JPH04131809A - Production of quartz optical waveguide - Google Patents

Production of quartz optical waveguide

Info

Publication number
JPH04131809A
JPH04131809A JP25188090A JP25188090A JPH04131809A JP H04131809 A JPH04131809 A JP H04131809A JP 25188090 A JP25188090 A JP 25188090A JP 25188090 A JP25188090 A JP 25188090A JP H04131809 A JPH04131809 A JP H04131809A
Authority
JP
Japan
Prior art keywords
glass
optical waveguide
film
silica
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25188090A
Other languages
Japanese (ja)
Inventor
Masumi Ito
真澄 伊藤
Hiroo Kanamori
弘雄 金森
Shinji Ishikawa
真二 石川
Haruhiko Aikawa
相川 晴彦
Sumio Hoshino
寿美夫 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP25188090A priority Critical patent/JPH04131809A/en
Publication of JPH04131809A publication Critical patent/JPH04131809A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate production by the quartz optical waveguide which exhibits functional characteristics by forming a glass waveguide film in a part of the low-refractive index part of a core part, i.e. the part where light is guided and near this core part by a sputtering method. CONSTITUTION:A buffer layer 12 consisting of a quartz glass film is first formed by a flame hydrolysis deposition method on a silicon wafer 11. A resist film 13 is then formed in the part exclusive of the part to serve as a core by a photoresist method and an Er doped glass film 14 is formed thereon by a sputtering method. This resist film 13 is removed to form the core part 15 consisting of the Er doped glass film. Finally, the clad layer 16 consisting of a glass film is formed by the flame hydrolysis deposition method so as to embed the core part 15. The functional waveguide having the functional characteristics is formed by the sputtering method in this way and the functional waveguide 17 is easily produced.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、例えばレーザ増幅や非線形光学効果などの機
能性を示す石英系光導波路の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for manufacturing a silica-based optical waveguide exhibiting functionality such as laser amplification and nonlinear optical effects.

〈従来の技術〉 光導波路の中で石英ガラスを主成分とした石英系光導波
路は、光伝送損失が低く、また、石英系光ファイバとの
低損失な接続が可能であることから、注目を集めている
。そして、この石英系光導波路の製造方法としては、火
炎堆積法(FHD: flaj*e hydrolys
is deposition)によるガラス膜形成と反
応性イオンエンチング(RI E: reactive
 ion etching)によるガラス膜微細加工と
を組合せた方法が最も一般的である。(河内正夫、1石
英系光導e、賂と集積光部品への応用」光学第18巻第
12号(1989年12月)P681〜686参照)。
<Conventional technology> Among optical waveguides, silica-based optical waveguides, which are mainly composed of silica glass, are attracting attention because they have low optical transmission loss and can be connected to silica-based optical fibers with low loss. are collecting. The method for manufacturing this silica-based optical waveguide is the flame deposition method (FHD).
is deposition) and reactive ion etching (RIE).
The most common method is a combination of glass film microfabrication using ion etching. (See Masao Kawachi, 1. Quartz-based optical guide, bribery and its application to integrated optical components, Optics Vol. 18, No. 12 (December 1989), pp. 681-686).

かかる方法による石英系光導波路の製造例を第3図を参
照しながら説明する。同図に示すように、この方法では
、まず、バーナ1に5iCj、、 TiCj、などのガ
ラス原料を供給して酸水素火炎2中で加水分解反応及び
酸化反応によりガラス微粒子3を得、これを81ウエハ
などの基板4上に堆積させて、ガラス微粒子膜5a、5
bを順次形成するC (a) 〕。ここで、ガラス微粒
子膜5a、5bの両者の組成は異なるものとする。そし
て、これを高温に加熱することにより、ガラス微粒子膜
5a。
An example of manufacturing a silica-based optical waveguide using this method will be described with reference to FIG. 3. As shown in the figure, in this method, glass raw materials such as 5iCj, TiCj, etc. are first supplied to a burner 1, and glass fine particles 3 are obtained through a hydrolysis reaction and an oxidation reaction in an oxyhydrogen flame 2. Glass fine particle films 5a, 5 are deposited on a substrate 4 such as an 81 wafer.
C (a)] which sequentially forms b. Here, it is assumed that the glass fine particle films 5a and 5b have different compositions. Then, by heating this to a high temperature, a glass fine particle film 5a is formed.

5bを透明ガラス化してバッファ層6a及びコア層6b
とするC (b) )。以上が火炎堆積法である。次に
、反応性エツチングにより、コア層6bの不要な部分を
除去してリッジ状のコア部6Cを残すCtc+ ’]。
5b is made into transparent glass to form a buffer layer 6a and a core layer 6b.
C (b) ). The above is the flame deposition method. Next, by reactive etching, unnecessary portions of the core layer 6b are removed to leave a ridge-shaped core portion 6C (Ctc+').

そして、再び火炎堆積法によりコア部6Cを覆うように
クラッド層6dを形成することにより、埋め込み型の石
英系光導波路7とする〔(司〕。
Then, a cladding layer 6d is formed again by the flame deposition method so as to cover the core portion 6C, thereby forming a buried silica-based optical waveguide 7.

〈発明が解決しようとする!!題〉 前述した火炎堆積法は、光伝送損失の小さな石英膜の作
製が可能であり、成膜速度も高いので、石英系光導波路
の作製に最もよ(用いられているが、この方法により作
製される石英系光導波路は、光合分波、分岐などを行う
受動型光素子がほとんどである。
<Invention tries to solve! ! Topic: The flame deposition method described above is most commonly used to fabricate silica-based optical waveguides because it is possible to fabricate quartz films with low optical transmission loss and has a high film formation rate. Most of the silica-based optical waveguides used are passive optical devices that perform optical multiplexing, demultiplexing, and branching.

しかしながら、レーザ増幅、非線形光学効果によるスイ
ッチングなどの機能を有する機能性導波路の出現が望ま
れている。
However, there is a desire for a functional waveguide having functions such as laser amplification and switching using nonlinear optical effects.

因に、このような機能を発現するためには、導波路中に
レーザ発振作用を示す希土類元素や、非線形光学効果を
示す半導体微粒子などを添加する必要があるが、上述し
た火炎堆積法では2000℃以上の高温である酸水素火
炎内でガラス合成を行うため、高温で不安定な希土類元
素や半導体などを含むガラスを作製することが困難であ
る。
Incidentally, in order to exhibit such a function, it is necessary to add rare earth elements that exhibit a laser oscillation effect, semiconductor particles that exhibit a nonlinear optical effect, etc. to the waveguide, but the flame deposition method described above Since glass synthesis is performed in an oxyhydrogen flame at a high temperature of ℃ or higher, it is difficult to produce glass containing rare earth elements or semiconductors that are unstable at high temperatures.

本発明は、このような事情に鑑み、機能性を示す石英系
光導波路を容易に製造できる製造方法を提供することを
目的とする。
SUMMARY OF THE INVENTION In view of these circumstances, an object of the present invention is to provide a manufacturing method that can easily manufacture a functional silica-based optical waveguide.

く課題を解決するための手段〉 前記目的を達成する本発明に係る石英系光導波路の製造
方法は、基板上に火炎堆積法によりガラス微粒子を堆積
させると共にこれを高温に加熱することにより透明なガ
ラス微粒子層とする工程を含む石英系光導波路の製造方
法において、光が導波する部分であるコア部及び該コア
部近傍の低屈折率部の一部にスパッタ法によりガラス導
波膜を形成することを特徴とする。
Means for Solving the Problems> A method for manufacturing a silica-based optical waveguide according to the present invention that achieves the above object includes depositing glass particles on a substrate by a flame deposition method and heating the glass particles to a high temperature to make a transparent material. In a method for manufacturing a silica-based optical waveguide including a step of forming a glass fine particle layer, a glass waveguide film is formed by sputtering on a core portion where light is guided and a part of a low refractive index portion near the core portion. It is characterized by

す下、本発明の詳細な説明する。The present invention will now be described in detail.

本発明で用いるスパッタ法とは、真空容器内でのグロー
族電によりイオン化されたガス分子をターゲツト材に衝
突させて該ターゲツト材を構成する原子を蒸発させ、こ
の原子を基板上に付着・薄膜化する方法である。このス
パッタ法では、ターゲツト材を構成する原子をイオンで
たたき出すため、高温過程を経由せずにターゲツト材と
ほとんど同組成の薄膜を形成することができる。したが
って、予め機能性物質を添加したベルクガラスをターゲ
ツト材として準備することにより、機能性薄膜を形成す
ることができる。なお、本発明でターゲツト材となるの
(ま絶縁物であるため、本発明でいうスパッタ法は高周
波励起型となる。
The sputtering method used in the present invention is a method in which gas molecules ionized by glow currents in a vacuum container collide with a target material to evaporate atoms constituting the target material, and these atoms are attached to a substrate and formed into a thin film. This is a method of In this sputtering method, atoms constituting the target material are ejected with ions, so a thin film having almost the same composition as the target material can be formed without going through a high-temperature process. Therefore, a functional thin film can be formed by preparing Bergglass as a target material to which a functional substance has been added in advance. In addition, since the target material in the present invention is an insulator, the sputtering method referred to in the present invention is of a high frequency excitation type.

本発明では、機能性を有する機能性導波膜をスパッタ法
で作製し、一方、その他の部分を、不純物が非常に少な
いガラスが作製できると共に成膜速度も高い火炎堆積法
で作製するので、容易に機能性導波路を製造することが
できる。
In the present invention, a functional waveguide film having functionality is produced by a sputtering method, while other parts are produced by a flame deposition method, which can produce glass with very few impurities and has a high film formation rate. Functional waveguides can be easily manufactured.

ここで、機能性導波膜とは、レーザ増幅作用や非線形光
学効果など光導波以外の機能も有する導波膜をいい、例
えば、レーザ増幅効果を有するEr、Nd等の希土類元
素や非線形光学効果を示すCdS、Ss、、、PbS、
CuC1等の半導体微粒子などを含有する石英型導波膜
をいう。
Here, the functional waveguide film refers to a waveguide film that also has functions other than optical waveguide, such as laser amplification and nonlinear optical effects.For example, rare earth elements such as Er and Nd, which have laser amplification effects, and nonlinear optical effects CdS, Ss, , PbS, indicating
A quartz-type waveguide film containing semiconductor fine particles such as CuC1.

また、′スパッタ法を用いてコア部及びその近傍の低屈
折率部の一部に機能性導波膜を形成する場合、基板上に
導波パターン状のレジスト膜を形成するフォトレジスト
法や、ガラスの不要部分を化学的に削り取る反応性エツ
チングなどを適用することにより、機能性導波膜の形成
が望ましい部分のみを選んで形成するのがよい。
In addition, when forming a functional waveguide film on a part of the core part and the low refractive index part in its vicinity using the sputtering method, a photoresist method in which a resist film in the form of a waveguide pattern is formed on the substrate, It is preferable to select and form only the desired portions of the functional waveguide film by applying reactive etching or the like to chemically remove unnecessary portions of the glass.

なお、本発明において、基板としてはシリコンウェハや
石英ガラス板などを用いることができる。
Note that in the present invention, a silicon wafer, a quartz glass plate, or the like can be used as the substrate.

く実 施 例〉 以下、本発明を実施例に基づいて説明する。Example of implementation Hereinafter, the present invention will be explained based on examples.

(実施例1) 第1図には本実施例に係る石英系光導波路の製造工程を
示す。同図に示すように、まずシリコンウェハ11を用
意し〔(a)〕、コノ上に火炎堆積法により20μmの
石英系ガラス膜からなるバッファ層12を形成した〔(
b)〕。
(Example 1) FIG. 1 shows the manufacturing process of a silica-based optical waveguide according to this example. As shown in the figure, first, a silicon wafer 11 was prepared [(a)], and a buffer layer 12 made of a 20 μm silica-based glass film was formed on the silicon wafer by flame deposition method [(
b)].

次に、フォトレジスト法によ外コアとなる部分を除く部
分にレジスト膜13を形成した[ fo+ :]。そし
て、この上に、スパッタ法により、Erを3vt%含有
するErドープガラス膜14を8μmの厚さで作製した
〔(山〕。次いで、レジスト膜13を除去することによ
り、Erドープガラス膜からなるコア部15を形成した
( te+ 〕。最後に、コア部15を埋め込むように
、火炎堆積法により40μmのガラス膜からなるクラッ
ド層16を形成し、機能性光導波路17を作製した。
Next, a resist film 13 was formed by a photoresist method on a portion excluding a portion that would become the outer core [fo+:]. Then, by sputtering, an Er-doped glass film 14 containing 3vt% Er was formed with a thickness of 8 μm [(mountain)].Then, by removing the resist film 13, the Er-doped glass film 14 was formed by sputtering. A core portion 15 was formed (te+).Finally, a cladding layer 16 made of a 40 μm glass film was formed by flame deposition so as to embed the core portion 15, thereby producing a functional optical waveguide 17.

以上のように作製した機能性先導波@17は、コア部1
5がErドープガラス膜からなるので、レーザ発振機能
を有し、例えば1.55μmの信号光と共に1.47〜
1.49μmの増幅用レーザ光を導入することにより1
.55μmの信号光が増幅される。
The functional leading wave @17 produced as described above has a core part 1
Since 5 is made of an Er-doped glass film, it has a laser oscillation function, and has a laser oscillation function of, for example, 1.47 to 1.55 μm along with a signal light of 1.55 μm.
By introducing a 1.49 μm amplification laser beam, 1
.. The 55 μm signal light is amplified.

(実施例2) 第2図には本実施例に係る石英系光導波路の製造工程を
示す。同図に示すように、まず、シリコンウェハ21を
用意しC(a)〕、この上に火炎堆積法により20μm
の石英系ガラス膜からなるバッファ層22を形成し[(
bl)、さらに、このバッファ層22上にスパッタ法に
より、半導体微粒子CdSを1wt%含有する8μm厚
のCdSドープガラス膜23を形成した((C)’]。
(Example 2) FIG. 2 shows the manufacturing process of a silica-based optical waveguide according to this example. As shown in the figure, first, a silicon wafer 21 is prepared [C(a)], and a 20 μm film is deposited on it by flame deposition method.
A buffer layer 22 made of a quartz-based glass film of [(
Further, on this buffer layer 22, an 8 μm thick CdS-doped glass film 23 containing 1 wt% of semiconductor fine particles CdS was formed by sputtering ((C)').

次いで、フォトレジスト法によりコアとなる部分のみに
レジスト膜24を形成した後[(dlE、エツチングガ
スとしてC2F、を用いた反応性イオンエツチングによ
りコア部25を除く不要ガラス部分をエツチングにより
除去した((el〕。最後に、火炎堆積法によりコア部
25を埋め込むように、40μmのガラス膜からなるク
ラッド層26を形成し、機能性光導波路27を作製した
Next, a resist film 24 was formed only on the core portion by a photoresist method, and then unnecessary glass portions except the core portion 25 were removed by reactive ion etching using dlE and C2F as an etching gas. (el).Finally, a cladding layer 26 made of a 40 μm glass film was formed by a flame deposition method so as to embed the core portion 25, thereby producing a functional optical waveguide 27.

以上のように作製した機能性光導波路27は、コア部2
5がCdSドープガラス膜からなるので、非線形効果を
有し、スイッチング等に使用可能である。
The functional optical waveguide 27 manufactured as described above has a core portion 2
Since 5 is made of a CdS-doped glass film, it has a nonlinear effect and can be used for switching, etc.

以上、実施例1,2においてはコア部15゜25に機能
性物質がドープされている例を示したが、コア部15.
25の例えば最下層や最上層などのみにドープしたり、
あるいはコアjl15,25の下側のバッファ層12.
22の最上層やコア層15,25の上側のクラッド層1
6.26の最下層のみにドープしたりしても、本発明に
係る機能性導波路とすることができ、これらも上述した
実施例1,2の製造例に準じて容易に製造することがで
きる。
In the above embodiments 1 and 2, an example was shown in which the core portion 15.degree. 25 was doped with a functional substance, but the core portion 15.
For example, doping only the bottom layer or the top layer of 25,
Alternatively, the buffer layer 12 below the core jl15, 25.
22 and the cladding layer 1 above the core layers 15 and 25
Even if only the bottom layer of 6.26 is doped, the functional waveguide according to the present invention can be obtained, and these can also be easily manufactured according to the manufacturing examples of Examples 1 and 2 described above. can.

〈発明の効果〉 以上説明したように、本発明によれば、従来では作製が
困叢であった、レーザ発振作用や非線形光学効果などの
機能を有する石英系光導波路を、比較的容易に製造する
ことができる。
<Effects of the Invention> As explained above, according to the present invention, it is possible to relatively easily manufacture a silica-based optical waveguide having functions such as laser oscillation and nonlinear optical effects, which was difficult to manufacture in the past. can do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一実施例に係る石英系光導波路の製造工程を示
す工程図、第2図は他の実施例に係る石英系光導波路の
製造工程を示す工程図、第3図は従来技術に係る石英系
光導波路を示す作業工程図である。 図面中、 11.21はシリコンウェハ、 12.22はバッファ層、 13はレジスト膜、 14はErドープガラス層、 15.25はコア部、 16.26はクラッド層、 17.27は機能性光導波路、 23はCdSドープガラス層、 24はレジスト層である。
FIG. 1 is a process diagram showing the manufacturing process of a silica optical waveguide according to one embodiment, FIG. 2 is a process diagram showing the manufacturing process of a silica optical waveguide according to another embodiment, and FIG. 3 is a process diagram showing the manufacturing process of a silica optical waveguide according to another embodiment. FIG. 3 is a work process diagram showing such a quartz-based optical waveguide. In the drawing, 11.21 is a silicon wafer, 12.22 is a buffer layer, 13 is a resist film, 14 is an Er-doped glass layer, 15.25 is a core part, 16.26 is a cladding layer, 17.27 is a functional light guide. 23 is a CdS-doped glass layer, and 24 is a resist layer.

Claims (3)

【特許請求の範囲】[Claims] (1)基板上に火炎堆積法によりガラス微粒子を堆積さ
せると共にこれを高温に加熱することにより透明なガラ
ス微粒子層とする工程を含む石英系光導波路の製造方法
において、光が導波する部分であるコア部及び該コア部
近傍の低屈折率部の一部にスパッタ法によりガラス導波
膜を形成することを特徴とする石英系光導波路の製造方
法。
(1) In a method for manufacturing a silica-based optical waveguide, which includes the step of depositing glass particles on a substrate by a flame deposition method and heating them to a high temperature to form a transparent glass particle layer, the part where light is guided A method for manufacturing a silica-based optical waveguide, comprising forming a glass waveguide film on a certain core part and a part of a low refractive index part near the core part by sputtering.
(2)請求項1において、スパッタ法により形成される
ガラス導波膜がレーザ発振作用を示す希土類元素を含有
することを特徴とする石英系光導波路の製造方法。
(2) A method for manufacturing a silica-based optical waveguide according to claim 1, wherein the glass waveguide film formed by sputtering contains a rare earth element that exhibits a laser oscillation effect.
(3)請求項1において、スパッタ法により形成される
ガラス導波膜が非線形光学効果を示す半導体微粒子を含
有することを特徴とする石英系光導波路の製造方法。
(3) A method for manufacturing a silica-based optical waveguide according to claim 1, wherein the glass waveguide film formed by sputtering contains semiconductor fine particles exhibiting a nonlinear optical effect.
JP25188090A 1990-09-25 1990-09-25 Production of quartz optical waveguide Pending JPH04131809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25188090A JPH04131809A (en) 1990-09-25 1990-09-25 Production of quartz optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25188090A JPH04131809A (en) 1990-09-25 1990-09-25 Production of quartz optical waveguide

Publications (1)

Publication Number Publication Date
JPH04131809A true JPH04131809A (en) 1992-05-06

Family

ID=17229316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25188090A Pending JPH04131809A (en) 1990-09-25 1990-09-25 Production of quartz optical waveguide

Country Status (1)

Country Link
JP (1) JPH04131809A (en)

Similar Documents

Publication Publication Date Title
JPH04131805A (en) Quartz optical waveguide and production thereof
JP2679904B2 (en) Manufacturing method of product comprising optical gain device
JPH0862441A (en) Optical device including substrate having thermal matching interface and waveguide structure
JP2002323633A (en) Optical waveguide device and method for manufacturing the same
JP2005531030A (en) Optical waveguide
JP3090293B2 (en) Optical circuit and manufacturing method thereof
JP3374990B2 (en) Optical circuit characteristic adjustment method
JPH0527132A (en) Production of waveguide type optical parts
JPH04131809A (en) Production of quartz optical waveguide
JPH1039151A (en) Optical waveguide and its production
JPH02244104A (en) Glass optical wave guide
JPH06263452A (en) Production of optical waveguide
US20220231473A1 (en) Manufacturing Method of a Channel Type Planar Waveguide Amplifier and a Channel Type Planar Waveguide Amplifier Thereof
JP2927597B2 (en) Manufacturing method of glass waveguide
JPH05257021A (en) Production of optical waveguide
JPH08110425A (en) Optical waveguide and its production and light transmission module
JP3840835B2 (en) Method for manufacturing silica-based glass waveguide element
JPH09297237A (en) Production of optical waveguide
JPH03192206A (en) Production of waveguide added with rare earth element
JP3107334B2 (en) Rare earth ion doped optical waveguide film and method of manufacturing optical waveguide
JPH09113744A (en) Waveguide and its production
JPH0743539A (en) Ir optical waveguide
JPH06250036A (en) Optical waveguide and its production
JP2004046044A (en) Quartz-based optical waveguide
JPH05249330A (en) Optical waveguide