefore, all methods for producing high-purity silica powder are It has the drawback that it requires a large number of man-hours because it goes through a very complicated process, and is cumbersome to operate.

また、シリカ粉末中のウラン等の放射性元素の含有量を
少なくするには、原料自体も精製したものでなければな
らないため、従来市販されている高純度シリカ粉末は非
常に高価なものとなってしまうという問題もあった。
Furthermore, in order to reduce the content of radioactive elements such as uranium in silica powder, the raw material itself must be purified, so conventionally commercially available high-purity silica powder is extremely expensive. There was also the problem of putting it away.

このため、高純度シリカ粉末の工業的に有利な製造方法
の開発が望まれていた。
Therefore, it has been desired to develop an industrially advantageous manufacturing method for high-purity silica powder.

本発明はこのような事情に鑑みなされたものであり、放
射性元素の含有量の少ない高純度のシリカ粉末を安価に
、かつ容易に製造することができる二酸化珪素粉末の製
造方法を提供することを目的とする。
The present invention was made in view of the above circumstances, and aims to provide a method for producing silicon dioxide powder that can inexpensively and easily produce high-purity silica powder with a low content of radioactive elements. purpose.

課題を解決するための手段及び作用 本発明者は上記目的を達成するため鋭意検討を重ねた結
果、金属珪素粉末を鉱酸水溶液で洗浄し、ウラン及びト
リウムの含有量をそれぞれ1 ppb以下とした後、こ
の金属珪素粉末を酸素を含む気流中に供給し、燃焼させ
ることにより、鉱酸水溶液で洗浄した金属珪素粉末とい
う安価な原料から一段法で簡単に平均粒径が0.01〜
]Oミクロンでウラン及びトリウムの含有量がそれぞれ
0.5PPb以下である高純度の二酸化珪素粉末を製造
することができ、しかも、かかる方法で得られた二酸化
珪素粉末は、これを充填材として用いて合成したエポキ
シ樹脂組成物でメモリーを封止してもアルファー線によ
りメモリーが誤動作するという不具合などもなく、4.
 M −D RA M等の最先端VLSIの封止材の充
填材として最適であり、それ故、半導体工業分野などで
極めて有用であることを知見し、本発明をなすに至った
Means and Action for Solving the Problems The present inventor has made extensive studies to achieve the above object, and as a result, has washed metal silicon powder with an aqueous mineral acid solution to reduce the content of uranium and thorium to 1 ppb or less, respectively. After that, by feeding this metal silicon powder into an oxygen-containing air stream and burning it, an average particle size of 0.01 to 0.01 is easily obtained by a one-step method from an inexpensive raw material of metal silicon powder washed with an aqueous mineral acid solution.
] It is possible to produce high-purity silicon dioxide powder with an O micron content of uranium and thorium of 0.5 PPb or less, and the silicon dioxide powder obtained by this method can be used as a filler. 4. Even if the memory is sealed with the epoxy resin composition synthesized using the epoxy resin composition, there is no problem of the memory malfunctioning due to alpha rays.
We have found that it is optimal as a filler for the sealing material of cutting-edge VLSIs such as M-DRAM, and is therefore extremely useful in the semiconductor industry, etc., and have arrived at the present invention.

従って、本発明は、金属珪素粉末を鉱酸水溶液で洗浄し
ウラン及びトリウム含有量をそれぞれ1 pPb以下と
した後、該金属珪素粉末を酸素を含む気流中に供給し、
燃焼させて、平均粒径が0.01〜10ミクロンでウラ
ン及びトリウム含有量がそれぞれ0.5ppb以下であ
る高純度の二酸化珪素粉末を製造することを特徴とする
二酸化珪素粉末の製造方法を提供する。
Therefore, the present invention provides the steps of: washing metal silicon powder with an aqueous mineral acid solution to reduce the uranium and thorium contents to 1 pPb or less, and then supplying the metal silicon powder into an oxygen-containing air stream;
Provided is a method for producing silicon dioxide powder, characterized by producing high purity silicon dioxide powder having an average particle size of 0.01 to 10 microns and a uranium and thorium content of 0.5 ppb or less each by combustion. do.

以下、本発明につき更に詳述する。The present invention will be explained in more detail below.

本発明の二酸化珪素粉末(以下、シリカ粉末と称す)の
製造方法においては、出発原料として金属珪素粉末を用
い、この金属珪素粉末を鉱酸水溶液で洗浄する。一般に
金属珪素粉末には不純物として鉄、カルシウム、アルミ
ニウム、マグネシウム等のほかにウランや1−リウムと
いった放射性元素が5〜15ppb程度存在しており、
このような金属珪素粉末を原料としてシリカ粉末を製造
した場合、シリカ粉末中にウランやトリウムが2〜10
PPb程度含まれるため高集積ICの封止材用充填材と
して使用することができないが、本発明では、金属珪素
粉末を予め鉱酸水溶液で洗浄することにより、金属珪素
粉末中の放射性元素を1−分に除去することができ、ウ
ラン及びトリウム含有量をそれぞれ1 ppb以下にす
ることができる。
In the method for producing silicon dioxide powder (hereinafter referred to as silica powder) of the present invention, metallic silicon powder is used as a starting material, and this metallic silicon powder is washed with an aqueous mineral acid solution. In general, metal silicon powder contains impurities such as iron, calcium, aluminum, magnesium, etc., as well as radioactive elements such as uranium and 1-lium at about 5 to 15 ppb.
When silica powder is manufactured using such metal silicon powder as a raw material, uranium or thorium is contained in the silica powder from 2 to 10%.
However, in the present invention, the radioactive elements in the metal silicon powder are reduced to 1 by washing the metal silicon powder with an aqueous mineral acid solution in advance. - minutes, and the uranium and thorium contents can be reduced to 1 ppb or less.

ここで、原料として用いられる金属珪素粉末としては、
品位が99.5%以上のものであれば如何なるものでも
よい。
Here, the metallic silicon powder used as a raw material is as follows:
Any material with a quality of 99.5% or higher may be used.

更に、金属珪素粉末は、鉱酸水溶液による洗浄効率を高
めるために予めボールミル、衝撃式粉砕機などで粉砕し
、最大粒径が200ミクロン以下で平均粒径が1〜50
ミクロンの粉末にすることが好ましく、特に、次の工程
である燃焼工程を考慮すると金属珪素粉末としては最大
粒径が100ミクロン以下で平均粒径が1〜30ミクロ
ンのものがより好ましい。
Furthermore, in order to improve the cleaning efficiency with mineral acid aqueous solution, the metal silicon powder is ground in advance using a ball mill, impact grinder, etc., so that the maximum particle size is 200 microns or less and the average particle size is 1 to 50 microns.
It is preferable to use micron powder, and in particular, in consideration of the next step, the combustion step, it is more preferable that the metal silicon powder has a maximum particle size of 100 microns or less and an average particle size of 1 to 30 microns.

また、鉱酸水溶液としては、例えば硫酸、塩酸。Examples of mineral acid aqueous solutions include sulfuric acid and hydrochloric acid.

硝酸等の水溶液が好適に用いられ、これら鉱酸の混合水
溶液でもよい。なお、これらの鉱酸水溶液のうちでは硝
酸水溶液が望ましい。これは、硝酸は金属珪素中に残存
しても次の燃焼工程で高温に晒されるため、酸化されて
揮発するからである。
An aqueous solution of nitric acid or the like is preferably used, and a mixed aqueous solution of these mineral acids may also be used. Note that among these mineral acid aqueous solutions, nitric acid aqueous solution is preferable. This is because even if nitric acid remains in metal silicon, it will be oxidized and volatilized because it will be exposed to high temperatures in the next combustion process.

更に、鉱酸水溶液の酸濃度は0.1規定以上5規定以下
が望ましく、0.1規定に満たないとウラン等の放射性
元素を除去できない場合かあり、5規定を越えると金属
珪素と酸が反応してシリカ粉末の収率が低下する場合が
ある。
Furthermore, the acid concentration of the mineral acid aqueous solution is preferably 0.1N or more and 5N or less; if it is less than 0.1N, it may not be possible to remove radioactive elements such as uranium, and if it exceeds 5N, metal silicon and the acid may The yield of silica powder may decrease due to reaction.

この場合、金属珪素粉末の鉱酸水溶液による洗浄は、室
温で金属珪素粉末と鉱酸の水溶液を混合させて反応除去
しても良いが、低濃度の鉱酸で効率よく放射性元素を除
去するには50℃以上で混合撹拌させて反応させた方が
よい。また、反応時間は温度や金属珪素粉末の濃度にも
よるが、1時間から20時間で金属珪素粉末中の放射性
元素をI PPb以下にすることができる。
In this case, cleaning the metal silicon powder with a mineral acid aqueous solution may be carried out by mixing the metal silicon powder and a mineral acid aqueous solution at room temperature and removing the radioactive elements efficiently, but it is not possible to efficiently remove radioactive elements with a low concentration mineral acid. It is better to react by mixing and stirring at 50°C or higher. Although the reaction time depends on the temperature and the concentration of the metal silicon powder, the radioactive elements in the metal silicon powder can be reduced to IPPb or less in 1 to 20 hours.

なお、金属珪素粉末を鉱酸水溶液で処理した後は、遠心
分離機やろ過により鉱酸水溶液を除去後、フ イオン交換水、純水を用いて洗浄し、更に、金属珪素粉
末を乾燥機やスプレードライヤー等の乾燥装置で乾燥す
るなどの方法により、ウラン及びトリウムの含有量が1
 pPb以下の高純度金属珪素粉末を得ることができる
After the metal silicon powder is treated with a mineral acid aqueous solution, the mineral acid aqueous solution is removed by centrifugation or filtration, and then washed with ion-exchanged water or pure water. The content of uranium and thorium is reduced to 1 by drying with a dryer or other drying device.
High purity metal silicon powder with pPb or less can be obtained.

次に、本発明では、このようにして得た金属珪素粉末を
酸素を含む気流中に供給し、燃焼させてシリカ粉末を直
接製造する。
Next, in the present invention, the metallic silicon powder thus obtained is supplied into an air stream containing oxygen and combusted to directly produce silica powder.

ここで、酸素を含む気流としては、通常酸素ガスが用い
られるが、場合によっては空気を用いることもできる。
Here, oxygen gas is normally used as the airflow containing oxygen, but air may also be used in some cases.

また、酸素を含む気流中への高純度金属珪素粉末の供給
量は、別に制限されないが、実質的に反応室の容積によ
って決定されるものであり、通常5−20 kg/hr
、好ましくは7−1.5 kg/hrである。
Further, the amount of high-purity metal silicon powder supplied into the oxygen-containing air stream is not particularly limited, but is substantially determined by the volume of the reaction chamber, and is usually 5-20 kg/hr.
, preferably 7-1.5 kg/hr.

この場合、高純度の金属珪素粉末を酸素を含む気流中に
供給し、着火源により着火させることで燃焼が開始され
る。このように金属珪素粉末を酸素を含む気流中に供給
して、燃焼させると、反応火炎は2000°Cを超える
温度となる。このような高温中では沸点の低い元素又は
化合物か優先的に揮発する。即ち、高純度化した金属珪
素粉末中に僅かに含まれるウランやトリウムの化合物も
高温ではガス化した状態となり、金属珪素粉末が酸化さ
れて形成されるシリカ粉末が冷却されて液体から固体に
なるとき、上述の揮発しているウラン化合物などの放射
性元素の化合物はシリカ粒子のバルク中に侵入すること
なくガスとともに排出されて分離されるもので、本発明
方法においては、この燃焼工程でも高純度化をはかるこ
とができる。
In this case, combustion is initiated by supplying high-purity metallic silicon powder into an air stream containing oxygen and igniting it with an ignition source. When metallic silicon powder is supplied into an oxygen-containing air stream and combusted in this manner, the temperature of the reaction flame exceeds 2000°C. At such high temperatures, elements or compounds with lower boiling points volatilize preferentially. In other words, the small amounts of uranium and thorium compounds contained in highly purified metal silicon powder become gasified at high temperatures, and the silica powder formed when the metal silicon powder is oxidized cools and changes from a liquid to a solid. At this time, the above-mentioned volatilized radioactive element compounds such as uranium compounds do not enter the bulk of the silica particles and are discharged and separated along with the gas. It is possible to make changes.

なお、本発明では、この燃焼工程において、反応炎中又
は反応炎後のガス量を多くし、揮発した放射性元素の化
合物をカスと共に排出するようにすることがより望まし
い。これにより、得られるシリカ粉末に付着する放射性
元素の量を一層低減することができる。
In the present invention, in this combustion step, it is more desirable to increase the amount of gas in or after the reaction flame so that the volatilized radioactive element compound is discharged together with the residue. Thereby, the amount of radioactive elements adhering to the obtained silica powder can be further reduced.

一発−明−1と幼−釆− 本発明の製造方法によれば、鉱酸水溶液で洗浄した金属
珪素粉末という安価な原料を用い、−投法で0.01〜
10ミクロンの球状のシリカ粉末を任意に製造すること
が可能であり、高純度のシリカ粉末を簡単な操作で安価
に工業的に有利に製造することができる。
According to the production method of the present invention, an inexpensive raw material of metal silicon powder washed with an aqueous mineral acid solution is used, and a pitching method of 0.01~
It is possible to arbitrarily produce spherical silica powder of 10 microns, and high-purity silica powder can be industrially advantageously produced at low cost with simple operations.

従って、本発明の製造方法で得られた高純度のシリカ粉
末は半導体工業用などに極めて有用である。例えば、得
られた種々の粒径のシリカ粉末を最密充填構造をとるよ
うに組み合わせて混合し、エポキシ樹脂やシリコーン樹
脂等の充填材として用いることができ、このような組成
物は4MDRAM等の最先端VLSIの封止材として最
適であり、ソフトエラーを起こさず、かつ低線膨張とな
る。また、通常の粉砕によって得られる高純度シリカ粉
末と共に併用することで更に幅広く利用することも可能
である。
Therefore, the high purity silica powder obtained by the production method of the present invention is extremely useful for semiconductor industry and the like. For example, the obtained silica powders of various particle sizes can be combined and mixed to form a close-packed structure and used as a filler for epoxy resins, silicone resins, etc., and such compositions can be used for 4MDRAM etc. It is ideal as a sealing material for cutting-edge VLSIs, does not cause soft errors, and has low linear expansion. In addition, it can be used more widely by using it together with high-purity silica powder obtained by ordinary pulverization.

以下、実施例及び比較例を挙げて本発明を具体的に説明
するが、本発明は下記実施例に制限されるものではない
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

〔実施例1〜4、比較例〕 表1に示す金属珪素粉末原料を表1に示す条件で鉱酸水
溶液により洗浄した後、この金属珪素粉末を図面に示す
装置に導いてシリカを製造した。
[Examples 1 to 4, Comparative Examples] After washing the metal silicon powder raw materials shown in Table 1 with an aqueous mineral acid solution under the conditions shown in Table 1, the metal silicon powders were introduced into the apparatus shown in the drawings to produce silica.

ここで、この装置は、反応室1. Otrもつ反応容器
1と、反応容器〕の」二側に設けられ、反応室10J一
部に連通ずる燃焼器2と、反応容器1−の側方に設けら
れ、反応室10下部と連通する補集装置3と、上記鉱酸
により洗浄された金属珪素粉末が投入されたホッパー4
と、ホッパー4内の該粉末を燃焼器2へ供給する粉末供
給装置5とから構成されている。
Here, this apparatus has a reaction chamber 1. A combustor 2 is provided on the two sides of the reaction vessel and communicates with a part of the reaction chamber 10J, and a combustor 2 is provided on the side of the reaction vessel 1 and communicates with the lower part of the reaction chamber 10. A collection device 3 and a hopper 4 into which the metal silicon powder washed with the mineral acid is charged.
and a powder supply device 5 that supplies the powder in the hopper 4 to the combustor 2.

上記燃焼器2は、第2図に拡大して示すように、中央部
に設けられ、反応室]−〇に開口する粉末供給路20と
、粉末供給路20と同軸的に設けられ、反応室]Oにリ
ング状に開口する第1酸素供給路21と、第1酸素供給
路21の外側に同軸的に設けられ、反応室10にリング
状に開口する第1L P G供給路22と、第1. L
 P G供給路22の外側に同軸的に設けられ、冷却水
(A)が循環する冷却水通路23と、冷却水通路23の
外側に同軸的に設けられ、反応室10にリング状に開口
する第2LPG供給路24と、第2 L P G供給路
24の外側に同軸的に設けられ、反応室10にリング状
に開口する第2酸素供給路25とにより構成されている
As shown in an enlarged view in FIG. 2, the combustor 2 is provided in the center, and has a powder supply passage 20 opening to the reaction chamber]-〇, and a powder supply passage 20 provided coaxially with the powder supply passage 20, which is provided in the reaction chamber. ] A first oxygen supply path 21 opening in a ring shape to the reaction chamber 10, a first LPG supply path 22 provided coaxially outside the first oxygen supply path 21 and opening in a ring shape to the reaction chamber 10, 1. L
A cooling water passage 23 which is coaxially provided outside the PG supply passage 22 and through which cooling water (A) circulates, and a cooling water passage 23 which is coaxially provided outside the cooling water passage 23 and opens into the reaction chamber 10 in a ring shape. It is composed of a second LPG supply path 24 and a second oxygen supply path 25 that is coaxially provided outside the second LPG supply path 24 and opens into the reaction chamber 10 in a ring shape.

ここで、粉末供給路20からはホッパー4内から粉末供
給装置5を経て送られた金属珪素粉末(B)がエアー(
C)とともに供給される。この場合、エアーの供給量は
3〜4 N m1/ hrであり、金属珪素粉末の供給
量は6〜7kg/hrである。更に、第1酸素供給路2
1及び第2酸素供給路25からは、反応室10内に酸素
ガス(D)がそれぞれ17Nrn’/hr及び10 N
 rri’ /hrの供給量で供給される。また、第1
 LPG供給路22及び第2LPG供給路24からはL
PG (E)がそれぞれ]、、5Nm/hr及び]−、
ONm’/hrの供給量で供給される。
Here, from the powder supply path 20, the metal silicon powder (B) sent from the inside of the hopper 4 via the powder supply device 5 is supplied with air (
C). In this case, the amount of air supplied is 3 to 4 N m1/hr, and the amount of metal silicon powder supplied is 6 to 7 kg/hr. Furthermore, the first oxygen supply path 2
Oxygen gas (D) is supplied into the reaction chamber 10 from the first and second oxygen supply paths 25 at a rate of 17 Nrn'/hr and 10 Nrn'/hr, respectively.
It is supplied at a supply rate of rri'/hr. Also, the first
L from the LPG supply path 22 and the second LPG supply path 24
PG (E) respectively], 5Nm/hr and ]-,
It is supplied at a supply rate of ONm'/hr.

また、補集装置3は、一端が反応室10に開口する排気
管30と、この排気管30の他端に設けられたバグフィ
ルタ−31と、ブロア32とからなり、ブロア32の原
動により反応室10内の排ガスを吸引して排気するとと
もに、生成したシリカ粉末(F)を補集する。なお、ブ
ロア32の吸引により、反応室10内は5〜1.0 +
+nn A q負圧に保たれている。
The collection device 3 includes an exhaust pipe 30 whose one end opens into the reaction chamber 10, a bag filter 31 provided at the other end of the exhaust pipe 30, and a blower 32. The exhaust gas in the chamber 10 is sucked and exhausted, and the generated silica powder (F) is collected. Note that due to the suction of the blower 32, the inside of the reaction chamber 10 is 5 to 1.0 +
+nn Aq Maintained at negative pressure.

以上のように構成した装置を用い、酸素カス及びLPG
を反応室内に所定量流出させ、着火用火炎を形成した後
、その火炎中に粉末供給路20より金属珪素粉末を噴出
させ、反応炎を形成させた。
Using the apparatus configured as above, oxygen scum and LPG
A predetermined amount of the powder was flowed into the reaction chamber to form an ignition flame, and then metal silicon powder was ejected from the powder supply path 20 into the flame to form a reaction flame.

これにより金属珪素粉末は酸化されてシリカ粉末が形成
された。バグフィルタ−31に補集されたシリカ粉末を
サンプリングしてその粒径と放射性元素の含有量を測定
した。測定結果を表1に示す。
As a result, the metallic silicon powder was oxidized to form silica powder. The silica powder collected in the bag filter 31 was sampled and its particle size and radioactive element content were measured. The measurement results are shown in Table 1.

表  1 表1の結果より、本発明の製造方法(実施例1〜4)に
よれば、放射性元素のウラン及び1ヘリウム含有量をそ
れぞれ0.5ppb以下である高純度のシリカ粉末を得
ることができることが確認された。
Table 1 From the results in Table 1, according to the production method of the present invention (Examples 1 to 4), it was possible to obtain high purity silica powder containing 0.5 ppb or less of each of the radioactive elements uranium and 1 helium. It was confirmed that it can be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の製造方法に用いたシリカ製
造装置の概略構成説明図、第2図はその燃焼器部の要部
拡大断面図である。 ]・反応容器 3・・・補集装置 5 ・粉末供給装置 21.25・・酸素供給部 22.24・・LPG供給路 23・・・冷却水通路 2・・・燃焼器 4・・・ホンパー 20・・粉末供給路
FIG. 1 is a schematic structural explanatory diagram of a silica manufacturing apparatus used in a manufacturing method according to an embodiment of the present invention, and FIG. 2 is an enlarged sectional view of a main part of a combustor section thereof. ]・Reaction vessel 3...Collection device 5・Powder supply device 21.25・・Oxygen supply section 22.24・・LPG supply path 23・・Cooling water path 2・・Combustor 4・・Homper 20...Powder supply path

Claims (1)

【特許請求の範囲】[Claims] 1、金属珪素粉末を鉱酸水溶液で洗浄し、ウラン及びト
リウム含有量をそれぞれ1ppb以下とした後、該金属
珪素粉末を酸素を含む気流中に供給し、燃焼させて、平
均粒径が0.01〜10ミクロンでウラン及びトリウム
含有量がそれぞれ0.5ppb以下である高純度の二酸
化珪素粉末を製造することを特徴とする二酸化珪素粉末
の製造方法。
1. After washing the metal silicon powder with an aqueous mineral acid solution to reduce the uranium and thorium contents to 1 ppb or less, the metal silicon powder is fed into an oxygen-containing air stream and burned to reduce the average particle size to 0. 1. A method for producing silicon dioxide powder, the method comprising producing highly pure silicon dioxide powder having a particle size of 0.01 to 10 microns and a uranium and thorium content of 0.5 ppb or less.
JP25497290A 1990-09-25 1990-09-25 Method for producing silicon dioxide powder Expired - Lifetime JPH0761856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25497290A JPH0761856B2 (en) 1990-09-25 1990-09-25 Method for producing silicon dioxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25497290A JPH0761856B2 (en) 1990-09-25 1990-09-25 Method for producing silicon dioxide powder

Publications (2)

Publication Number Publication Date
JPH04132610A true JPH04132610A (en) 1992-05-06
JPH0761856B2 JPH0761856B2 (en) 1995-07-05

Family

ID=17272428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25497290A Expired - Lifetime JPH0761856B2 (en) 1990-09-25 1990-09-25 Method for producing silicon dioxide powder

Country Status (1)

Country Link
JP (1) JPH0761856B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008247724A (en) * 2007-03-30 2008-10-16 Admatechs Co Ltd Metallic silicon powder and method for manufacturing the same, spherical silica powder, and resin composition
JP2008247726A (en) * 2007-03-30 2008-10-16 Admatechs Co Ltd Metallic silicon powder and method for manufacturing the same, spherical silica powder, and resin composition
JP2008247723A (en) * 2007-03-30 2008-10-16 Admatechs Co Ltd Method for manufacturing metallic silicon powder, method for manufacturing spherical silica powder, and method for preparing resin composition
CN107285321A (en) * 2017-06-29 2017-10-24 苏州吉云新材料技术有限公司 A kind of preparation method of sub- nanometer spherical silicon powder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008247724A (en) * 2007-03-30 2008-10-16 Admatechs Co Ltd Metallic silicon powder and method for manufacturing the same, spherical silica powder, and resin composition
JP2008247726A (en) * 2007-03-30 2008-10-16 Admatechs Co Ltd Metallic silicon powder and method for manufacturing the same, spherical silica powder, and resin composition
JP2008247723A (en) * 2007-03-30 2008-10-16 Admatechs Co Ltd Method for manufacturing metallic silicon powder, method for manufacturing spherical silica powder, and method for preparing resin composition
CN107285321A (en) * 2017-06-29 2017-10-24 苏州吉云新材料技术有限公司 A kind of preparation method of sub- nanometer spherical silicon powder

Also Published As

Publication number Publication date
JPH0761856B2 (en) 1995-07-05

Similar Documents

Publication Publication Date Title
EP0665189B1 (en) Treatment of a chemical
JP2514761B2 (en) Method for producing high-purity fused silica
RU2451635C2 (en) Method of producing highly pure elementary silicon
JPH072513A (en) Production of synthetic quartz glass powder
CN114031086A (en) Preparation method of high-purity low-uranium submicron spherical silicon dioxide micropowder
JP2001220126A (en) Crystalline synthetic silica powder and glass compact using the same
JPH04132610A (en) Production of silicon dioxide powder
JPH10183103A (en) Production of cerium-based abrasive
JP2542797B2 (en) Method for producing high-purity silica
JP2001220157A (en) Amorphous synthetic silica powder and glass compact using the same
US3389005A (en) Process for the decomposition of zircon sand
JPH03170319A (en) Production of silicon dioxide powder
RU2327639C2 (en) Method of producing high purity silicon
CN111762787B (en) Combined preparation method of chlorosilane and quartz
CN115259174B (en) Boron arsenide nanocrystals prepared from oxides, and preparation method and application thereof
JP2733863B2 (en) Method for producing spherical silica
JPH0450132A (en) Purification of silica-based raw material
JP3318946B2 (en) Powdery dry gel, silica glass powder, and method for producing silica glass melt molded article
JPH0465311A (en) Method for removing radioactive element from metallic silicon
JPS6335411A (en) Production of high-purity synthetic quartz
JP3040310B2 (en) Manufacturing method of synthetic quartz glass
JPH0121091B2 (en)
JPH06183717A (en) Production of silicon carbide powder
KR20230150346A (en) Metal oxide powder and method for producing the same
JP3071363B2 (en) Manufacturing method of synthetic quartz glass

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080705

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100705

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100705

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110705

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110705

Year of fee payment: 16