JPH04131314A - Method for recovering valuable metal from byproduct at the time of manufacturing stainless steel - Google Patents

Method for recovering valuable metal from byproduct at the time of manufacturing stainless steel

Info

Publication number
JPH04131314A
JPH04131314A JP2253772A JP25377290A JPH04131314A JP H04131314 A JPH04131314 A JP H04131314A JP 2253772 A JP2253772 A JP 2253772A JP 25377290 A JP25377290 A JP 25377290A JP H04131314 A JPH04131314 A JP H04131314A
Authority
JP
Japan
Prior art keywords
powdery
granular
reducing agent
electric furnace
byproducts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2253772A
Other languages
Japanese (ja)
Inventor
Hiroshi Kato
博 加藤
Noboru Hasegawa
登 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Stainless Steel Co Ltd
Original Assignee
Nippon Stainless Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Stainless Steel Co Ltd filed Critical Nippon Stainless Steel Co Ltd
Priority to JP2253772A priority Critical patent/JPH04131314A/en
Publication of JPH04131314A publication Critical patent/JPH04131314A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To increase contact area between powdery and granular byproducts and reducing agent, to smoothly accelerate interface reaction and to remarkably improve reduction recovering ratio of valuable metal by mixing the powdery reducing agent and the powdery and granular byproducts in advance so as to charge the mixture into an electric furnace. CONSTITUTION:By recycling the powdery and granular byproducts of cutting scale, grinding powder, etc., produced in manufacturing process of stainless steel to the electric furnace, the valuable metal is recovered. At this time, by charging the above byproduct into the electric furnace after beforehand mixing the byproduct with the powdery reduction agent, the area of reaction interface between the powdery and granular by product and the powdery reducing agent is increased. As this powdery reducing agent and the powdery and granular byproducts are in the mixing condition at the time of charging these into the electric furnace, the byproduct comes into close contact with the reducing agent before the powdery and granular byproducts start to melt and flowing down after sending electric current the reducing reaction is accelerated from the starting time. In such way, as the reducing reaction is progressed over the whole time from starting conducting of the electric current to tapping the steel, the reduction recovering ratio to the valuable metal is extremely high in comparison with the conventional method.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、ステンレス鋼の製造工程で発生する粉・粒
状副生物(連続鋳造鋳片切断スケール、研磨粉等)中の
有価金属を収率良く回収する方法に関する。
[Detailed Description of the Invention] <Industrial Application Field> This invention aims to improve the yield of valuable metals in powder and granular by-products (continuous casting slab cutting scale, polishing powder, etc.) generated in the stainless steel manufacturing process. Regarding how to collect well.

〈従来技術とその課題〉 一般に、ステンレス鋼を製造する際の連続鋳造鋳片切断
工程、スラブの手入れ工程、コイルの研磨工程等では少
なからぬ量の切断スケールや研磨粉等と言った粉・粒状
副生物が発生するが、これら粉・粒状副生物はほぼ純粋
に近いステンレス綱成分を含有しているため、製鋼工程
における安価な原料としてその利用価値は非常に高いも
のである。
<Prior art and its problems> In general, in the continuous casting slab cutting process, slab care process, coil polishing process, etc. when manufacturing stainless steel, a considerable amount of powder and granules such as cutting scale and polishing powder are generated. Although by-products are generated, these powdered and granular by-products contain almost pure stainless steel components, so their utility value is extremely high as an inexpensive raw material in the steelmaking process.

ただ、前記粉・粒状副生物中の有価金属(主にFe+C
r、Ni)は、Niを除き大部分が酸化物として存在す
るため、これらを電気炉にてリサイクル使用する際には
還元剤(例えばフェロシリコン、コークス。
However, the valuable metals (mainly Fe+C) in the powder/granular by-products
r, Ni), except for Ni, most exist as oxides, so when recycling them in an electric furnace, reducing agents (e.g. ferrosilicon, coke) should be used.

AI滓等)を同時に装入し、酸化物形態で存在する金属
分の還元を図って回収するのが普通である。
Usually, aluminum slag, etc.) is charged at the same time, and the metals present in the form of oxides are reduced and recovered.

この場合、還元反応はスラグ−メタル界面で生じるため
、有価金属を効率良く還元回収するには、装入した粉・
粒状副生物と還元剤とを溶融状態で出来るだけ広い接触
界面をもって接触させるのが望ましいことは言うまでも
ない。
In this case, the reduction reaction occurs at the slag-metal interface, so in order to efficiently reduce and recover valuable metals, it is necessary to
It goes without saying that it is desirable to bring the particulate by-product and the reducing agent into contact in a molten state with as wide a contact interface as possible.

しかしながら、これらを溶解する電気炉は一般に攪拌機
能が弱いため還元反応を平衡状態にまで達しさせること
ができず、安定した高回収率を得ることは困難であった
However, the electric furnace for melting these materials generally has a weak stirring function, so that the reduction reaction cannot reach an equilibrium state, making it difficult to obtain a stable high recovery rate.

く課題を解決するための手段〉 本発明者等は、上述のような観点から、ステンレス鋼の
製造工程で発生した粉・粒状副生物を電気炉ヘリサイク
ルする際の有価金属回収率をより向上させることの可能
性を求めつつ、特に電気炉に装入した粉・粒状副生物と
還元剤とが接触して溶融する過程での反応に着眼して研
究を行ったところ、[還元剤として粉体を選定し、この
粉体還元剤と粉・粒状副生物とを事前に混合処理してか
ら電気炉に装入すると、粉・粒状副生物と還元剤との接
触面積が格段に増大することとなって溶は落ちの途中過
程での界面反応が円滑に進み、有価金属の還元回収率が
著しく向上する」との新しい知見を得ることができた。
Means for Solving the Problems> From the above-mentioned viewpoint, the present inventors have developed a method to further improve the recovery rate of valuable metals when powder and granular by-products generated in the stainless steel manufacturing process are recycled to an electric furnace. While searching for the possibility of reducing the If the powdered reducing agent and the powder/granular by-products are mixed in advance and then charged into the electric furnace, the contact area between the powder/granular by-products and the reducing agent will be significantly increased. As a result, the interfacial reaction during the melting process proceeds smoothly, and the reduction recovery rate of valuable metals is significantly improved.''

本発明は、上記知見事項等に基づいてなされたもので、 「ステンレス鋼の製造工程で発生する粉・粒状副生物を
電気炉ヘリサイクルして有価金属を回収するに際し、事
前に粉体還元剤を前記副生物に混合してから電気炉へ装
入することにより、粉・粒状副生物と還元剤との反応界
面積を高めて有価金属の回収率を著しく向上させた点」 に大きな特徴を有している。
The present invention has been made based on the above-mentioned findings and the like. The major feature is that the reaction interface area between the powder/granular by-product and the reducing agent is increased by mixing it with the above-mentioned by-product and then charging it into the electric furnace, thereby significantly improving the recovery rate of valuable metals. have.

以下、図面に基づき、本発明法の作用効果を従来法のそ
れと対比しながらより具体的に説明する。
Hereinafter, based on the drawings, the effects of the method of the present invention will be explained in more detail while comparing them with those of the conventional method.

く作用〉 先にも述べたように、電気炉にて粉・粒状副生物をリサ
イクル処理する場合、従来はフェロシリコン、コークス
、M滓等の還元剤と粉・粒状副生物を装入時期は同時で
あってもそれぞれ別個に装入しており、そのため粉・粒
状副生物と還元剤とは十分に混合されていないので溶解
途中での両者の反応は殆んど進行せず、第2図で示した
ような溶は落ち以降の状態になって初めてスラグ−メタ
ル界面で還元反応が進行する。このため、攪拌機能の弱
い電気炉では十分な反応ができず、回収率も安定しない
As mentioned earlier, when recycling powder and granular by-products in an electric furnace, conventionally, reducing agents such as ferrosilicon, coke, and M slag, and powder and granular by-products are charged at different times. Even if they are charged at the same time, they are charged separately, and as a result, the powder/granular by-products and the reducing agent are not sufficiently mixed, so the reaction between the two hardly progresses during dissolution, as shown in Figure 2. The reduction reaction progresses at the slag-metal interface only after the melt reaches the state shown in . For this reason, an electric furnace with a weak stirring function cannot perform a sufficient reaction and the recovery rate is also unstable.

これに対し、本発明法の場合では、粉体還元剤と粉・粒
状副生物とが電気炉装入時より混合状態となっているた
め、通電後に粉・粒状副生物が溶解を始め、第1図の矢
印で示す如くに流下する時点で既に還元剤と密接に接触
することとなるので、通電・溶解開始時から還元反応が
進行する。このように、電気炉通電開始より出鋼までの
全期間中を通じて還元反応が進行するため、有価金属の
還元回収率は従来法に比べて極めて高くなる訳である。
In contrast, in the case of the method of the present invention, the powder reducing agent and the powder/granular by-products are in a mixed state from the time they are charged into the electric furnace, so the powder/granular by-products begin to dissolve after electricity is applied. Since it comes into close contact with the reducing agent when it flows down as shown by the arrow in Figure 1, the reduction reaction progresses from the time when electricity is applied and dissolution begins. In this way, since the reduction reaction progresses throughout the period from the start of energization to the electric furnace until the steel is tapped, the reduction recovery rate of valuable metals is extremely high compared to the conventional method.

続いて、本発明の効果を実施例によって更に具体的に説
明する。
Next, the effects of the present invention will be explained in more detail with reference to Examples.

〈実施例) 連続鋳造鋳片の切断スケールと1111アンダーのフェ
ロシリコンパウダーとを重量比で5〜6:1の割合で配
合し、第3図で示したタイプの回転ミキサー(コンクリ
ートミキサー車部材の転用品)にて混練した後、この混
合物をステンレス鋼溶製中の電気炉に装入して直溶した
。そして、この際の有価金属回収率を調査した。なお、
有価金属の回収率は歩留りアンプで把握した。
<Example> The cutting scale of continuous cast slabs and 1111 under ferrosilicon powder were mixed in a weight ratio of 5 to 6:1, and a rotary mixer of the type shown in Fig. 3 (concrete mixer truck parts) was mixed. After kneading the mixture in a stainless steel melting machine, the mixture was charged into an electric furnace in the process of melting stainless steel and melted directly. Then, the valuable metal recovery rate at this time was investigated. In addition,
The recovery rate of valuable metals was determined using a yield amplifier.

この結果を、切断スケールとフェロシリコンとを混合し
ないで電気炉に装入した従来法と対比して第4図に示す
The results are shown in FIG. 4 in comparison with the conventional method in which cutting scale and ferrosilicon were charged into an electric furnace without being mixed.

第4図に示される結果からも明らかであるが、従来法で
は有価金属の回収率が低く、かつバラツキも大きかった
のに対して、本発明法によると安定して高い回収率が得
られることを確認した。
As is clear from the results shown in Figure 4, the recovery rate of valuable metals was low and highly variable in the conventional method, whereas the method of the present invention provides a stable and high recovery rate. It was confirmed.

く効果の総括) 以上に説明した如く、この発明によれば、ステンレス鋼
の製造工程で発生する粉・粒状副生物中の有価金属を高
い収率で回収することが可能となり、省資源や産業廃棄
物量の減少に有効な道が開かれるなど、産業上極めて有
用な効果がもたらされる。
(Summary of Effects) As explained above, according to the present invention, it is possible to recover valuable metals in powder and granular by-products generated in the stainless steel manufacturing process at a high yield, contributing to resource conservation and industrial This will bring about extremely useful effects in industry, such as opening up an effective way to reduce the amount of waste.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明法における反応機構の説明図である。 第2図は、従来法における反応機構の説明図である。 第3図は、実施例でのリサイクル原料の混合手段を説明
した概念図である。 第4図は、実施例での結果を従来例と対比して示したグ
ラフである。 出願人 日本ステンレス株式会社
FIG. 1 is an explanatory diagram of the reaction mechanism in the method of the present invention. FIG. 2 is an explanatory diagram of the reaction mechanism in the conventional method. FIG. 3 is a conceptual diagram illustrating a means for mixing recycled raw materials in an example. FIG. 4 is a graph showing the results of the example in comparison with the conventional example. Applicant Nippon Stainless Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] ステンレス鋼の製造工程で発生する粉・粒状副生物を電
気炉へリサイクルして有価金属を回収するに際し、事前
に粉体還元剤を前記副生物に混合してから電気炉へ装入
することを特徴とする、有価金属の回収方法。
When recycling powder and granular by-products generated in the stainless steel manufacturing process to an electric furnace to recover valuable metals, it is recommended to mix a powder reducing agent with the by-products beforehand and then charge the by-products into the electric furnace. Characteristic method for recovering valuable metals.
JP2253772A 1990-09-21 1990-09-21 Method for recovering valuable metal from byproduct at the time of manufacturing stainless steel Pending JPH04131314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2253772A JPH04131314A (en) 1990-09-21 1990-09-21 Method for recovering valuable metal from byproduct at the time of manufacturing stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2253772A JPH04131314A (en) 1990-09-21 1990-09-21 Method for recovering valuable metal from byproduct at the time of manufacturing stainless steel

Publications (1)

Publication Number Publication Date
JPH04131314A true JPH04131314A (en) 1992-05-06

Family

ID=17255932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2253772A Pending JPH04131314A (en) 1990-09-21 1990-09-21 Method for recovering valuable metal from byproduct at the time of manufacturing stainless steel

Country Status (1)

Country Link
JP (1) JPH04131314A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097511A (en) * 2000-09-22 2002-04-02 Daido Steel Co Ltd Production method for high-carbon molten metal
JP2007501900A (en) * 2003-05-24 2007-02-01 エス・エム・エス・デマーク・アクチエンゲゼルシャフト A method for producing foamed slag in high chromium steel melts.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097511A (en) * 2000-09-22 2002-04-02 Daido Steel Co Ltd Production method for high-carbon molten metal
JP2007501900A (en) * 2003-05-24 2007-02-01 エス・エム・エス・デマーク・アクチエンゲゼルシャフト A method for producing foamed slag in high chromium steel melts.
JP4701331B2 (en) * 2003-05-24 2011-06-15 エス・エム・エス・ジーマーク・アクチエンゲゼルシャフト A method for producing foamed slag in high chromium steel melts.

Similar Documents

Publication Publication Date Title
US5882375A (en) Process for the production of hydraulic binders and/or alloys, such as for examples, ferrochromium or ferrovanadium
JP2009079303A (en) Manufacturing method of stainless steel by reutilizing waste in stainless steel manufacturing process
JP2002053351A (en) Pollution-free stainless steel slag and method for manufacturing the same
JPH04131314A (en) Method for recovering valuable metal from byproduct at the time of manufacturing stainless steel
JP4065097B2 (en) Converter steelmaking
US3893846A (en) Slag forming agent for steel making
JPH09316512A (en) Method for melting steel using iron oxide briquette as auxiliary raw material
JPH05163047A (en) Production of super-quick hardening cement raw material modified in slag
US2243784A (en) Method and material suitable for use in the production of molten metal products
JPS6358883B2 (en)
US3573033A (en) Processes of direct reduction of minerals
RU2119970C1 (en) Method of ferrovanadium producing
GB2094354A (en) Producing Mn-Fe alloy by carbothermic reduction
RU2102495C1 (en) Metallothermal reaction mixture
SU1708907A1 (en) Aluminothermic method of producing ferrovanadium
JP4295557B2 (en) Stainless Steel Manufacturing Process Recycling Method of Stainless Steel Manufacturing Waste
JPS6031884B2 (en) Electric furnace steel manufacturing method
JPH09118911A (en) Granular state complex refining material
JPH1121612A (en) Method for melting steel
RU2078843C1 (en) Method of charge preparation for ferromolybdenum production
JP2002003929A (en) SLAG-MAKING AGENT FOR DEOXIDATION COMPOSED OF ALUMINUM DUST AND SiC
RU2274668C2 (en) Method of conversion of the metalothermic slag
US3551141A (en) Process for the production of medium-to low-carbon ferromanganese alloys
JPS62167808A (en) Production of molten chromium iron
SU572504A1 (en) Method for maunfacturing iron and its alloys from iron ore