JPH0413076A - Cooling chamber device - Google Patents
Cooling chamber deviceInfo
- Publication number
- JPH0413076A JPH0413076A JP11321990A JP11321990A JPH0413076A JP H0413076 A JPH0413076 A JP H0413076A JP 11321990 A JP11321990 A JP 11321990A JP 11321990 A JP11321990 A JP 11321990A JP H0413076 A JPH0413076 A JP H0413076A
- Authority
- JP
- Japan
- Prior art keywords
- compressor
- temperature
- flow path
- opening degree
- air flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001816 cooling Methods 0.000 title abstract description 16
- 238000005057 refrigeration Methods 0.000 claims description 22
- 238000001514 detection method Methods 0.000 claims description 9
- 238000000034 method Methods 0.000 abstract 1
- 238000005192 partition Methods 0.000 description 6
- 230000006835 compression Effects 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000009423 ventilation Methods 0.000 description 3
- 239000003507 refrigerant Substances 0.000 description 2
- 230000004308 accommodation Effects 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910001285 shape-memory alloy Inorganic materials 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2115—Temperatures of a compressor or the drive means therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D23/00—General constructional features
- F25D23/003—General constructional features for cooling refrigerating machinery
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2323/00—General constructional features not provided for in other groups of this subclass
- F25D2323/002—Details for cooling refrigerating machinery
- F25D2323/0023—Control of the air flow cooling refrigerating machinery
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2323/00—General constructional features not provided for in other groups of this subclass
- F25D2323/002—Details for cooling refrigerating machinery
- F25D2323/0026—Details for cooling refrigerating machinery characterised by the incoming air flow
- F25D2323/00264—Details for cooling refrigerating machinery characterised by the incoming air flow through the front bottom part
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2323/00—General constructional features not provided for in other groups of this subclass
- F25D2323/002—Details for cooling refrigerating machinery
- F25D2323/0027—Details for cooling refrigerating machinery characterised by the out-flowing air
- F25D2323/00273—Details for cooling refrigerating machinery characterised by the out-flowing air from the back corner
Landscapes
- Devices That Are Associated With Refrigeration Equipment (AREA)
- Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的コ
(産業上の利用分野)
この発明は、機械室に設置した凝縮器、圧縮機を強制通
風で冷却するようにした冷却庫装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Purpose of the Invention (Industrial Field of Application) This invention relates to a refrigerator apparatus in which a condenser and a compressor installed in a machine room are cooled by forced ventilation.
(従来の技術)
冷蔵庫(冷却庫装置に相当)では、第9図に示されるよ
うに食品を収容する収容庫aの下部に機械室すを形成し
、この機械室す内に、上記収容庫a内に設けた蒸発器(
図示しない)と共に冷凍サイクルを構成する凝縮器C1
密閉形の圧縮機dなどの機器を設けている。(Prior Art) In a refrigerator (corresponding to a cooling storage device), as shown in FIG. The evaporator installed inside a (
condenser C1 that constitutes a refrigeration cycle together with
Equipment such as a hermetic compressor d is installed.
ところで、冷蔵庫は冷凍サイクルを効率良く運転させる
ために凝縮器Cの熱交換性を高めること、さらには圧縮
機dを熱の影響がら保護することが必要とされる。By the way, in order to efficiently operate the refrigeration cycle of the refrigerator, it is necessary to improve the heat exchange performance of the condenser C and further protect the compressor d from the effects of heat.
そこで、冷蔵庫では凝縮器C1圧縮機dを強制通風で冷
却することが行われている。従来、こうした冷却構造に
は、第9図に示されるように機械室す内に、同機械室す
に設けた空気取入口eと空気排出口(図示しない)とを
連通ずる1系統の空気流路fを形成し、この空気流路f
に例えば上流側から上記凝縮器C1圧縮機d、送風ファ
ンgを順に設置した構造が用いられている。Therefore, in refrigerators, the condenser C1 compressor d is cooled by forced ventilation. Conventionally, such a cooling structure has one air flow system in a machine room that communicates with an air intake port (e) provided in the machine room and an air outlet (not shown), as shown in FIG. A path f is formed, and this air flow path f
For example, a structure is used in which the condenser C1 compressor d and the blower fan g are installed in this order from the upstream side.
これにより、送風ファンgの冷凍サイクルの運転に連動
した作動により、外気が機械室すの内部に取込まれ、こ
の外気が空気流路fを流通する間に凝縮器C1圧縮機d
を冷却していく。そして、冷却後、空気排出口から外部
に排出されるようになっている。As a result, outside air is taken into the machine room by the operation of the blower fan g in conjunction with the operation of the refrigeration cycle, and while this outside air is flowing through the air flow path f, the condenser C1 compressor d
is cooled down. After cooling, the air is discharged to the outside from the air outlet.
(発明が解決しようとする課題)
ところで、冷蔵庫の冷凍サイクル運転を良好に維持する
ためには、凝縮器Cは冷凍サイクルの運転中、常に冷却
が必要であるが、圧縮機dは冷凍サイクル運転の状態に
よって変わる。特に冷凍サイクルの立上り運転を早く立
上げるときは、冷却はあまり必要としない。(Problem to be Solved by the Invention) By the way, in order to maintain good refrigeration cycle operation of a refrigerator, the condenser C needs to be constantly cooled during the refrigeration cycle operation, but the compressor d needs to be cooled during the refrigeration cycle operation. varies depending on the condition. Especially when starting up the refrigeration cycle quickly, cooling is not required much.
ところが、上記機械室構造によると、冷凍サイクルの運
転中は、送風ファンgによって、常に外気が空気流路f
に流通する。However, according to the machine room structure described above, during the operation of the refrigeration cycle, the outside air is always kept in the air flow path f by the ventilation fan g.
distributed in
このため、冷凍サイクルの立上りなどでは冷却が強すぎ
て、圧縮機dの温度上昇が鈍り、冷凍サイクルが安定す
るまでに時間がかかる問題をもっている。For this reason, there is a problem that cooling is too strong at the start-up of the refrigeration cycle, the temperature rise of the compressor d slows down, and it takes time for the refrigeration cycle to stabilize.
そこで、2台の送風ファンを用いて、凝縮器Cと圧縮機
dを用途別に冷却することが考えられる。Therefore, it is conceivable to use two blower fans to cool the condenser C and the compressor d for each purpose.
しかしながら、これでは1つの空気流路fと1つの送風
ファンgとによる簡単な冷却構造は損なわれ、コスト的
に高くつく。しかも、消費電力も多く消費するという難
点があり、実情には合わないものである。However, in this case, the simple cooling structure with one air flow path f and one blower fan g is impaired, and the cost is high. Moreover, it has the disadvantage of consuming a large amount of power, and is not suitable for the actual situation.
この発明はこのような事情に着目してなされたもので、
その目的とするところは、1台の送風ファン、1つの流
路系統による簡単な構造を維持しながら、凝縮器および
圧縮機を機器特性に合わせて冷却することができる冷却
庫装置を提供することにある。This invention was made with attention to these circumstances,
The purpose is to provide a refrigerator device that can cool a condenser and compressor in accordance with the equipment characteristics while maintaining a simple structure with one blower fan and one flow path system. It is in.
[発明の構成]
(課題を解決するための手段)
上記目的を達成するためにこの発明の冷却庫装置は、圧
縮機に圧縮温度を検出する温度検出手段を設け、圧縮機
が在る空気流路部分に当該圧縮機が配置されている流路
部分と圧縮機が無い流路部分とに分ける壁部を設け、前
記圧縮機が在る前記流路部分の人口側に当該空気流路の
開口開度を可変する開度可変手段を設け、前記温度検出
手段からの検出温度に応じてこの開度可変手段を制御す
る制御手段を設けたことにある。[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the refrigerator apparatus of the present invention is provided with a temperature detection means for detecting the compression temperature in the compressor, and A wall portion is provided in the passage portion to divide the passage portion into a passage portion in which the compressor is disposed and a passage portion without the compressor, and an opening of the air passage is provided on the population side of the passage portion where the compressor is located. A variable opening means for varying the opening degree is provided, and a control means is provided for controlling the variable opening means in accordance with the temperature detected by the temperature detecting means.
(作 用)
この発明の冷却庫装置によると、送風ファンが作動する
と、外気が空気取入口を通じて機械室内の空気流路に流
れていく。そして、この空気流路を流通する外気にて凝
縮器、圧縮機が冷却されていく。(Function) According to the refrigerator device of the present invention, when the blower fan operates, outside air flows into the air flow path in the machine room through the air intake port. The condenser and compressor are then cooled by the outside air flowing through this air flow path.
ここで、圧縮機が在る空気流路の入口側の開度は、開度
可変手段により圧縮機の温度に応じて制御されている。Here, the opening degree of the inlet side of the air flow path where the compressor is located is controlled by the opening degree variable means according to the temperature of the compressor.
これにより、冷却を少なくしだ方がよい、冷却をしない
方が良いなど、圧縮機の温度が低いときの場合は、開度
可変手段が「閉」側に作動して、圧縮機の周囲を流通す
る空気量を減少させていく。また逆に圧縮機の温度が上
昇して冷却が必要となるときは、開度可変手段が「開」
側に作動にして、圧縮機の周囲を流通する空気量を増大
させていく。As a result, when the temperature of the compressor is low, such as when it is better to reduce cooling or not to cool, the opening variable means operates to the "close" side, and the area around the compressor is closed. Reduce the amount of air flowing. Conversely, when the compressor temperature rises and cooling is required, the opening variable means is set to "open".
This increases the amount of air flowing around the compressor.
それ故、1台の送風ファン、1つの空気流路の簡単な構
造を維持しながら、凝縮器は常に十分に冷却し、圧縮機
は当該圧縮機の状態に応じて冷却できることになる。つ
まり、凝縮器、圧縮機を機器特性に合わせて冷却するこ
とができる。Therefore, while maintaining the simple structure of one blower fan and one air flow path, the condenser can always be sufficiently cooled and the compressor can be cooled according to the condition of the compressor. In other words, the condenser and compressor can be cooled in accordance with the equipment characteristics.
(実施例)
以下、この発明を第1図ないし第7図に示す第1の実施
例にもとづいて説明する。第1図はこの発明を適用した
冷却庫装置、例えば冷蔵庫の下部側を示し、1は食品な
どを収容室、2は同収容室1の下部に設けられた機械室
である。機械室2は、箱状の冷蔵庫本体3の底部壁1a
上に、例えば断面が逆り字状で、外形がL字形状をなし
た仕切壁4を上記冷蔵庫本体3の側部壁1b、後部壁I
Cと離間対向するように立設して構成されている。(Example) The present invention will be described below based on a first example shown in FIGS. 1 to 7. FIG. 1 shows the lower side of a refrigerator to which the present invention is applied, such as a refrigerator, where 1 is a storage chamber for storing food and the like, and 2 is a machine room provided at the bottom of the storage chamber 1. The machine room 2 is located on the bottom wall 1a of the box-shaped refrigerator main body 3.
Above, a partition wall 4 having, for example, an inverted cross-section and an L-shape in outer shape is attached to the side wall 1b and the rear wall I of the refrigerator main body 3.
It is configured to be erected so as to face and be spaced apart from C.
そして、隔壁4.底部壁1a、側部壁1b、後部壁1c
で囲まれる冷蔵庫本体3の内部のL字形の空間を機械室
2としている。この機械室2の一方の端部が臨む冷蔵庫
本体3の前部壁にはフィルター付の空気取入口5が設け
られていて、この空気取入口5から機械室2内へ外気を
取込むことができるようになっている。また機械室2の
他方の端部が臨む冷蔵庫本体3の後部壁ICには空気排
出口6が設けられ、この空気排出口6から機械室2内の
空気を外部に排出できるようになっている。And partition wall 4. Bottom wall 1a, side wall 1b, rear wall 1c
The L-shaped space inside the refrigerator body 3 surrounded by is defined as a machine room 2. An air intake port 5 with a filter is provided on the front wall of the refrigerator main body 3, which faces one end of the machine room 2, and outside air can be taken into the machine room 2 through the air intake port 5. It is now possible to do so. Further, an air outlet 6 is provided in the rear wall IC of the refrigerator main body 3 facing the other end of the machine room 2, and the air in the machine room 2 can be discharged to the outside from this air outlet 6. .
これにより、機械室2の内部には、入口側が空気取入口
5に連通し、出口側が空気排出口6に連通ずるL字状の
空気流路11を構成している。但し、24は空気流路1
1の側部の流路部分に設けた第2の吸込口である。Thereby, an L-shaped air passage 11 is formed inside the machine room 2, with the inlet side communicating with the air intake port 5 and the outlet side communicating with the air outlet 6. However, 24 is air flow path 1
This is the second suction port provided in the flow path portion on the side of the first inlet.
空気流路11の後部側の流路部分には、空気取入口5側
から送風ファン、例えばモータ7aにプロペラファン7
bを直結した軸流ファン7、凝縮器8、密閉形の圧縮機
9(密閉ケース9a内に圧縮機部とこれを駆動するモー
タ部とを内蔵してなるもの)が順に据付けられている。In the flow path portion on the rear side of the air flow path 11, a blower fan such as a propeller fan 7 is connected to the motor 7a from the air intake port 5 side.
An axial fan 7, a condenser 8, and a hermetic compressor 9 (which has a compressor section and a motor section for driving the compressor built in a hermetic case 9a) are installed in this order.
なお、圧縮機9、凝縮器8は図示はしないが収容室1に
設けた蒸発器、減圧装置に冷媒管を介して接続され、収
容室1内を冷却する冷凍サイクルを構成しているもので
ある。また圧縮機9が配置されている空気流路部分には
、圧縮機9の直上部分全体に位置して、同流路部分を上
下2分割する板状の隔壁10が介装されていて、同流路
部分のみを第2図でも示すように圧縮機9が配置されて
いる下部側空間部分11aと圧縮機9が無い上部側空間
部分11bとに分けている。Although not shown, the compressor 9 and condenser 8 are connected to an evaporator and a pressure reducing device provided in the storage chamber 1 via refrigerant pipes, and constitute a refrigeration cycle for cooling the inside of the storage chamber 1. be. In addition, a plate-shaped partition wall 10 is interposed in the air flow path portion where the compressor 9 is disposed, and is located directly above the compressor 9 and divides the flow path portion into upper and lower halves. As shown in FIG. 2, only the flow path portion is divided into a lower space portion 11a where the compressor 9 is arranged and an upper space portion 11b where the compressor 9 is not present.
また下部側空間部分11aの入口部には、ゲート開閉機
構12が設けられている。ゲート開閉機構12には、第
3図ないし第5図でも示すように例えば入口部を構成す
る空気流路11の幅方向両側面に左右両開き式の扉体1
,3a、13b(開度可変手段)を回動自在に枢支し、
これら扉体13a、13bにリンク式の駆動機構14を
連結した構造が用いられている。Further, a gate opening/closing mechanism 12 is provided at the entrance of the lower space portion 11a. As shown in FIGS. 3 to 5, the gate opening/closing mechanism 12 includes, for example, left and right double-opening door bodies 1 on both sides in the width direction of the air flow path 11 constituting the inlet.
, 3a, 13b (opening degree variable means) are rotatably supported,
A structure in which a link type drive mechanism 14 is connected to these door bodies 13a and 13b is used.
すなわち、15は隔壁100入口部側の壁部分に設置さ
れたパルスモータである。このパルスモータ15は、例
えば冷蔵庫の中央側寄りに偏心して配置されている。そ
して、このパルスモータ15のモータ軸15aは、隔壁
10を回転自在に貫通して、下部空間部分11aに突出
している。That is, 15 is a pulse motor installed on the wall portion of the partition wall 100 on the entrance side. This pulse motor 15 is arranged eccentrically toward the center of the refrigerator, for example. A motor shaft 15a of the pulse motor 15 rotatably passes through the partition wall 10 and projects into the lower space portion 11a.
このモータ軸13の先端部には、帯板状のアーム]6が
モータ軸13と直角な方向に突設されている。またこの
アーム先端部には、ビン17を介して例えば重ねた一対
の細長板状なリンク18a。At the tip of the motor shaft 13, a band-shaped arm] 6 is provided to protrude in a direction perpendicular to the motor shaft 13. Further, at the tip of this arm, there is a pair of elongated plate-like links 18a that are overlapped with each other with a bottle 17 interposed therebetween.
18bの端部が回動自在に連結されている。そして、こ
れらリンク1.8a、18bのもう一方の端部は、上記
扉体13a、13bの例えば上端部の枢支軸寄りの部分
にビン19を介して回動自在に連結されている。これに
より、アーム16の回動にしたがって開き角度が変化す
る一対のリンク18a、 18bの動きを利用して、
第4図および第5図で示すように扉体13a、 13
bを閉じ側1開き側に駆動できるようにしている。The ends of 18b are rotatably connected. The other ends of these links 1.8a, 18b are rotatably connected via pins 19 to, for example, the upper end portions of the door bodies 13a, 13b near the pivot shafts. As a result, by utilizing the movement of the pair of links 18a and 18b whose opening angle changes as the arm 16 rotates,
As shown in FIGS. 4 and 5, door bodies 13a, 13
b can be driven to the closing side and 1 to the opening side.
またこうしたゲート開閉機構12は、上記圧縮機9の温
度に応じて開閉動作が制御されるようになっている。そ
して、この制御回路が第6図に示されている。Further, the opening/closing operation of the gate opening/closing mechanism 12 is controlled according to the temperature of the compressor 9. This control circuit is shown in FIG.
制御回路について説明すれば、20は例えばマイクロコ
ンピュータより構成される制御部(制御手段)である。To explain the control circuit, 20 is a control section (control means) composed of, for example, a microcomputer.
制御部20は記憶部およびタイマ(いずれも図示しない
)が内蔵されている。この制御部20には、例えば圧縮
機9の密閉ケース9aに設けた温度センサ21 (温度
検出手段)が接続されていて、同温度センサ21によっ
て、密閉ケース9aを介して検出した圧縮機9の温度を
制御部20に入力できるようになっている。この制御部
20に上記ゲート開閉機構12のパルスモータ15が接
続されている。また制御部20の記憶部には、例えば圧
縮機9の温度が上昇するにしたがって扉体13a、13
bの開度が大きく設定した比例関係のある線図で示され
るようなマツプが記憶されている。そして、制御部20
では、入力される圧縮機9の温度にしたがって、上記記
憶部から同温度に対応した開度を読取り、この読取った
開度の駆動信号をパルスモータ15に出力すせるように
している。これにより、圧縮機9の温度に応じて、圧縮
機9を配置した流路の開度を調整できるようにしている
。つまり、圧縮機9の温度に応じて、圧縮機9の周囲を
流通する空気量を調整できるようになっている。The control unit 20 has a built-in storage unit and a timer (both not shown). For example, a temperature sensor 21 (temperature detection means) provided in the closed case 9a of the compressor 9 is connected to the control section 20, and the temperature of the compressor 9 detected by the temperature sensor 21 through the closed case 9a is connected to the control section 20. Temperature can be input to the control section 20. The pulse motor 15 of the gate opening/closing mechanism 12 is connected to this control section 20 . Further, in the storage unit of the control unit 20, for example, as the temperature of the compressor 9 rises, the door bodies 13a, 13
A map shown by a proportional relationship diagram in which the opening degree of b is set to a large value is stored. And the control section 20
According to the input temperature of the compressor 9, the opening corresponding to the same temperature is read from the storage section, and a drive signal corresponding to the read opening is output to the pulse motor 15. This allows the degree of opening of the flow path in which the compressor 9 is arranged to be adjusted according to the temperature of the compressor 9. In other words, the amount of air flowing around the compressor 9 can be adjusted according to the temperature of the compressor 9.
なお、制御部20には、収容室1に設けた庫内温度セン
サ23、圧縮機9のモータ部(図示しない)、軸流ファ
ン7のモータ7aが接続されていて、操作部22からの
運転オン信号、あるいは庫内温度センサ21からの運転
オン信号にしたがって圧縮機9.軸流ファン7が作動さ
れるようになっている。但し、上記制御部20の記憶部
には、圧縮8!9の安全保護上、同圧縮8!9を一定時
間停止させるのに必要な時間tm、さらには圧縮機9の
上限の安全温度Tsが記憶されていて、制御部20では
運転オン信号が入力されても、上記tmが経過しなけれ
ば冷凍サイクル運転をしないようにしているとともに、
冷凍サイクル運転中、上記Tsの温度になると、圧縮機
9を停止させ、Ts以下の温度になるまでは作動しない
ようにしである。Note that the control unit 20 is connected to an internal temperature sensor 23 provided in the storage chamber 1, a motor unit (not shown) of the compressor 9, and a motor 7a of the axial fan 7, and can be operated from the operation unit 22. The compressor 9. The axial fan 7 is activated. However, in order to protect the safety of the compression units 8 and 9, the storage unit of the control unit 20 stores the time tm required to stop the compression units 8 and 9 for a certain period of time, and the upper limit safe temperature Ts of the compressor 9. The refrigeration cycle is stored in the controller 20, and even if the operation on signal is input, the refrigeration cycle is not operated until the above tm has elapsed.
During operation of the refrigeration cycle, when the temperature reaches Ts, the compressor 9 is stopped and does not operate until the temperature reaches Ts or lower.
つぎに、このように構成された冷蔵庫の作用を第7図に
示されるフローチャートにもとづいて説明する。Next, the operation of the refrigerator configured as described above will be explained based on the flowchart shown in FIG.
例えば庫内温度センサ23からの温度が、操作部22で
設定された冷蔵温度を越えると、その温度が「運転オン
」として制御部20に入力されていく。For example, when the temperature from the internal temperature sensor 23 exceeds the refrigeration temperature set by the operation unit 22, that temperature is input to the control unit 20 as “operation on”.
ここで、制御部20のタイマは、圧縮機9の停止時間t
を計時していて、圧縮機9の保護上、圧縮機9が一定時
間tm以上停止していなければ、圧縮機9および軸流フ
ァン7は停止のままである。Here, the timer of the control unit 20 determines the stop time t of the compressor 9.
If the compressor 9 is not stopped for a certain period of time tm or more to protect the compressor 9, the compressor 9 and the axial fan 7 will remain stopped.
そして、一定時間tm以上停止していれば、制御部20
は圧縮機9および軸流ファン7に駆動信号を出力してい
く。これにより、圧縮機9および軸流ファン7は作動し
ていく。そして、圧縮機9の作動により、冷媒が凝縮器
8、減圧装置、蒸発器を順に循環していく、冷凍サイク
ルが構成され、収容室1を冷却していく。If it has stopped for a certain period of time tm or more, the control unit 20
outputs a drive signal to the compressor 9 and the axial fan 7. As a result, the compressor 9 and the axial fan 7 start operating. Then, by operating the compressor 9, a refrigerating cycle is formed in which the refrigerant circulates through the condenser 8, the pressure reducing device, and the evaporator in order, and the storage chamber 1 is cooled.
また軸流ファン7の作動により、冷蔵庫の前部の空気取
入口5から外気が機械室2内に取込まれていく。続いて
、外気は空気流路11に沿って流れ、途中の凝縮器8を
冷却していく。この冷却後の空気が空気流路11a、l
lbに至る。これにより、冷却を必要とする凝縮器8が
常に十分に冷却されていく。Furthermore, by the operation of the axial fan 7, outside air is taken into the machine room 2 through the air intake port 5 at the front of the refrigerator. Next, the outside air flows along the air flow path 11 and cools the condenser 8 along the way. After this cooling, the air flows through the air flow paths 11a, l.
up to lb. As a result, the condenser 8, which requires cooling, is always sufficiently cooled.
一方、制御部20には温度センサ21から圧縮機9の温
度が入力されている。そして、この圧縮機9の温度に対
応した開度データを記憶部から読取る。具体的には、上
記冷凍サイクルは立上り運転であるから、低い温度が圧
縮機9の温度として制御部20に入力されていく。ここ
で、当初はかなり圧縮機9の温度は低いから、「全開」
が開度データとして読取られる。そして、制御部20は
この開度データにしたがって、ゲート開閉機構12のパ
ルスモータ15に制御信号を出力していく。これにより
、扉体13a、13bは第4図に示すように「全開」と
なっていく。On the other hand, the temperature of the compressor 9 is input to the control unit 20 from the temperature sensor 21 . Then, the opening degree data corresponding to the temperature of the compressor 9 is read from the storage section. Specifically, since the refrigeration cycle is in startup operation, a low temperature is input to the control unit 20 as the temperature of the compressor 9. At this point, the temperature of the compressor 9 is quite low at first, so it is "fully opened".
is read as opening data. Then, the control section 20 outputs a control signal to the pulse motor 15 of the gate opening/closing mechanism 12 according to this opening degree data. As a result, the door bodies 13a and 13b become "fully open" as shown in FIG.
そして、圧縮作動の継続によって、次第に圧縮機9の温
度が高くなると、制御部20はそれに応じた開度データ
を記憶部から読取り、パルスモータ15を読取った開度
データにしたがって制御し、扉体13a、13aを開側
に回動していく。これにより、開度に応じた分の空気量
が空気流路11aを流通して、圧縮機9を冷却していく
。むろん、この圧縮機9の温度に応じた開度調整は「全
閉」から「全開」の範囲で行われる。When the temperature of the compressor 9 gradually increases due to the continuation of the compression operation, the control section 20 reads corresponding opening degree data from the storage section, controls the pulse motor 15 according to the read opening degree data, and controls the door body. 13a, 13a are rotated to the open side. As a result, an amount of air corresponding to the opening degree flows through the air flow path 11a and cools the compressor 9. Of course, the opening degree adjustment according to the temperature of the compressor 9 is performed in the range from "fully closed" to "fully open".
こうした開度調整により、空気流路11bを流通する空
気量は、圧縮機9が必要とする被冷却性に対応して適切
に調整されていく。By adjusting the opening degree in this manner, the amount of air flowing through the air flow path 11b is appropriately adjusted in accordance with the cooling performance required by the compressor 9.
そして、圧縮機9を冷却した空気は、上記空気流路11
bを通過した凝縮器8の冷却後の空気と合流しながら、
空気排出口6から冷蔵庫の後部に排出されていく。The air that has cooled the compressor 9 is then transferred to the air flow path 11.
While merging with the cooled air of the condenser 8 that has passed through b.
The air is discharged from the air outlet 6 to the rear of the refrigerator.
なお、こうした冷凍サイクル運転中、圧縮機9の温度が
安全温度Tsを越えると、制御部20は安全が損なわれ
ると判断して、圧縮機9に運転を停止(冷凍サイクル運
転;中断)する信号が出力される。但し、この冷凍サイ
クル中、庫内温度センサ23から「運転オフ」の信号が
入力されれば、安全温度Tsの関係なく圧縮機9は停止
される。Note that during such refrigeration cycle operation, if the temperature of the compressor 9 exceeds the safe temperature Ts, the control unit 20 determines that safety will be compromised and sends a signal to the compressor 9 to stop the operation (refrigeration cycle operation; interruption). is output. However, during this refrigeration cycle, if an "operation off" signal is input from the internal temperature sensor 23, the compressor 9 is stopped regardless of the safe temperature Ts.
かくして、冷凍サイクル運転中、凝縮器8は常に十分に
冷却され、圧縮機9は当該圧縮機9の状態に応じて冷却
されることになる。Thus, during operation of the refrigeration cycle, the condenser 8 is always sufficiently cooled, and the compressor 9 is cooled depending on the state of the compressor 9.
したがって、1台の軸流ファン7.1つの空気流路11
による簡単な機械室構造を維持しながら、凝縮器8、圧
縮機9を機器特性に合わせて冷却することができる。Therefore, one axial fan 7. one air flow path 11
The condenser 8 and compressor 9 can be cooled in accordance with the equipment characteristics while maintaining a simple machine room structure.
なお、上記第1の実施例では電気的な制御で空気流路1
1bの開度を調整した例を挙げたが、これに限らず、他
の構造、例えば機械式の制御で空気流路11bの開度を
調整するようにしてもよい。In addition, in the first embodiment, the air flow path 1 is controlled electrically.
Although an example has been given in which the opening degree of the air flow path 11b is adjusted, the opening degree of the air flow path 11b may be adjusted by other structures, such as mechanical control.
その機械式の一例が第8図に第2の実施例として示され
ている。An example of the mechanical type is shown in FIG. 8 as a second embodiment.
第2の実施例は、扉体13a、13bのうちの片側、例
えば扉体13aの開閉を調整した構造を示している。す
なわち、第2の実施例で示される調整構造は、空気流路
11を構成する側面に、端側(空気排出口側)を固定し
てベローズ30を設け、このベローズ30の他端部に、
扉体13aにおいてスライド自在に連結(長溝31にス
ライド子32をスライド自在に係止させた構造による)
された連結棒33を連結する。また圧縮機9の密閉ケー
ス9aに、伝熱性のよい中空部材よりなる温度検出部3
4を密接して設ける。そして、この温度検出部34と上
記ベローズ30との相互を連絡用のチューブ35を介し
て連通接続し、ベローズ30.チューブ35.温度検出
部34内に渡りガスを充填した構造となっている。なお
、36は復帰のための力をベローズ30に与えるための
コイルスプリング、37はスプリング固定座である。The second embodiment shows a structure in which opening and closing of one side of the door bodies 13a and 13b, for example, the door body 13a, is adjusted. That is, in the adjustment structure shown in the second embodiment, a bellows 30 is provided on the side surface constituting the air flow path 11 with the end side (air outlet side) fixed, and the other end of the bellows 30 is
Slideably connected at the door body 13a (based on a structure in which the slider 32 is slidably locked in the long groove 31)
The connected connecting rods 33 are connected. In addition, a temperature detection section 3 made of a hollow member with good heat conductivity is installed in the closed case 9a of the compressor 9.
4 are placed closely together. The temperature detection section 34 and the bellows 30 are connected to each other via a communication tube 35, and the bellows 30. Tube 35. It has a structure in which the temperature detection section 34 is filled with gas. Note that 36 is a coil spring for applying force for return to the bellows 30, and 37 is a spring fixing seat.
こうした構造によると、圧縮機9の温度が低いときは、
温度検出部34内のガスは膨脹しないがら、扉体13a
は「全閉」となる。そして、圧縮作動にしたがって圧縮
機9の温度が高くなると、温度検出部34内のガスは膨
脹していく。そして、このガスの膨張力でベローズ30
を伸長させ、扉体13aを開側に回動していく。つまり
、圧縮機9の温度に応じて発生するガスの膨張力にした
がって、上記第1の実施例と同様、空気流路11bの開
度を制御することができることになる。According to this structure, when the temperature of the compressor 9 is low,
Although the gas inside the temperature detection part 34 does not expand, the door body 13a
becomes "fully closed". Then, as the temperature of the compressor 9 increases with the compression operation, the gas within the temperature detection section 34 expands. The expansion force of this gas causes the bellows 30 to
is extended, and the door body 13a is rotated to the opening side. In other words, the opening degree of the air passage 11b can be controlled in accordance with the expansion force of the gas generated depending on the temperature of the compressor 9, as in the first embodiment.
なお、ガスの膨張力の代りに、形状記憶合金を用いても
、同様な効果を奏する。Note that the same effect can be obtained by using a shape memory alloy instead of the expansion force of gas.
また、上記したいずれの実施例も、圧縮機の温度を検出
するセンサ部を圧縮機の密閉ケースに設けたが、これに
限らず、圧縮機に接続された吐出バイブの密閉ケース近
傍の部分、あるいは密閉ケースの内部のモータ部を構成
する巻線部分にセンサ部を設けて、圧縮機の温度を検出
するようにしてもよい。Further, in each of the above-described embodiments, the sensor section for detecting the temperature of the compressor is provided in the closed case of the compressor, but the sensor section is not limited to this. Alternatively, the temperature of the compressor may be detected by providing a sensor section in the winding portion that constitutes the motor section inside the sealed case.
また、この発明を冷蔵庫に適用したが、これに限らず、
冷凍冷蔵庫、冷凍庫等の冷却庫装置にこの発明を適用し
てもよい。In addition, although this invention was applied to a refrigerator, it is not limited to this.
The present invention may be applied to refrigerator devices such as refrigerator-freezers and freezers.
[発明の効果]
以上説明したようにこの発明によれば、1台の送風ファ
ン、1つの流路系統による簡単な構造を維持しながら、
凝縮器および圧縮機を機器特性に合わせて冷却すること
ができる。[Effects of the Invention] As explained above, according to the present invention, while maintaining a simple structure with one blower fan and one flow path system,
The condenser and compressor can be cooled according to equipment characteristics.
第1図ないし第7図はこの発明の第1の実施例を示し、
第1図は冷蔵庫の機械室の構造を示す一部切欠した斜視
図、第2図は第1図中、A−A線に沿う機械室の側断面
図、第3図は圧縮機を冷却する空気量を調整する構造を
示す斜視図、第4図は空気流路が全開となる状態を示す
下面図、第5図は空気流路が全開となる状態を示す下面
図、第6図は空気流路の開度制御をする制御回路を示す
ブロック図、第7図は空気流路の開度制御を冷凍サイク
ルの運転と共に示すフローチャート、第8図はこの発明
の第2の実施例を示す下面図、第9図は従来の冷蔵庫の
機械室の構造を示す一部切欠した断面図である。
1・・・収容室、2・・・機械室、5・・・空気取入口
、6・・・空気排出口、7・・・軸流ファン(送風ファ
ン)、8・・・凝縮器、9・・・圧縮機、10・・・隔
壁、11・・・空気流通路、11a、11 b−・・空
気流路、13a213b・・・扉体、14・・・駆動機
構、15・・・バルスモタ、20・・・制御部、21・
・・温度センサ。
13a
第
因
第
図1 to 7 show a first embodiment of the invention,
Figure 1 is a partially cutaway perspective view showing the structure of the machine room of a refrigerator, Figure 2 is a side sectional view of the machine room along line A-A in Figure 1, and Figure 3 is a cooling compressor. A perspective view showing the structure for adjusting the amount of air, Fig. 4 is a bottom view showing the state where the air flow path is fully open, Fig. 5 is a bottom view showing the state where the air flow path is fully open, and Fig. 6 is a bottom view showing the state where the air flow path is fully open. A block diagram showing a control circuit for controlling the opening of the air flow path, FIG. 7 is a flowchart showing the control of the air flow path along with operation of the refrigeration cycle, and FIG. 8 is a bottom view showing a second embodiment of the present invention. 9 are partially cutaway sectional views showing the structure of the machine room of a conventional refrigerator. DESCRIPTION OF SYMBOLS 1... Accommodation room, 2... Machine room, 5... Air intake port, 6... Air outlet, 7... Axial fan (blower fan), 8... Condenser, 9 ... Compressor, 10... Partition wall, 11... Air flow path, 11a, 11 b-... Air flow path, 13a213b... Door body, 14... Drive mechanism, 15... Valve motor , 20...control unit, 21.
...Temperature sensor. 13a Cause diagram
Claims (1)
前記空気取入口および空気排出口と連通する空気流路を
形成し、この空気流路に送風ファン、冷凍サイクルを構
成する凝縮器、圧縮機を設けた機械室構造を有する冷却
庫装置において、前記圧縮機に圧縮機温度を検出する温
度検出手段を設け、前記圧縮機が在る空気流路部分に当
該圧縮機が配置されている流路部分と圧縮機が無い流路
部分とに分ける壁部を設け、前記圧縮機が在る前記流路
部分の入口側に当該空気流路の開口開度を可変する開度
可変手段を設け、前記温度検出手段からの検出温度に応
じてこの開度可変手段を制御する制御手段を設けたこと
を特徴とする冷却庫装置。Inside the machine room with air intake and air outlet,
The refrigerator apparatus has a machine room structure in which an air flow path is formed that communicates with the air intake port and the air outlet, and this air flow path is provided with a blower fan, a condenser that constitutes a refrigeration cycle, and a compressor. The compressor is provided with a temperature detection means for detecting the compressor temperature, and a wall portion divides the air flow path portion where the compressor is located into a flow path portion where the compressor is disposed and a flow path portion where the compressor is not present. and an opening variable means for varying the opening degree of the air flow path is provided on the inlet side of the flow path portion where the compressor is located, and the opening degree is variable according to the temperature detected by the temperature detection means. A refrigerator apparatus characterized in that it is provided with a control means for controlling the means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11321990A JPH0413076A (en) | 1990-04-27 | 1990-04-27 | Cooling chamber device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11321990A JPH0413076A (en) | 1990-04-27 | 1990-04-27 | Cooling chamber device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0413076A true JPH0413076A (en) | 1992-01-17 |
Family
ID=14606595
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11321990A Pending JPH0413076A (en) | 1990-04-27 | 1990-04-27 | Cooling chamber device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0413076A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06323718A (en) * | 1993-05-13 | 1994-11-25 | Matsushita Refrig Co Ltd | Sound insulation structure for refrigerator |
US6296553B1 (en) | 1997-04-02 | 2001-10-02 | Nippei Toyama Corporation | Grinding method, surface grinder, workpiece support, mechanism and work rest |
WO2006066635A1 (en) * | 2004-12-23 | 2006-06-29 | Irinox S.P.A. | Temperature cooler for rapid cooling and/or rapid freezing of products to be stored at low temperature for domestic use |
JP2009052816A (en) * | 2007-08-28 | 2009-03-12 | Panasonic Corp | Damper device |
CN106052265A (en) * | 2015-04-15 | 2016-10-26 | 日立空调·家用电器株式会社 | Refrigerator |
WO2016174148A3 (en) * | 2015-04-29 | 2017-01-12 | BSH Hausgeräte GmbH | Home appliance device |
JP2020507702A (en) * | 2017-01-27 | 2020-03-12 | エッペンドルフ アクチエンゲゼルシャフトEppendorf AG | Freezer fan device and ultra low temperature freezer |
-
1990
- 1990-04-27 JP JP11321990A patent/JPH0413076A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06323718A (en) * | 1993-05-13 | 1994-11-25 | Matsushita Refrig Co Ltd | Sound insulation structure for refrigerator |
US6296553B1 (en) | 1997-04-02 | 2001-10-02 | Nippei Toyama Corporation | Grinding method, surface grinder, workpiece support, mechanism and work rest |
WO2006066635A1 (en) * | 2004-12-23 | 2006-06-29 | Irinox S.P.A. | Temperature cooler for rapid cooling and/or rapid freezing of products to be stored at low temperature for domestic use |
JP2009052816A (en) * | 2007-08-28 | 2009-03-12 | Panasonic Corp | Damper device |
CN106052265A (en) * | 2015-04-15 | 2016-10-26 | 日立空调·家用电器株式会社 | Refrigerator |
WO2016174148A3 (en) * | 2015-04-29 | 2017-01-12 | BSH Hausgeräte GmbH | Home appliance device |
JP2020507702A (en) * | 2017-01-27 | 2020-03-12 | エッペンドルフ アクチエンゲゼルシャフトEppendorf AG | Freezer fan device and ultra low temperature freezer |
US11346593B2 (en) | 2017-01-27 | 2022-05-31 | Eppendorf Ag | Refrigerator fan device and ultra-low temperature freezer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR900008901B1 (en) | Air conditioner for vehicle and refrigeration system for refrigerator | |
US6931870B2 (en) | Time division multi-cycle type cooling apparatus and method for controlling the same | |
KR940009646A (en) | Indirect Cooling Refrigerator | |
KR100728336B1 (en) | Apparatus and method for controlling support path of air conditioner | |
JP2013204891A (en) | Refrigerator | |
JP2007163074A (en) | Refrigeration cycle | |
JPH0413076A (en) | Cooling chamber device | |
JP3102652B2 (en) | Thermal shock test equipment | |
KR102010382B1 (en) | Refrigerator and Control method of the same | |
EP3835694B1 (en) | Cooling device | |
JPH07332807A (en) | Suprecooling control valve and refrigeration cycle | |
KR102644750B1 (en) | Heat pump cycle | |
JP2001241779A (en) | Refrigerant flow rate controller for air conditioner | |
JPH06143996A (en) | Vehicle air conditioner | |
JP4113483B2 (en) | refrigerator | |
KR100863041B1 (en) | Controlling method of refrigerator | |
KR100400470B1 (en) | Fan Control Method of Air Conditioner | |
JPH085172A (en) | Cooler for refrigerator with deep freezer | |
JP2736160B2 (en) | Refrigerator temperature controller | |
KR20140097863A (en) | Refrigerator and Control method of the same | |
JPS58164980A (en) | Freezing refrigerator | |
JPH09159292A (en) | Controller for air conditioner | |
KR100429623B1 (en) | Cold air control apparatus of refrigerator | |
JP2760571B2 (en) | Refrigeration cycle control device | |
KR100606754B1 (en) | Method for Controlling Refigerator |