JP2008247723A - Method for manufacturing metallic silicon powder, method for manufacturing spherical silica powder, and method for preparing resin composition - Google Patents

Method for manufacturing metallic silicon powder, method for manufacturing spherical silica powder, and method for preparing resin composition Download PDF

Info

Publication number
JP2008247723A
JP2008247723A JP2007095135A JP2007095135A JP2008247723A JP 2008247723 A JP2008247723 A JP 2008247723A JP 2007095135 A JP2007095135 A JP 2007095135A JP 2007095135 A JP2007095135 A JP 2007095135A JP 2008247723 A JP2008247723 A JP 2008247723A
Authority
JP
Japan
Prior art keywords
powder
metal silicon
spherical silica
silica powder
silicon powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007095135A
Other languages
Japanese (ja)
Other versions
JP5097427B2 (en
Inventor
Masaru Maki
優 槙
Takeshi Yanagihara
武 楊原
San Abe
賛 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Admatechs Co Ltd
Original Assignee
Admatechs Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Admatechs Co Ltd filed Critical Admatechs Co Ltd
Priority to JP2007095135A priority Critical patent/JP5097427B2/en
Publication of JP2008247723A publication Critical patent/JP2008247723A/en
Application granted granted Critical
Publication of JP5097427B2 publication Critical patent/JP5097427B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method by which high-purity metallic silicon powder can easily be manufactured. <P>SOLUTION: The method for manufacturing metallic silicon powder is used when spherical silica powder is manufactured by reacting metallic silicon powder with oxygen in a flame, and is characterized by carrying out a purification process twice or more. The purification process comprises: a melting and solidification step of obtaining a solidified product by melting and solidifying crude metallic silicon; a crushing step of obtaining a crushed product by crushing the solidified product; and a removal and washing step of obtaining a treated product by immersing the crushed product in an inorganic acid containing at least hydrofluoric acid for a predetermined time and washing it. Since the solidified product in which impurities contained in the crude metallic silicon are concentrated in an outer side thereof such as a skin part by carrying out melting and solidification is reduced to powder in the crushing step, a powder in which the impurities concentrate in an outer side thereof is obtained. By treating the crushed product with hydrofluoric acid, a part containing high levels of impurities is dissolved and removed and high-purity metallic silicon powder can be obtained. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、比較的簡単な操作で純度の高い金属ケイ素粉末が製造可能な金属ケイ素粉末の製造方法と、その製造方法にて製造された金属ケイ素粉末を用いて製造される球状シリカ粉末の製造方法、並びに、その製造方法にて製造された球状シリカ粉末を用いて製造される樹脂組成物の製造方法に関する。   The present invention relates to a method for producing metal silicon powder capable of producing high-purity metal silicon powder by a relatively simple operation, and production of spherical silica powder produced using the metal silicon powder produced by the production method. The present invention relates to a method and a method for producing a resin composition produced using spherical silica powder produced by the production method.

半導体パッケージは熱的性質向上などを目指し、球状シリカ粉末を含有する樹脂組成物により封止されることが一般的であるが(特許文献1)、球状シリカ粉末中に所定量以上のウランが含まれていると、そのウランが発するα線により、封止する半導体に誤動作が生じるおそれがある。そこで、含有されるウランは極力除去されている。特にウラン元素の濃度(ウラン濃度)を制御せずに球状シリカ粉末を製造した場合のウラン濃度は30ppb前後である。   A semiconductor package is generally sealed with a resin composition containing a spherical silica powder for the purpose of improving thermal properties (Patent Document 1), but the spherical silica powder contains a predetermined amount or more of uranium. If so, the α-rays emitted from the uranium may cause malfunction in the semiconductor to be sealed. Therefore, uranium contained is removed as much as possible. Particularly when the spherical silica powder is produced without controlling the concentration of uranium element (uranium concentration), the uranium concentration is around 30 ppb.

ウラン濃度に限らず、高純度の金属ケイ素を製造する方法としては、金属ケイ素からモノシラン法や三塩化シラン法などにより精製する半導体に使用する高純度ケイ素の製造方法があるが、半導体パッケージ用としては過剰品質であり、より安価な製造方法が望まれる。   As a method for producing high-purity metal silicon, not limited to uranium concentration, there is a method for producing high-purity silicon used for semiconductors purified from metal silicon by the monosilane method or silane trichloride method. Is an excessive quality, and a cheaper manufacturing method is desired.

従来、太陽電池に使用できる程度の純度をもつ金属ケイ素を製造する方法として、(a) 粗製ケイ素を、ケイ酸カルシウムと1544℃以上の温度で溶融混合し、ケイ素中の硼素をスラグ中に移行させ、(b) 工程(a) で得られた混合液を不活性ガス雰囲気中で静置し、下層のスラグ層と上層の溶融ケイ素層とに分離した後、温度を1410〜1544℃として、スラグを凝固させるとともに、ケイ素を溶融状態で保持して、(c) 不活性ガス雰囲気中で、工程(b) で得られた溶融ケイ素中に冷却体を浸漬し、冷却体外表面に高純化されたケイ素を晶出付着させた後、この冷却体2を溶融ケイ素中から引き上げ、晶出した高純度ケイ素塊を冷却体から取外し、(d) 工程(c) で得られた高純度ケイ素を再び溶融した後、溶融ケイ素を真空処理して高純度ケイ素中のリンを蒸発除去する、方法が開示されている(特許文献2)。
特開2000−63630号公報 特開平7−206420号公報
Conventionally, as a method for producing metallic silicon having a purity that can be used for solar cells, (a) Crude silicon is melt-mixed with calcium silicate at a temperature of 1544 ° C. or more, and boron in silicon is transferred into slag. (B) The mixture obtained in step (a) is allowed to stand in an inert gas atmosphere and separated into a lower slag layer and an upper molten silicon layer, and the temperature is set to 1410 to 1544 ° C. While solidifying the slag and holding the silicon in a molten state, (c) the cooling body is immersed in the molten silicon obtained in the step (b) in an inert gas atmosphere to be highly purified on the outer surface of the cooling body. After crystallizing and adhering silicon, the cooling body 2 is pulled up from the molten silicon, the crystallized high-purity silicon mass is removed from the cooling body, and (d) the high-purity silicon obtained in step (c) is again removed. After melting, vacuum processing of the molten silicon is performed in high purity silicon A method of evaporating and removing phosphorus in the glass is disclosed (Patent Document 2).
JP 2000-63630 A JP 7-206420 A

しかしながら、特許文献2に開示の高純度ケイ素の製造方法では煩雑な操作が必要であって、より簡便に高純度な金属ケイ素粉末を製造する方法が求められていると共に、特許文献2の製造方法は金属ケイ素の塊を製造する方法であり、粉末化を行う単位操作における不純物の混入の対策が必要である。   However, the method for producing high-purity silicon disclosed in Patent Document 2 requires complicated operations, and there is a need for a method for producing metal silicon powder with high purity more easily. Is a method for producing a lump of metallic silicon, and it is necessary to take measures against mixing impurities in the unit operation for pulverization.

本発明は上記実情に鑑み為されたものであり、高純度の金属ケイ素粉末を簡単に製造可能な製造方法を提供することを解決すべき課題とする。そして、その製造方法にて製造された金属ケイ素粉末から高純度の球状シリカ粉末を製造する製造方法を提供することも解決すべき課題とする。更に、その製造方法にて製造された球状シリカ粉末から樹脂組成物を製造する製造方法を提供することも解決すべき課題とする。   This invention is made | formed in view of the said situation, and makes it the problem which should be solved to provide the manufacturing method which can manufacture a highly pure metal silicon powder easily. Another object to be solved is to provide a production method for producing high-purity spherical silica powder from metal silicon powder produced by the production method. Furthermore, providing the manufacturing method which manufactures a resin composition from the spherical silica powder manufactured with the manufacturing method is also made into the subject which should be solved.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

(1)本発明の金属ケイ素粉末の製造方法にて製造される金属ケイ素粉末は火炎中で酸素と反応させて球状シリカ粉末を製造するときに用いる金属ケイ素粉末を製造する方法である。 (1) The metal silicon powder produced by the method for producing metal silicon powder of the present invention is a method for producing metal silicon powder used when producing spherical silica powder by reacting with oxygen in a flame.

本発明者らは上記課題を解決する目的で鋭意検討を行い、以下の発明を完成した。すなわち、本発明の金属ケイ素粉末の製造方法は、金属ケイ素原料を溶融した後、凝固して凝固物を得る溶融凝固工程と、
前記凝固物を粉砕して粉砕物を得る粉砕工程と、
少なくともフッ酸を含む無機酸に前記粉砕物を所定時間浸漬処理した後、洗浄して被処理物を得る除去洗浄工程と、
を有する精製工程を2回以上繰り返すことで、当初の純度が90%以上の金属ケイ素原料を精製して前記金属ケイ素粉末を得ることを特徴とする。
The present inventors have intensively studied for the purpose of solving the above problems, and have completed the following invention. That is, the method for producing a metal silicon powder of the present invention includes a melt solidification step in which a metal silicon raw material is melted and then solidified to obtain a solidified product,
A pulverization step of pulverizing the solidified product to obtain a pulverized product;
After the immersion treatment of the pulverized product in an inorganic acid containing at least hydrofluoric acid for a predetermined time, a cleaning process for obtaining an object to be processed by washing,
The metal silicon powder is obtained by refining a metal silicon raw material having an initial purity of 90% or more by repeating the purification step having 2 or more times.

溶融・凝固を行うことで原料中に含有される不純物を結晶粒界に偏析・集中させて形成した凝固物を得た後、粉砕工程にて粉末化することで、不純物を多く含む結晶粒界が露出した粉末が得られる。粉砕工程においては、不純物が偏析した結晶粒界から優先的に粉砕が進行して表面に不純物が多い部分が露出する。不純物としては原料中に含まれるものと、粉砕工程において混入するものとが考えられる。   After obtaining a solidified product that is formed by segregating and concentrating impurities contained in the raw material at the grain boundaries by melting and solidifying, it is pulverized in the pulverization process to obtain a crystal grain boundary containing a large amount of impurities. Is obtained. In the pulverization step, pulverization proceeds preferentially from the grain boundaries where the impurities segregate, and a portion with a large amount of impurities is exposed on the surface. Impurities include those contained in the raw material and those mixed in the pulverization step.

得られた粉砕物をフッ酸を含む無機酸にて処理することで、不純物を多く含む表面部分を溶解除去して高純度の金属ケイ素粉末を得ることが可能になる。この精製工程を少なくとも2回行うことで充分な純度をもつ金属ケイ素粉末を得ることが可能になる。   By treating the obtained pulverized product with an inorganic acid containing hydrofluoric acid, it is possible to dissolve and remove the surface portion containing a large amount of impurities to obtain a high-purity metal silicon powder. By performing this purification step at least twice, it becomes possible to obtain a metal silicon powder having sufficient purity.

半導体に適用する球状シリカ粉末を製造する目的で製造する金属ケイ素粉末においては、ウランの含有濃度が特に問題になる。製造される金属ケイ素粉末中のウラン含有濃度を低減させる目的で、前記溶融凝固工程はケイ素の融点近傍で前記溶融物を保持して相対的に高純度な金属ケイ素を凝固させて偏析させる偏析工程を有し、前記除去洗浄工程は相対的にウラン含有濃度が高い前記粉砕物の表面部分を溶解除去する工程であり、製造される金属ケイ素粉末中のウラン濃度が質量基準で0.5ppb以下であることが望ましい。   In the metal silicon powder produced for the purpose of producing a spherical silica powder applied to a semiconductor, the uranium content concentration becomes a particular problem. For the purpose of reducing the concentration of uranium contained in the produced metal silicon powder, the melt solidification step is a segregation step in which the melt is retained near the melting point of silicon to solidify and segregate relatively high-purity metal silicon. The removal cleaning step is a step of dissolving and removing the surface portion of the pulverized product having a relatively high uranium-containing concentration, and the uranium concentration in the produced metal silicon powder is 0.5 ppb or less on a mass basis. It is desirable to be.

(2)上記課題を解決する本発明の球状シリカ粉末の製造方法は、上述の(1)に記載の製造方法にて製造された金属ケイ素粉末をキャリヤガスと共に酸素過剰の酸化炎中に投入することで球状シリカ粉末を得ることを特徴とする。 (2) The method for producing the spherical silica powder of the present invention that solves the above-described problems is to introduce the metal silicon powder produced by the production method described in (1) above into an oxygen-excess oxygen flame together with a carrier gas. Thus, spherical silica powder is obtained.

上述の製造方法は簡単な方法にて高純度の金属ケイ素粉末を製造可能であり、得られた金属ケイ素粉末を用いることで高純度の球状シリカ粉末を製造することが可能になる。   The above-described production method can produce a high-purity metal silicon powder by a simple method, and a high-purity spherical silica powder can be produced by using the obtained metal silicon powder.

(3)上記課題を解決する本発明の樹脂組成物は、上述の(2)に記載の製造方法にて製造された球状シリカ粉末と有機樹脂材料とを混合し、前記球状シリカ粉末を前記有機樹脂材料中に分散させる工程を有することを特徴とする。 (3) The resin composition of the present invention that solves the above problems is obtained by mixing the spherical silica powder produced by the production method described in (2) above and an organic resin material, and using the spherical silica powder as the organic It has the process to disperse | distribute in a resin material, It is characterized by the above-mentioned.

上述の製造方法は簡単な方法にて高純度の球状シリカ粉末を製造可能であり、得られた球状シリカ粉末を用いることで高純度の樹脂組成物を製造することが可能になる。   The above-described production method can produce a high-purity spherical silica powder by a simple method, and a high-purity resin composition can be produced by using the obtained spherical silica powder.

(1)本発明の製造方法について実施形態に基づき以下詳細に説明する。本実施形態の金属ケイ素粉末の製造方法は、金属ケイ素粉末を火炎中で酸素と反応させて球状シリカ粉末を製造する方法(いわゆるVMC法)に用いる金属ケイ素粉末を製造する方法である。 (1) The production method of the present invention will be described in detail below based on the embodiment. The method for producing a metal silicon powder according to the present embodiment is a method for producing a metal silicon powder used in a method for producing a spherical silica powder by reacting a metal silicon powder with oxygen in a flame (so-called VMC method).

具体的には、所定の精製工程を少なくとも2回繰り返すことで、高純度の金属ケイ素粉末が製造できる。精製工程を繰り返す回数は必要な金属ケイ素粉末の純度に達するまで行うことができる。本実施形態の金属ケイ素粉末の製造方法に用いられる金属ケイ素原料としては純度が90%以上のものを採用するが、それより高い純度のものを採用することは望ましいことである。   Specifically, a high-purity metal silicon powder can be produced by repeating a predetermined purification step at least twice. The purification process can be repeated until the required purity of the metal silicon powder is reached. As the metal silicon raw material used in the method for producing the metal silicon powder of the present embodiment, a material having a purity of 90% or more is adopted, but it is desirable to employ a material having a purity higher than that.

最終的に製造される金属ケイ素粉末に含まれる不純物の含有量としては必要に応じて適宜設定すれば充分であるが、半導体封止材の原料として用いる場合には、製造される金属ケイ素粉末中のウラン濃度が質量基準で0.5ppb以下であることが望ましい。   As the content of impurities contained in the finally produced metal silicon powder, it is sufficient to appropriately set as necessary, but when used as a raw material for a semiconductor sealing material, It is desirable that the uranium concentration in the water is 0.5 ppb or less by mass.

精製工程は溶融凝固工程と粉砕工程と除去洗浄工程とその他必要な工程とを有する。   The purification process includes a melt solidification process, a pulverization process, a removal cleaning process, and other necessary processes.

溶融凝固工程は金属ケイ素原料を溶融する工程と凝固する工程とをもつ。溶融する工程は金属ケイ素の融点(1412℃)以上に加熱して金属ケイ素原料を完全に溶融させる工程である。溶融工程は不活性雰囲気下で行うことが望ましい。   The melt solidification step includes a step of melting the metal silicon raw material and a step of solidifying. The melting step is a step of heating the metal silicon melting point (1412 ° C.) or higher to completely melt the metal silicon raw material. The melting step is desirably performed in an inert atmosphere.

ここで、加熱温度としては金属ケイ素の融点よりも僅かに高い程度とすることが望ましい。そうすることで、金属ケイ素は溶融状態を保ち、不純物のうち融点が高い不純物は凝固状態に保つことが可能になる。その結果、両者の比重の相違から表面乃至底面に不純物を凝集させることが可能になる。不純物の凝集を完遂する目的で溶融工程における加熱時間は長い方が望ましい。表面乃至底面に凝集した不純物は、後述する粉砕・洗浄工程にて簡単に除去可能である。   Here, the heating temperature is desirably slightly higher than the melting point of metallic silicon. By doing so, metallic silicon can be kept in a molten state, and impurities having a high melting point among impurities can be kept in a solidified state. As a result, it is possible to agglomerate impurities on the surface or bottom surface due to the difference in specific gravity between them. In order to complete the aggregation of impurities, it is desirable that the heating time in the melting process is long. Impurities agglomerated on the surface or bottom surface can be easily removed by a pulverization / washing process described later.

溶融工程に用いる炉やるつぼとしては特に限定しないが、問題になる不純物の含有量が少ない高融点材料にて形成されたものが望ましい。例えば、アルミナ製、マグネシア製、ジルコニア製、黒鉛製、石英製のるつぼや炉である。加熱方法も特に限定されないが、電気にて加熱するなど不純物が混入しない方法が望ましい。   Although it does not specifically limit as a furnace or a crucible used for a fusion | melting process, The thing formed with the high melting-point material with few content of the impurity which becomes a problem is desirable. For example, a crucible or furnace made of alumina, magnesia, zirconia, graphite, or quartz. The heating method is not particularly limited, but a method in which impurities are not mixed, such as heating by electricity, is desirable.

凝固工程は溶融した金属ケイ素原料を冷却して凝固させる工程である。冷却に伴い、まず高純度の金属ケイ素が結晶として凝固した後、不純物を含む残部がその周りを包みように凝固する。ここで、冷却に要する時間は特に限定されないが、長時間で冷却を行うことで、溶融した金属ケイ素原料から、ウランなどの不純物を含まないより高純度な金属ケイ素の大きな結晶を凝固させることが可能になる。凝固工程は溶融工程と同じ容器(るつぼや炉など)内にて行うことも可能なほか、他の容器に移して凝固させることもできる。   The solidification step is a step of cooling and solidifying the molten metal silicon raw material. With cooling, first, high-purity metallic silicon is solidified as crystals, and then the remainder containing impurities is solidified so as to surround it. Here, the time required for cooling is not particularly limited, but by cooling for a long time, it is possible to solidify larger crystals of higher-purity metal silicon that does not contain impurities such as uranium from the molten metal silicon raw material. It becomes possible. The solidification step can be performed in the same container (such as a crucible or a furnace) as the melting step, or can be transferred to another container and solidified.

粉砕工程は得られた凝固物を粉砕する工程である。凝固物の粉砕をどのように行うかについては特に限定しないが、最後の精製工程における粉砕工程においては、粉砕物の粒度分布が最終的な目的物である金属ケイ素粉末に要求される粒度分布に近づくように行うことが望ましい。   The pulverization step is a step of pulverizing the obtained solidified product. There is no particular limitation on how the pulverized product is pulverized, but in the final pulverization step, the particle size distribution of the pulverized product is the particle size distribution required for the metal silicon powder that is the final target product. It is desirable to do so.

粉砕工程はハンマーミル、ボールミル、振動ミル、ジェットミルなどを単独乃至組み合わせることで必要な粒径分布を実現する。粉砕工程においては必要に応じて分級操作を行っても良い。   In the pulverizing step, a necessary particle size distribution is realized by combining a hammer mill, a ball mill, a vibration mill, a jet mill, or the like. In the pulverization step, classification operation may be performed as necessary.

除去洗浄工程は無機酸に所定時間浸漬する除去工程と洗浄する洗浄工程とをもつ。無機酸としてはフッ酸を含むものを採用し、粉砕工程で得られた粉砕物の表面を溶解除去することで不純物を除去する工程である。無機酸としてはフッ酸の他に硝酸、塩酸、硫酸などを含有することができる。   The removal cleaning step has a removal step of immersing in an inorganic acid for a predetermined time and a cleaning step of cleaning. In this process, an inorganic acid containing hydrofluoric acid is employed, and impurities are removed by dissolving and removing the surface of the pulverized product obtained in the pulverization step. As the inorganic acid, nitric acid, hydrochloric acid, sulfuric acid and the like can be contained in addition to hydrofluoric acid.

不純物は、先述した溶融凝固工程にて凝固物の表面に集まっており、また、粉砕工程にて粉砕装置から不純物が粉砕物の表面に混入しているので、無機酸によって粉砕物の表面を溶解除去することで、表面に集中する不純物を効果的に除去できるものと考えられる。   Impurities are collected on the surface of the solidified product in the above-described melt-solidification process, and the impurities are mixed into the surface of the pulverized product from the pulverizing device in the pulverization process. It is considered that the impurities concentrated on the surface can be effectively removed by the removal.

洗浄工程は除去工程にて粉砕物の表面に付着した不純物を洗浄して清浄化する工程である。除去工程では粉砕物の表面を溶解除去しているので、無機酸の他、無機酸により溶解した不純物などが付着物として粉砕物の表面に残存している。洗浄工程では表面に残存する付着物を洗浄除去する。洗浄の方法としては不純物(特にウランなどの放射性元素やイオン性物質)を含有しない洗浄液にて洗浄することが望ましい。洗浄液としては純水が望ましく、純水によるほか、適正な溶媒(例えば、アルコールなどの水系溶媒)を選択することで付着物を除去することもできる。   The cleaning process is a process of cleaning and cleaning impurities adhering to the surface of the pulverized product in the removing process. Since the surface of the pulverized material is dissolved and removed in the removing step, impurities dissolved by the inorganic acid in addition to the inorganic acid remain as deposits on the surface of the pulverized material. In the cleaning process, the deposits remaining on the surface are cleaned and removed. As a cleaning method, it is desirable to perform cleaning with a cleaning solution that does not contain impurities (especially radioactive elements such as uranium and ionic substances). As the cleaning liquid, pure water is desirable. In addition to pure water, the adhering substance can be removed by selecting an appropriate solvent (for example, an aqueous solvent such as alcohol).

精製工程はその他、乾燥工程をもつことができる。乾燥工程は除去洗浄工程後に加熱したり、減圧状態にしたりして、洗浄工程にて付着した洗浄液を除去する工程である。   In addition, the purification step can have a drying step. A drying process is a process of removing the washing | cleaning liquid adhering at the washing | cleaning process by heating after a removal washing | cleaning process or making it pressure reduction state.

(2)本実施形態の球状シリカ粉末の製造方法は、(1)にて説明した製造方法にて製造した金属ケイ素粉末を用いていわゆるVMC法にて球状シリカ粉末を製造する方法である。VMC(Vaperized Metal Combustion)法は、酸素を含む雰囲気中でバーナーにより化学炎を形成し、この化学炎中に金属ケイ素粉末を粉塵雲が形成される程度の量投入し、爆燃を起こさせて酸化物粒子を得る方法である。具体的には、(1)の製造方法にて製造された金属ケイ素粉末をキャリヤガスと共に酸素過剰の酸化炎中に投入することで球状シリカ粉末を得る方法である。 (2) The manufacturing method of the spherical silica powder of this embodiment is a method of manufacturing the spherical silica powder by the so-called VMC method using the metal silicon powder manufactured by the manufacturing method described in (1). In the VMC (Vaperized Metal Combustion) method, a chemical flame is formed by a burner in an atmosphere containing oxygen, and metal silicon powder is introduced into the chemical flame in such an amount that a dust cloud is formed, causing deflagration and oxidation. This is a method for obtaining physical particles. Specifically, it is a method of obtaining spherical silica powder by putting the metal silicon powder produced by the production method (1) into an oxygen-excess oxide flame together with a carrier gas.

VMC法の作用について説明すれば以下のようになる。まず、容器中に反応ガスである酸素を含有するガスを充満させ、この反応ガス中で化学炎を形成する。次いで、この化学炎に金属粉末を投入し高濃度(500g/m3以上)の粉塵雲を形成する。すると、化学炎により金属粉末表面に熱エネルギが与えられ、金属粉末の表面温度が上昇し、金属粉末表面から金属の蒸気が周囲に広がる。この金属蒸気が酸素ガスと反応して発火し火炎を生じる。この火炎により生じた熱は、さらに金属粉末の気化を促進し、生じた金属蒸気と反応ガスが混合され、連鎖的に発火伝播する。このとき金属粉末自体も破壊して飛散し、火炎伝播を促す。燃焼後に生成ガスが自然冷却されることにより、酸化物粒子の雲ができる。得られた酸化物粒子は、バグフィルターや電気集塵器等により捕集される。 The operation of the VMC method will be described as follows. First, the container is filled with a gas containing oxygen as a reaction gas, and a chemical flame is formed in the reaction gas. Next, metal powder is introduced into the chemical flame to form a dust cloud with a high concentration (500 g / m 3 or more). Then, thermal energy is given to the metal powder surface by the chemical flame, the surface temperature of the metal powder rises, and metal vapor spreads from the metal powder surface to the surroundings. This metal vapor reacts with oxygen gas to ignite and produce a flame. The heat generated by the flame further promotes the vaporization of the metal powder, and the generated metal vapor and the reaction gas are mixed and propagated in a chain. At this time, the metal powder itself is destroyed and scattered, which promotes flame propagation. The product gas is naturally cooled after combustion, thereby forming a cloud of oxide particles. The obtained oxide particles are collected by a bag filter, an electric dust collector or the like.

VMC法は粉塵爆発の原理を利用するものである。VMC法によれば、瞬時に大量の酸化物粒子が得られる。得られる酸化物粒子は、略真球状の形状をなす。投入する金属ケイ素粉末の粒子径、投入量、火炎温度等を調整することにより、得られる球状シリカ粉末の粒子径を調整することが可能である。また、原料物質としては金属ケイ素粉末に加えて、シリカ粉末も添加することができる。シリカ粉末は本方法により得られる球状シリカ粉末を採用することで得られる球状シリカ粉末の純度を保つことができる。   The VMC method uses the principle of dust explosion. According to the VMC method, a large amount of oxide particles can be obtained instantaneously. The resulting oxide particles have a substantially spherical shape. It is possible to adjust the particle diameter of the resulting spherical silica powder by adjusting the particle diameter of the metal silicon powder to be input, the input amount, the flame temperature, and the like. In addition to the metal silicon powder, silica powder can be added as a raw material. The silica powder can maintain the purity of the spherical silica powder obtained by adopting the spherical silica powder obtained by this method.

得られた球状シリカ粉末は、樹脂組成物に混合する場合に、樹脂との密着性を向上させる目的で、表面処理を施すことができる。例えば、シラン系、チタネート系、アルミネート系、ジルコネート系の各種カップリング剤、カチオン、アニオン、両性、中性の各種界面活性剤を混合することができる。   When the obtained spherical silica powder is mixed with the resin composition, it can be subjected to a surface treatment for the purpose of improving the adhesion with the resin. For example, various silane, titanate, aluminate and zirconate coupling agents, cations, anions, amphoteric and neutral surfactants can be mixed.

(3)本実施形態の樹脂組成物は、(2)で説明した球状シリカ粉末と有機樹脂材料とを混合し、球状シリカ粉末を有機樹脂材料中に分散させる工程を有することを特徴とする。本樹脂組成物は半導体液状封止材として半導体素子の封止に用いることができるほか、基板材料、無機ペースト、接着剤、コーティング剤、精密成形樹脂などに用いることができる。 (3) The resin composition of this embodiment has a step of mixing the spherical silica powder and the organic resin material described in (2) and dispersing the spherical silica powder in the organic resin material. The resin composition can be used as a semiconductor liquid sealing material for sealing semiconductor elements, and can also be used for substrate materials, inorganic pastes, adhesives, coating agents, precision molding resins, and the like.

球状シリカ粉末については上述した通りなので更なる説明は省略する。球状シリカ粉末は全体の質量を基準として40質量%以上含有することが望ましく、更には50質量%以上含有することがより望ましい。   Since the spherical silica powder is as described above, further explanation is omitted. The spherical silica powder is preferably contained in an amount of 40% by mass or more, more preferably 50% by mass or more based on the total mass.

有機樹脂材料としては、エポキシ樹脂、オキシラン樹脂、オキセタン化合物、環状エーテル化合物、環状ラクトン化合物、チイラン化合物、環状アセタール化合物、環状チオエーテル化合物、スピロオルトエステル化合物、ビニル化合物などが挙げられ、これらの化合物を単独で、又は複数種類混合して用いることができる。   Examples of organic resin materials include epoxy resins, oxirane resins, oxetane compounds, cyclic ether compounds, cyclic lactone compounds, thiirane compounds, cyclic acetal compounds, cyclic thioether compounds, spiro orthoester compounds, vinyl compounds, and the like. It can be used alone or in combination.

特に、エポキシ樹脂が入手性、取扱性などの観点から好ましい。エポキシ樹脂は特に限定されないが、1分子中に2以上のエポキシ基を有するモノマー、オリゴマー、ポリマーが挙げられる。例えば、ビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂、ビスフェノール型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂、ナフトール型エポキシ樹脂、トリアジン核含有エポキシ樹脂が挙げられる。   In particular, an epoxy resin is preferable from the viewpoints of availability, handleability, and the like. Although an epoxy resin is not specifically limited, The monomer, oligomer, and polymer which have two or more epoxy groups in 1 molecule are mentioned. For example, biphenyl type epoxy resin, stilbene type epoxy resin, bisphenol type epoxy resin, triphenol methane type epoxy resin, alkyl modified triphenol methane type epoxy resin, dicyclopentadiene modified phenol type epoxy resin, naphthol type epoxy resin, triazine core containing An epoxy resin is mentioned.

エポキシ樹脂以外の具体例としては、フェニルグリシジルエーテル、エチレンオキシド、エピクロロヒドリンなどのオキシラン化合物;トリメチレンオキサイド、3,3−ジメチルオキセタン、3,3−ジクロロメチルオキセタンなどのオキセタン化合物;テトラヒドロフラン、2,3−ジメチルテトラヒドロフラン、トリオキサン、1,3−ジオキソフラン、1,3,6−トリオキサシクロオクタンなどの環状エーテル化合物;β−プロピオラクトン、ε−カプロラクトンなどの環状ラクトン化合物;エチレンスルフィド、3,3−ジメチルチイランなどのチイラン化合物;1,3−プロピンスルフィド、3,3−ジメチルチエタンなどのチエタン化合物;テトラヒドロチオフェン誘導体などの環状チオエーテル化合物;エポキシ化合物とラクトンとの反応によって得られるスピロオルトエステル化合物;スピロオルトカルボナート化合物;環状カルボナート化合物;エチレングリコールジビニルエーテル、アルキルビニルエーテル、トリエチレングリコールジビニルエーテルなどのビニル化合物;スチレン、ビニルシクロヘキセン、イソブチレン、ポリブタジエンなどのエチレン性不飽和化合物が例示できる。カチオン重合性化合物としては、エポキシ樹脂及びこれらの化合物を単独で、又は複数種類混合して用いることができる。   Specific examples other than the epoxy resin include oxirane compounds such as phenyl glycidyl ether, ethylene oxide and epichlorohydrin; oxetane compounds such as trimethylene oxide, 3,3-dimethyloxetane and 3,3-dichloromethyloxetane; tetrahydrofuran, 2 Cyclic ether compounds such as 1,3-dimethyltetrahydrofuran, trioxane, 1,3-dioxofuran, 1,3,6-trioxacyclooctane; cyclic lactone compounds such as β-propiolactone and ε-caprolactone; ethylene sulfide, 3, Thiane compounds such as 3-dimethylthiirane; Thiane compounds such as 1,3-propyne sulfide and 3,3-dimethyl thietane; Cyclic thioether compounds such as tetrahydrothiophene derivatives; Spiro ortho ester compounds obtained by reaction with kuton; spiro ortho carbonate compounds; cyclic carbonate compounds; vinyl compounds such as ethylene glycol divinyl ether, alkyl vinyl ether, triethylene glycol divinyl ether; styrene, vinyl cyclohexene, isobutylene, polybutadiene, etc. An ethylenically unsaturated compound can be illustrated. As a cationically polymerizable compound, an epoxy resin and these compounds can be used alone or in combination.

エポキシ樹脂を採用した場合などに添加する硬化剤としては1級アミン、2級アミン、フェノール樹脂、酸無水物を用いることがあり、硬化触媒としてはブレンステッド酸、ルイス酸、塩基性触媒などが用いられる。塩基性触媒としては、イミダゾール系、ジシアンジアミド系、アミンアダクト系、ホスフィン系、ヒドラジド系が用いられる。   As a curing agent to be added when an epoxy resin is employed, a primary amine, a secondary amine, a phenol resin, or an acid anhydride may be used. As a curing catalyst, Bronsted acid, Lewis acid, basic catalyst, or the like may be used. Used. As the basic catalyst, imidazole, dicyandiamide, amine adduct, phosphine, and hydrazide are used.

金属ケイ素を1480℃で10時間溶解し(溶融工程)、その後、冷却して凝固させた(凝固工程、併せて溶融凝固工程)。得られた金属ケイ素の凝固物を体積平均粒径が2mm以下になるまで粉砕して粉砕物を得た(粉砕工程)。   Metallic silicon was melted at 1480 ° C. for 10 hours (melting step), and then cooled and solidified (solidification step and melt solidification step). The obtained metal silicon solidified product was pulverized until the volume average particle size became 2 mm or less to obtain a pulverized product (pulverization step).

得られた粉砕物を2質量%フッ酸水溶液に浸漬し、15時間撹拌した(除去工程)。そして、粉砕物をろ別した後、純水にて洗浄した(洗浄工程、併せて除去洗浄工程)。その後、乾燥した(乾燥工程)。   The obtained pulverized product was immersed in a 2 mass% hydrofluoric acid aqueous solution and stirred for 15 hours (removal step). Then, after the pulverized product was separated by filtration, it was washed with pure water (cleaning process and removal cleaning process). Then, it dried (drying process).

この溶融凝固工程と除去洗浄工程と乾燥工程とからなる精製工程をもう一度繰り返し行い本実施例の金属ケイ素粉末とした。   This purification process consisting of the melt solidification process, the removal washing process and the drying process was repeated once more to obtain the metal silicon powder of this example.

実施例1における精製工程を3回行い、得られた金属ケイ素粉末を本実施例の金属ケイ素粉末とした。   The purification process in Example 1 was performed three times, and the obtained metal silicon powder was used as the metal silicon powder of this example.

比較例Comparative example

実施例1における精製工程を1回行い、得られた金属ケイ素粉末を本比較例の金属ケイ素粉末とした。   The purification process in Example 1 was performed once, and the obtained metal silicon powder was used as the metal silicon powder of this comparative example.

(評価)
得られた各実施例及び比較例の金属ケイ素粉末についての分析結果を表1に示す。
(Evaluation)
Table 1 shows the analysis results of the obtained metal silicon powders of Examples and Comparative Examples.

Figure 2008247723
Figure 2008247723

表より明らかなように、金属ケイ素原料におけるウラン含有量が33ppbであったのに対して、実施例及び比較例のいずれの製造方法にて得られた金属ケイ素粉末であっても、ウランの含有量は減少した。しかしながら、精製工程を1回しか行っていない比較例の金属ケイ素粉末は、2回以上精製工程を行った実施例の製造方法にて製造した金属ケイ素粉末に比べて7倍以上のウランが残存することが明らかになった。   As is clear from the table, the uranium content in the metal silicon raw material was 33 ppb, whereas the metal silicon powder obtained by any of the production methods of Examples and Comparative Examples contained uranium. The amount decreased. However, the metal silicon powder of the comparative example in which the purification process has been performed only once retains uranium 7 times or more as compared with the metal silicon powder produced by the production method of the example in which the purification process has been performed twice or more. It became clear.

(球状シリカ粉末の製造)
実施例1及び比較例の金属ケイ素粉末を用いてVMC法にて球状シリカ粉末を製造した。
(Production of spherical silica powder)
Spherical silica powder was produced by the VMC method using the metal silicon powders of Example 1 and Comparative Example.

本発明の球状シリカ粉末及び樹脂組成物について実施例に基づき、更に詳細に説明を行う。各実施例及び比較例の球状シリカ粒子爆発燃焼装置中に原料粉末を投入することで製造した。   The spherical silica powder and resin composition of the present invention will be described in more detail based on examples. The raw material powder was put into the spherical silica particle explosion combustion apparatus of each example and comparative example.

具体的には、キャリアガスとしての酸素と、可燃ガスとしてのプロパンガスとをそれぞれ反応容器内に導入した後、バーナで着火して火炎を形成して反応容器内を充分に乾燥させた。キャリアガスは20Nm3/時間、可燃ガスは1.0Nm3/時間の流速で反応容器内に導入した。 Specifically, oxygen as a carrier gas and propane gas as a combustible gas were respectively introduced into a reaction vessel, and then ignited with a burner to form a flame, thereby sufficiently drying the inside of the reaction vessel. Carrier gas was introduced into the reaction vessel at a flow rate of 20 Nm 3 / hour and combustible gas at a flow rate of 1.0 Nm 3 / hour.

次いで、金属ケイ素粉末をキャリアガスにより10kg/時間の供給速度で、バーナを通じて反応容器内に導入し火炎中に噴出させることで酸化させた。原料の金属ケイ素粉末は酸化により球状シリカ粉末を形成した。得られた球状シリカ粉末のウラン含有量を測定した。結果を表2に示す。   Next, the metal silicon powder was oxidized by introducing it into the reaction vessel through a burner at a supply rate of 10 kg / hour with a carrier gas and ejecting it into the flame. The raw material metal silicon powder formed spherical silica powder by oxidation. The uranium content of the obtained spherical silica powder was measured. The results are shown in Table 2.

Figure 2008247723
Figure 2008247723

表2より明らかなように、原料である金属ケイ素粉末中のウラン含有量が少ない実施例1の球状シリカ粉末の方がウラン含有量が少なかった。   As is clear from Table 2, the spherical silica powder of Example 1 having a lower uranium content in the metal silicon powder as the raw material had a lower uranium content.

以上の結果から明らかなように、本発明の精製工程を2回以上採用した実施例の製造方法によれば、簡単に高純度の金属ケイ素粉末及び球状シリカ粉末を製造することが可能であることが分かった。   As is clear from the above results, according to the production method of the example employing the purification process of the present invention twice or more, it is possible to easily produce high-purity metal silicon powder and spherical silica powder. I understood.

Claims (4)

金属ケイ素粉末を火炎中で酸素と反応させて球状シリカ粉末を製造するときに用いる前記金属ケイ素粉末を製造する方法であって、
金属ケイ素原料を溶融した後、凝固して凝固物を得る溶融凝固工程と、
前記凝固物を粉砕して粉砕物を得る粉砕工程と、
少なくともフッ酸を含む無機酸に前記粉砕物を所定時間浸漬処理した後、洗浄して被処理物を得る除去洗浄工程と、
を有する精製工程を2回以上繰り返すことで、当初の純度が90%以上の金属ケイ素原料を精製して前記金属ケイ素粉末を得ることを特徴とする金属ケイ素粉末の製造方法。
A method of producing the metal silicon powder for use in producing spherical silica powder by reacting metal silicon powder with oxygen in a flame,
After melting the metal silicon raw material, it is solidified to obtain a solidified product by solidification;
A pulverization step of pulverizing the solidified product to obtain a pulverized product;
After the immersion treatment of the pulverized product in an inorganic acid containing at least hydrofluoric acid for a predetermined time, a cleaning process for obtaining an object to be processed by washing,
A method for producing a metal silicon powder, wherein the metal silicon powder is obtained by refining a metal silicon raw material having an initial purity of 90% or more by repeating the purification step having 2 or more times.
前記溶融凝固工程はケイ素の融点近傍で前記溶融物を保持して相対的に高純度な金属ケイ素を凝固させて偏析させる偏析工程を有し、
前記除去洗浄工程は相対的にウラン含有濃度が高い前記粉砕物の表面部分を溶解除去する工程であり、
製造される金属ケイ素粉末中のウラン濃度が質量基準で0.5ppb以下である請求項1に記載の金属ケイ素粉末の製造方法。
The melt solidification step has a segregation step in which the melt is held near the melting point of silicon to solidify and segregate relatively high-purity metallic silicon,
The removal cleaning step is a step of dissolving and removing the surface portion of the pulverized product having a relatively high uranium-containing concentration,
The method for producing a metal silicon powder according to claim 1, wherein the uranium concentration in the produced metal silicon powder is 0.5 ppb or less on a mass basis.
請求項1又は2に記載の製造方法にて製造された金属ケイ素粉末をキャリヤガスと共に酸素過剰の酸化炎中に投入することで球状シリカ粉末を得ることを特徴とする球状シリカ粉末の製造方法。   A method for producing a spherical silica powder, characterized in that a metallic silica powder produced by the production method according to claim 1 or 2 is put together with a carrier gas into an oxygen-excess oxygen flame to obtain a spherical silica powder. 請求項3に記載の製造方法にて製造された球状シリカ粉末と有機樹脂材料とを混合し、前記球状シリカ粉末を前記有機樹脂材料中に分散させる工程を有することを特徴とする樹脂組成物の製造方法。   A resin composition comprising a step of mixing the spherical silica powder produced by the production method according to claim 3 and an organic resin material, and dispersing the spherical silica powder in the organic resin material. Production method.
JP2007095135A 2007-03-30 2007-03-30 Method for producing metal silicon powder, method for producing spherical silica powder, and method for producing resin composition Active JP5097427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007095135A JP5097427B2 (en) 2007-03-30 2007-03-30 Method for producing metal silicon powder, method for producing spherical silica powder, and method for producing resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007095135A JP5097427B2 (en) 2007-03-30 2007-03-30 Method for producing metal silicon powder, method for producing spherical silica powder, and method for producing resin composition

Publications (2)

Publication Number Publication Date
JP2008247723A true JP2008247723A (en) 2008-10-16
JP5097427B2 JP5097427B2 (en) 2012-12-12

Family

ID=39973120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007095135A Active JP5097427B2 (en) 2007-03-30 2007-03-30 Method for producing metal silicon powder, method for producing spherical silica powder, and method for producing resin composition

Country Status (1)

Country Link
JP (1) JP5097427B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60195016A (en) * 1984-03-16 1985-10-03 Agency Of Ind Science & Technol Purification of metallic silicon
JPH04132610A (en) * 1990-09-25 1992-05-06 Shin Etsu Chem Co Ltd Production of silicon dioxide powder
JPH0867510A (en) * 1994-08-31 1996-03-12 Tokuyama Corp Mechanical workpiece of polycrystal silicon
WO1998016466A1 (en) * 1996-10-14 1998-04-23 Kawasaki Steel Corporation Process and apparatus for preparing polycrystalline silicon and process for preparing silicon substrate for solar cell
JPH10182128A (en) * 1996-12-25 1998-07-07 Toyota Motor Corp Production of high purity silicon powder
JP2006206722A (en) * 2005-01-27 2006-08-10 Admatechs Co Ltd Lowly reactive silica powder, epoxy resin composition given by using the same, and epoxy resin molded product

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60195016A (en) * 1984-03-16 1985-10-03 Agency Of Ind Science & Technol Purification of metallic silicon
JPH04132610A (en) * 1990-09-25 1992-05-06 Shin Etsu Chem Co Ltd Production of silicon dioxide powder
JPH0867510A (en) * 1994-08-31 1996-03-12 Tokuyama Corp Mechanical workpiece of polycrystal silicon
WO1998016466A1 (en) * 1996-10-14 1998-04-23 Kawasaki Steel Corporation Process and apparatus for preparing polycrystalline silicon and process for preparing silicon substrate for solar cell
JPH10182128A (en) * 1996-12-25 1998-07-07 Toyota Motor Corp Production of high purity silicon powder
JP2006206722A (en) * 2005-01-27 2006-08-10 Admatechs Co Ltd Lowly reactive silica powder, epoxy resin composition given by using the same, and epoxy resin molded product

Also Published As

Publication number Publication date
JP5097427B2 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
KR102595535B1 (en) Spherical crystalline silica particles and method for producing the same
JP5825145B2 (en) Synthetic amorphous silica powder and method for producing the same
JP4766837B2 (en) Method for removing boron from silicon
JP4815209B2 (en) Curing agent and resin composition
JP5724881B2 (en) Synthetic amorphous silica powder and method for producing the same
RU2451635C2 (en) Method of producing highly pure elementary silicon
JP2009073728A (en) Method for producing silicon
JP5140835B2 (en) Manufacturing method of high purity silicon
CN103269975A (en) Polycrystalline silicon ingot casting mold and method for producing same, and silicon nitride powder for mold release material for polycrystalline silicon ingot casting mold and slurry containing same
JP2006282498A (en) Method for producing high purity silicon
CN104058405B (en) A kind of remove foreign matter of phosphor and the method for boron in metallic silicon
JP2004051453A (en) METHOD OF MANUFACTURING Si
JP2015521581A (en) Flux compositions useful in directional solidification to purify silicon
JP2006256913A (en) Spherical silica particle, resin composition and semiconductor liquid sealing material
JP5265097B2 (en) Spherical silica particles, resin composition, semiconductor liquid sealing material, and method for producing spherical silica particles
US20080308970A1 (en) Process for melting silicon powders
JP5097427B2 (en) Method for producing metal silicon powder, method for producing spherical silica powder, and method for producing resin composition
WO2007020855A1 (en) Process for producing spherical inorganic particle
JP5094184B2 (en) Metallic silicon powder and method for producing the same, spherical silica powder and resin composition
JP5094183B2 (en) Metallic silicon powder and method for producing the same, spherical silica powder and resin composition
JP2006199555A (en) Method for refining silicon
WO2014054112A1 (en) Method for producing antimony trisulfide
JP5108607B2 (en) Method for producing spherical silica and method for producing resin composition
JP2019085303A (en) Manufacturing method and manufacturing device of silicon
RU2588627C1 (en) Method of refining metallurgical silicon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120924

R150 Certificate of patent or registration of utility model

Ref document number: 5097427

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250