JPS6031884B2 - Electric furnace steel manufacturing method - Google Patents

Electric furnace steel manufacturing method

Info

Publication number
JPS6031884B2
JPS6031884B2 JP53028253A JP2825378A JPS6031884B2 JP S6031884 B2 JPS6031884 B2 JP S6031884B2 JP 53028253 A JP53028253 A JP 53028253A JP 2825378 A JP2825378 A JP 2825378A JP S6031884 B2 JPS6031884 B2 JP S6031884B2
Authority
JP
Japan
Prior art keywords
steel
silicon carbide
electric furnace
manganese
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53028253A
Other languages
Japanese (ja)
Other versions
JPS54121215A (en
Inventor
格 陶山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Giken Kogyo KK
Original Assignee
Asahi Giken Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Giken Kogyo KK filed Critical Asahi Giken Kogyo KK
Priority to JP53028253A priority Critical patent/JPS6031884B2/en
Priority to US06/020,178 priority patent/US4222768A/en
Publication of JPS54121215A publication Critical patent/JPS54121215A/en
Priority to CA000356494A priority patent/CA1146758A/en
Priority claimed from CA000356494A external-priority patent/CA1146758A/en
Publication of JPS6031884B2 publication Critical patent/JPS6031884B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【発明の詳細な説明】 本発明は電気炉において、鋼屑(普通鋼屑と特殊鋼暦の
両者を鋼屑と呼称する)または鋼肩と金属酸化物含有物
質(鉱石やフェロアロィスラグなど)の混合物を装入し
通電して溶解するとき、鋼蓬中に含有する鉄、マンガン
、クロム等の金属酸化物を炭化珪素を使用して還元反応
を起させて、金属となし、溶鋼中に回収する方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses steel scraps (both ordinary steel scraps and special steel scraps are referred to as steel scraps) or steel shoulders and metal oxide-containing substances (ore, ferroalloy slag, etc.) in an electric furnace. ) When the mixture is charged and melted by applying electricity, metal oxides such as iron, manganese, and chromium contained in the steel are subjected to a reduction reaction using silicon carbide to become metal, and the metal oxides contained in the steel are converted into metals. This relates to a method for recovering waste.

電気炉は主原料である鋼肩を抵抗熱または/および弧光
熱によって加熱溶解し、その溶鋼中の不純物を除去し、
炭素、珪素および必要とする合金元素を添加して、所定
の成分を含有させる等の精錬を行い、電気炉鋼を製造す
る溶解炉である。
An electric furnace heats and melts the steel shoulder, which is the main raw material, using resistance heat and/or arc light heat, removes impurities from the molten steel,
This is a melting furnace that produces electric furnace steel by adding carbon, silicon, and necessary alloying elements to refine the steel to contain predetermined components.

電気炉鋼の製造コストは主原料である鋼肩の価格と歩止
りと共に、生産性、電力消費量、亀極消耗量、炉材消耗
量、副資材の原単位等に影響されるので、電気炉容量は
大型化しつつあり、また電力負荷は増大している。更に
溶解速度を向上させるため、電力以外の溶解熱源として
、酸素吹込や重油、燈油等の助燃村が併用されて来てい
る。鋼肩の歩止りは鋼屑の品位に左右されるが、溶解損
失によって大きく変動するものである。溶解損失は鋼肩
に附着している水分、金属酸化物、その他の不純物の他
に溶解時のダスト損失または/および溶解作業中に酸化
される損失等である。電気炉溶解作業では、鋼肩中の金
属酸化物や溶解作業中に酸化される金属酸化物は、鋼淫
中に含有されて、その一部は酸化鋼蓬として廃棄され、
残部は還元精錬により、還元鋼連中に含まれる金属酸化
物は大部分回収されるが、還元期で回収することは、フ
エロシリコン、フエロマンガン、シリコマンガン等の歩
止りの悪化を招き、コスト高の要因となる。
The manufacturing cost of electric furnace steel is influenced by the price and yield of the main raw material, steel, as well as productivity, electricity consumption, consumption of the metal pole, consumption of furnace materials, and basic unit of auxiliary materials. Furnace capacity is becoming larger and power load is increasing. In order to further improve the dissolution rate, oxygen injection and auxiliary combustion sources such as heavy oil and kerosene have been used in combination as a dissolution heat source other than electricity. The yield of steel shoulders depends on the quality of the steel scrap, but it fluctuates greatly depending on the melting loss. Melting losses include moisture, metal oxides, and other impurities adhering to the steel shoulder, as well as dust loss during melting and/or loss due to oxidation during melting. In electric furnace melting work, metal oxides in the steel shoulder and metal oxides that are oxidized during the melting work are contained in the steel, and some of them are discarded as oxidized steel.
Most of the metal oxides contained in the reduced steel are recovered through reduction refining, but recovering them during the reduction stage leads to poor yields of ferrosilicon, ferromanganese, silicomanganese, etc., resulting in high costs. becomes a factor.

前述の助燃村の使用や酸素使用量の増加額向は操業中排
出される煙を集摩する装置の稼動と共に、鋼肩の溶解過
程での金属酸化を著しく促進させるので、酸化鋼律中の
金属酸化物の含有量は30〜50%にも及んでいる。
The use of auxiliary combustion chambers and the increase in the amount of oxygen used, along with the operation of devices that collect smoke emitted during operation, significantly accelerate metal oxidation during the melting process of steel shoulders, so The content of metal oxides ranges from 30 to 50%.

鋼層の酸化損失は弧光式電気炉操業においては、2〜4
%と推定され、、製造コスト面で無視し得ぬものであっ
て、本発明の方法による還元回収の実施によって解決し
得るものである。電気炉溶解における酸化鋼律中に含ま
れる金属酸化物を回収する方法は、コークス、電極暦等
の、炭材を使用したり、フェロシリコンを還元剤として
用いる方法は公知であるが、炭材による場合は金属酸化
物の還元反応は吸熱反応であって、電力使用量の増加を
招くことになる。
The oxidation loss of the steel layer is 2 to 4 in arc-light electric furnace operation.
%, which cannot be ignored in terms of manufacturing costs, and which can be solved by carrying out reduction recovery using the method of the present invention. Methods for recovering metal oxides contained in oxidized steel in electric furnace melting include using carbon materials such as coke and electrode materials, and methods using ferrosilicon as a reducing agent. In this case, the reduction reaction of the metal oxide is an endothermic reaction, resulting in an increase in power consumption.

また炭材比重は鋼淫の比重より低いために鋼連表層部に
炭村が浮漉し、炉内の過剰酸素による燃焼損失が多くて
炭材の歩止りが悪い。又還元反応時間を要する等の理由
で経済的に不利である。フェロシリコンを還元剤として
用いる方法では、フェロシリコンのコストと回収金属の
コスト比較をすると、鉄酸化物の還元には経済的でない
ため使用されていないが、マンガン、クロム等の酸化物
を還元することは経済的に成り立つため実用化されてい
る。本発明は電気炉溶解における酸化鋼連中に含有する
金属酸化物を炭化珪素SICによって回収する方法であ
る。炭化珪素は炭素と珪素の化合物であって、溶鉄に極
めて容易に溶解して溶鉄中の炭素量と珪素量を増量し得
ること、また鉄、マンガン、クロム等の金属酸化物と反
応して、夫々の金属に還元する性質がある。
In addition, since the specific gravity of carbonaceous material is lower than that of steel, coalwood is floating on the surface layer of steel, and there is a lot of combustion loss due to excess oxygen in the furnace, resulting in a poor yield of carbonaceous material. Furthermore, it is economically disadvantageous because the reduction reaction time is required. In the method of using ferrosilicon as a reducing agent, when comparing the cost of ferrosilicon and the cost of recovered metal, it is not used because it is not economical for reducing iron oxides, but it is not used for reducing oxides such as manganese and chromium. This has been put into practical use because it is economically viable. The present invention is a method for recovering metal oxides contained in oxidized steel during electric furnace melting using silicon carbide SIC. Silicon carbide is a compound of carbon and silicon, and it dissolves very easily in molten iron to increase the amount of carbon and silicon in molten iron, and also reacts with metal oxides such as iron, manganese, and chromium. It has the property of reducing to each metal.

さて、電気炉鋼精錬は一般的に次の4つの主要工程 1
)袋入期 2)溶解期 3)酸化期4)還元期 があり
、3)および4)は所謂精錬期と呼ばれる。
Now, electric furnace steel refining generally involves the following four main processes.
) Bagging period 2) Dissolution period 3) Oxidation period 4) Reduction period 3) and 4) are called the so-called refining period.

従来、炭化珪素による電気炉鋼の精錬では酸化末期の除
律直後の裸出溶鋼の表面に添加したり、出鋼直前に炉内
に投入するか予め取鍋に炭化珪素を用意して、これに熔
鋼を注入することによって、溶鋼中の炭素、珪素の増量
を図ること、又は還元精錬時に還元性鋼律の生成を促進
するために、炭化珪素の粉末を還元鋼類上に散布使用す
る方法が行われている。
Conventionally, in the refining of electric furnace steel using silicon carbide, silicon carbide is added to the surface of exposed molten steel immediately after the final stage of oxidation, or placed in the furnace just before tapping, or prepared in advance in a ladle. In order to increase the amount of carbon and silicon in molten steel by injecting molten steel into the steel, or to promote the production of reducing steel during reduction refining, silicon carbide powder is used by scattering on reduced steel. method is being done.

従来の利用法は、何れも酸化末期または/および還元期
に使用して、炭素または/および珪素の成分調整と直接
または間接に溶鋼の脱酸を目的としている。
In all conventional methods, it is used in the final stage of oxidation and/or reduction stage to adjust the composition of carbon and/or silicon and to directly or indirectly deoxidize molten steel.

本発明による炭化珪素の使用方法と使用目的は従来のも
のとは全く異なり、装入期または/および熔解期に使用
して溶鋼の過酸化を防止し、還元期に於ける脱酸剤の利
用効率を向上せしめると同時に還元精錬を容易にし、尚
、酸化金属として廃棄される有価物質の損失を減少せし
め、併せて熱エネルギーの消費を節減せしめるものであ
る。
The method and purpose of using silicon carbide according to the present invention is completely different from that of the conventional ones. It is used in the charging stage and/or melting stage to prevent overoxidation of molten steel, and it is used as a deoxidizer in the reduction stage. This improves efficiency, facilitates reductive refining, reduces loss of valuable materials that are discarded as metal oxides, and reduces thermal energy consumption.

即ち、本発明による基本的使用方法は、炭化珪素は鋼屑
装入以前に炉床に投入または/および鋼層の追加装入時
に鋼屑と共に配合装入する等、何れも装入期または/お
よび溶解期に使用するものである。本発明の方法の使用
目的は、電気炉溶解の初期段階から溶解過程で生成され
る鉄、マンガン、クロム等の金属酸化物を還元回収する
ことであって、炭素量、珪素量を増量することではない
That is, the basic usage method according to the present invention is that silicon carbide is charged into the hearth before charging steel scraps, and/or mixed and charged together with steel scraps when additionally charging a steel layer, etc. and those used during the dissolution phase. The purpose of using the method of the present invention is to reduce and recover metal oxides such as iron, manganese, and chromium produced during the melting process from the initial stage of electric furnace melting, and to increase the amount of carbon and silicon. isn't it.

炭化珪素の比重は3.5であって、溶鋼の比重より小で
あって、酸化鋼淫の比重2.5〜3.0より大であるた
め、溶解の初期に炉内に投入された炭化珪素は、溶解の
進行と共に一部は熔鋼中に吸収され、残余は溶鋼と酸化
鋼連の中間に懸濁し、鋼律の表層面に露出しないので、
酸化鋼淫中の金属酸化物を効率よく還元回収することが
出釆る。使用炭化珪素は粗製のものでも良く、同一の効
果が期待出来る。この粗製炭化珪素は、炭化珪素製造過
程で炭化珪素としての品位は低く、結晶形も極めて小さ
いので、Q晶の炭化珪素を生産する場合の原料として再
使用されている所謂還元原料と称されるものもあり、こ
れを単味又はQ晶と混合使用して経済的に金属の回収が
出きる。酸化鋼律中の金属酸化物を炭化珪素によって還
元回収する場合の化学反応式は次の如くである。
The specific gravity of silicon carbide is 3.5, which is lower than the specific gravity of molten steel and higher than the specific gravity of oxidized steel, which is 2.5 to 3.0. A portion of silicon is absorbed into the molten steel as melting progresses, and the rest is suspended between the molten steel and the oxidized steel and is not exposed on the surface of the steel.
Metal oxides in oxidized steel can be efficiently reduced and recovered. The silicon carbide used may be crude, and the same effect can be expected. This crude silicon carbide is a so-called reduced raw material that is reused as a raw material in the production of Q-crystal silicon carbide because its quality as silicon carbide is low and the crystal shape is extremely small in the silicon carbide manufacturing process. There are some types of crystals, which can be used alone or in combination with Q crystals to economically recover metals. The chemical reaction formula when metal oxides in oxidized steel are reduced and recovered using silicon carbide is as follows.

3Fe0十SIC=Si02十CO+斑e3Mn〇十S
IC=Si〇2十C〇十3MnCr203十SIC=S
i02十CO+2CrFe203十SIC=Si02十
CO十2Fe酸化鋼蓬中に含有される鉄、マンガン、ク
ロムの酸化物はFe○,Mn○,Cr203の他にFe
2Q,Nm203,Cの3の如き高級酸化物があるが、
炭化珪素による金属の還元効率を高めるためには、高級
酸化物が少ないことと、低級酸化物の活量係数が大きい
事が必要で、そのためには塩基度の調整が行われる。
3Fe010SIC=Si02000CO+Spot e3Mn〇1S
IC=Si〇20C〇13MnCr2030SIC=S
i020CO+2CrFe2030SIC=Si020CO12Fe oxide The oxides of iron, manganese, and chromium contained in the oxidized steel
There are higher oxides such as 2Q, Nm203, C3,
In order to increase the efficiency of metal reduction by silicon carbide, it is necessary to have a small amount of higher oxides and a large activity coefficient of lower oxides, and for this purpose, basicity is adjusted.

このためには、普通Ca○またはSi02等が使用され
る。従って炭化珪素に石灰または/および珪砂等を配合
して使用することも本発明の目的に合致した手段である
For this purpose, Ca○ or Si02 or the like is usually used. Therefore, the use of silicon carbide mixed with lime and/or silica sand is also a means that meets the purpose of the present invention.

以下、実施例によりこれを示す。This will be illustrated below with examples.

実施例 1 弧光式電気炉操業において、普通鋼屑を使用して電気炉
鋼を製造する場合、炭化珪素を使用した操業と加炭剤を
使用した操業の実施例を示し、酸化鋼連中の鉄酸化物の
減少効果を示す。
Example 1 When producing electric furnace steel using ordinary steel scrap in arc-light electric furnace operation, examples of operation using silicon carbide and operation using recarburizing agent are shown, and examples of operations using silicon carbide and recarburizing agent are shown. Shows the effect of reducing oxides.

使用炉:10000K.V.A20Ton弧光式電気炉
鋼肩装入墨:30000k9本発明の方法:下記組成の
SIC180k9を鋼肩袋,入直前に炉床に投入して溶
解した。
Furnace used: 10000K. V. A20Ton electric arc furnace steel shoulder tattoo: 30,000k9 Method of the present invention: SIC180k9 having the following composition was poured into a hearth just before being put into a steel shoulder bag and melted.

(粒度分布及び主要成分含有率) (残部 Si02、Fe分其他) 加炭剤使用操業:50%炭素を含有する(残部中・約4
5%鉄分)加炭剤350k9を追加装入時に投入して溶
解した。
(Particle size distribution and main component content) (Remainder: Si02, Fe, etc.) Operation using carburizing agent: Contains 50% carbon (remaining portion: approx. 4
5% iron content) recarburizer 350k9 was added and melted at the time of additional charging.

実施例 2 孤光式気炉操業において、高マンガン鋼肩を使用して、
高マンガン鋼を製造する場合に、炭化珪素を使用して酸
化鋼陸中のマンガン酸化物を還元回収した実施例を示す
Example 2 Using high manganese steel shoulders in lone light furnace operation,
An example will be shown in which silicon carbide is used to reduce and recover manganese oxides in oxidized steel when producing high manganese steel.

使用炉:2500K.V.A 5Ton弧光式電
気炉装入材料:高マンガン鋼屑 5250k
g(C:1.1ふMn:13.4%含有)普通鋼屑(C
:0.2%含有) 750k9炭化珪素使用量
50k9(SIC:85%、Free炭素:12
%含有)炭化珪素使用方法:高マンガン鋼肩および普通
鋼屑に混合して装入し溶解した。
Furnace used: 2500K. V. A 5Ton arc electric furnace charging material: High manganese steel scrap 5250k
g (C: 1.1f Mn: 13.4% content) Ordinary steel scrap (C
:0.2% content) 750k9 silicon carbide usage amount
50k9 (SIC: 85%, Free carbon: 12
% content) How to use silicon carbide: Mixed with high manganese steel shoulders and ordinary steel scraps, charged and melted.

下記に本発明の方法と炭化珪素を使用しない操業との比
較を示す。実施例 3 孤光式電気炉操業において高マンガン鋼を製造する場合
に、高マンガン鋼層並びに鋼肩に中炭素フェロマンガン
製造時発生するマンガンスラグを同時に装入して、溶解
過程で酸化されるマンガン酸化物とマンガンスラグ中に
含有するマンガン酸化物を炭化珪素によって還元回収し
た実施例を示す。
Below is a comparison of the method of the present invention and an operation that does not use silicon carbide. Example 3 When manufacturing high manganese steel in a solitary light electric furnace operation, manganese slag generated during the production of medium carbon ferromanganese is simultaneously charged into the high manganese steel layer and the steel shoulder to be oxidized during the melting process. An example will be shown in which manganese oxide and manganese oxide contained in manganese slag were reduced and recovered using silicon carbide.

使用炉:2500K.V.A 打on弧光式電気
炉菱入材料:高マンガン鋼肩 4800k9
(C:1.15%、Mn:12.4%含有)普通鋼暦(
C:0.2%含有)1000k9マンガンスラグ(Mn
0:32%含有) 900k9 炭化珪素使用量 140k9 (SIC58%、FreeC26%含有)炭化珪素使用
方法:マンガンスラグと炭化珪素を混合し、炉床に投入
しマンガン鋼肩と普通鋼屑を装入し溶解した。
Furnace used: 2500K. V. A. Arc-light electric furnace material: high manganese steel shoulder 4800k9
(Contains C: 1.15%, Mn: 12.4%) Ordinary steel calendar (
C: 0.2% content) 1000k9 manganese slag (Mn
0:32%) 900k9 Amount of silicon carbide used 140k9 (Contains 58% SIC, 26% FreeC) How to use silicon carbide: Mix manganese slag and silicon carbide, charge into the hearth, and charge manganese steel shoulders and ordinary steel scraps. Dissolved.

次に本発明の方法の溶落時、酸末時鋼淫中のMn○およ
び酸末時溶鋼組成を示す。実施例 4 lOTon弧光式電気炉において、13%ステンレス鋼
肩を溶解し、炭化珪素を使用して、酸化鋼律中に含有す
るクロム酸化物を還元回収した実施例を示す。
Next, the Mn○ in the molten steel at the time of burn-through, the molten steel composition at the end of acid, and the composition of molten steel at the end of acid in the method of the present invention are shown. Example 4 An example is shown in which a 13% stainless steel shoulder was melted in a lOTon arc-type electric furnace, and chromium oxide contained in the oxidized steel was reduced and recovered using silicon carbide.

使用炉:3500K.V.A lmon弧光式電気
炉装入材料:13%ステンレス鋼肩 8500k
9(Cr:13.5%、C:0.1%含有)13%ステ
ンレス鋼ダラィ粉 3500k9(Cr:13.5%、
C:0.1%含有)65%炭化珪素 25
0k9(S;C:65%、Free炭素25%含有)コ
ークス粒(固定炭素82%含有)60k9 生石灰 540k9.炭化珪素使
用法:鋼肩装入前に炭化珪素をコークス粒、生石灰と混
合して炉床に投入し、以下通常法により溶解した。
Furnace used: 3500K. V. Almon Arc light electric furnace charging material: 13% stainless steel shoulder 8500k
9 (Contains Cr: 13.5%, C: 0.1%) 13% stainless steel powder 3500k9 (Cr: 13.5%,
C: 0.1% content) 65% silicon carbide 25
0k9 (S; C: 65%, free carbon content 25%) Coke grains (fixed carbon content 82%) 60k9 Quicklime 540k9. How to use silicon carbide: Before charging the steel shoulder, silicon carbide was mixed with coke grains and quicklime, charged into the hearth, and then melted using the usual method.

炭化珪素を使用した場合の酸化鋼連中のC「203およ
び渚鋼組成を示す。
The composition of oxidized steel C203 and beach steel is shown when silicon carbide is used.

炭化珪素を使用しない場合の酸化鋼律中の従来の方法で
はコークス粒とフェロシリコン紬粒の混合物(4:1)
300k9と生石灰100k9を同様にして炉床におき
、ステンレス屑を装入し、通電溶解作業を行った。
In the conventional method of oxidized steel when silicon carbide is not used, a mixture of coke grains and ferrosilicon pongee grains (4:1) is used.
300k9 and quicklime 100k9 were similarly placed on the hearth, stainless steel scraps were charged, and electric melting was performed.

従来法による酸化鋼連中のCr203含有率 32.6
%鋼建中Cr量 154kgクロム収率 90.5% 実施例 5 1皿on弧光式電気炉において、13%ステンレス鋼肩
と、クロム鉱石並びに炭化珪素を使用して落籍し、酸化
鋼淫中のクロム酸化物を還元回収して、18%クロムス
テンレス鋼を製造した実施例を示す。
Cr203 content of oxidized steel by conventional method 32.6
% Cr amount in steel construction 154 kg Chromium yield 90.5% Example 5 In a one-dish arc-light electric furnace, a 13% stainless steel shoulder, chromium ore, and silicon carbide were used to produce oxidized steel. An example is shown in which 18% chromium stainless steel was produced by reducing and recovering chromium oxide.

使用炉:350皿.V.A loTon弧光式電気
炉使用材料:13%ステンレス鋼肩 8000k
9(Cr:13.5%、C:0.1%含有)13%ステ
ンレス鋼ダライ粉 2000k9(Cr:13.2%、
C:0.1%含有)クロム鉱石 180
0k9(Cr203:50.9%、Fe0:13.8%
含有)炭化珪素 450k9(SIC
:60%、FreeC28%含有)50%フエロシリコ
ン 100k9生石灰
940k9使用方法:クロム鉱石、炭化珪素、フヱロシ
リコン、生石灰を混合したものを13%ステンレス鋼屑
と13%ステンレス鋼ダラィ粉を装入する以前に炉床に
投入して溶解した。
Furnace used: 350 dishes. V. A loTon Arc light electric furnace Materials used: 13% stainless steel shoulder 8000k
9 (Contains Cr: 13.5%, C: 0.1%) 13% stainless steel powder 2000k9 (Cr: 13.2%,
C: 0.1% content) Chromium ore 180
0k9 (Cr203: 50.9%, Fe0: 13.8%
Contains) silicon carbide 450k9 (SIC
: 60%, FreeC 28% included) 50% Ferrosilicon 100k9 quicklime
How to use 940k9: A mixture of chromium ore, silicon carbide, fluorosilicone, and quicklime was poured into a hearth and melted before charging 13% stainless steel scraps and 13% stainless steel powder.

酸末時の鋼連中のCr203、並びに溶傷成分を下記に
示す。
The Cr203 and melt components of the steel at the end of acid treatment are shown below.

発明の効果 本発明の効果を列記すると下記の如くなる。Effect of the invention The effects of the present invention are listed below.

1 金属酸化物の金属が還元回収されるので、溶鋼が増
量して、製品の歩止りが向上する。
1. Since the metal in the metal oxide is reduced and recovered, the amount of molten steel increases and the yield of the product improves.

2 炭化珪素の酸化反応熱の生成によって、電力使用量
の低下、操業時間の短縮が図れる。
2. The generation of heat from the oxidation reaction of silicon carbide reduces power consumption and operation time.

3 酸化末期の酸化鋼連中の金属酸化物の濃度が低下す
るので、還元期の脱酸剤の使用量を節減出来る。
3. The concentration of metal oxides in oxidized steel during the final stage of oxidation is reduced, so the amount of deoxidizing agent used during the reduction stage can be reduced.

4 マンガン鋼、クロム鋼の製造において、鋼屑中のマ
ンガン、クロムの損失を減少せしめ得るのみならず、鉱
石やフェロアロィスラグから積極的に高価値金属を経済
的に回収することが可能となる。
4. In the production of manganese steel and chromium steel, it is possible not only to reduce the loss of manganese and chromium in steel scrap, but also to actively and economically recover high-value metals from ores and ferroalloy slag. Become.

Claims (1)

【特許請求の範囲】[Claims] 1 鋼屑又は鋼屑とフエロマンガンスラグ、マンガン鉱
石、フエロクロムスラグ、クロム鉱石等、製品に必要な
金属を酸化物の形で含有する物質の一種以上との、混合
物を溶解して電気炉鋼を製造する場合、鋼屑が溶解する
以前に、炭化珪素又は必要に応じ、これに生石灰、珪砂
等の造滓剤、炭材、フエロシリコン等の還元剤の一種以
上を添加したものを炉中に装入し、加熱反応せしめ鋼屑
または/および金属酸化物含有物質溶解の際生成する酸
化鋼滓中の鉄、マンガン、クロム等の金属酸化物から夫
々の金属を還元回収することを特徴とする電気炉鋼の製
造方法。
1. A mixture of steel scrap or steel scrap and one or more substances containing metals necessary for the product in the form of oxides, such as ferromanganese slag, manganese ore, ferrochrome slag, and chromium ore, is melted and heated with electricity. When producing furnace steel, before steel scrap is melted, silicon carbide or, if necessary, one or more of slag-forming agents such as quicklime and silica sand, carbonaceous materials, and reducing agents such as ferrosilicon are added to it. is charged into a furnace and subjected to a heating reaction to reduce and recover the respective metals from metal oxides such as iron, manganese, and chromium in the oxidized steel slag that is generated during the melting of steel scraps and/or metal oxide-containing substances. A method for producing electric furnace steel characterized by:
JP53028253A 1978-03-14 1978-03-14 Electric furnace steel manufacturing method Expired JPS6031884B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP53028253A JPS6031884B2 (en) 1978-03-14 1978-03-14 Electric furnace steel manufacturing method
US06/020,178 US4222768A (en) 1978-03-14 1979-03-13 Method for producing electric steel
CA000356494A CA1146758A (en) 1978-03-14 1980-07-18 Method for producing electric steel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP53028253A JPS6031884B2 (en) 1978-03-14 1978-03-14 Electric furnace steel manufacturing method
CA000356494A CA1146758A (en) 1978-03-14 1980-07-18 Method for producing electric steel

Publications (2)

Publication Number Publication Date
JPS54121215A JPS54121215A (en) 1979-09-20
JPS6031884B2 true JPS6031884B2 (en) 1985-07-25

Family

ID=25669119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53028253A Expired JPS6031884B2 (en) 1978-03-14 1978-03-14 Electric furnace steel manufacturing method

Country Status (1)

Country Link
JP (1) JPS6031884B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63115381U (en) * 1987-01-20 1988-07-25

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6026210B2 (en) * 2012-10-09 2016-11-16 中央電気工業株式会社 Metal refining method
CN104726738A (en) * 2015-04-08 2015-06-24 王先玉 Crystalline silicon waste treatment method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63115381U (en) * 1987-01-20 1988-07-25

Also Published As

Publication number Publication date
JPS54121215A (en) 1979-09-20

Similar Documents

Publication Publication Date Title
US5882375A (en) Process for the production of hydraulic binders and/or alloys, such as for examples, ferrochromium or ferrovanadium
Eissa et al. Conversion of mill scale waste into valuable products via carbothermic reduction
JPH09310126A (en) Production for obtaining metal from metallic oxide
CN1470667A (en) Manganese oxide direct-alloying steel making process
CN106636540A (en) Electric furnace steel making process capable of simultaneously and directly alloying manganese oxide and molybdenum oxide
US2557458A (en) Method of fusing alloy additions to a steel bath
JPS6031884B2 (en) Electric furnace steel manufacturing method
KR101469678B1 (en) Low carbon-metal manganese and low carbon-ferromanganese manufacturing method by using continuous thermit reaction
JPS6250545B2 (en)
KR101189183B1 (en) Recovery method of valuable metals from spent petroleum catalysts
RU2213788C2 (en) Method of steel-making in electric-arc furnace
JP4767611B2 (en) Reduction method of iron oxide
RU2352645C1 (en) Method of steel smelting in arc electric steel-making furnace
JP3393668B2 (en) Production of low Si, low P, and high Mn hot metal with smelting reduction of Mn ore
KR100887859B1 (en) The method of manufacturing stainless steel through reduction of chromium ore
JP2002003929A (en) SLAG-MAKING AGENT FOR DEOXIDATION COMPOSED OF ALUMINUM DUST AND SiC
JPS62167808A (en) Production of molten chromium iron
JPS62205210A (en) Iron making and steel making method utilizing aluminum slag
SU572504A1 (en) Method for maunfacturing iron and its alloys from iron ore
JP2856103B2 (en) Hot metal dephosphorization method
Jandieri et al. Hydrated aluminum powder for direct alloying of steel and alloys-challenges of the future
SU569643A1 (en) Method of melting ferromolybdenum
SU855044A1 (en) Method of producing low-carbon ferromanganese
JPH07173520A (en) Method for dephosphorizing chromium-containing molten iron and molten steel
JPH1121612A (en) Method for melting steel