JPH04130686A - Laser light wavelength converter - Google Patents

Laser light wavelength converter

Info

Publication number
JPH04130686A
JPH04130686A JP25095190A JP25095190A JPH04130686A JP H04130686 A JPH04130686 A JP H04130686A JP 25095190 A JP25095190 A JP 25095190A JP 25095190 A JP25095190 A JP 25095190A JP H04130686 A JPH04130686 A JP H04130686A
Authority
JP
Japan
Prior art keywords
light
converted
conical
wavelength conversion
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25095190A
Other languages
Japanese (ja)
Inventor
Ryohei Tanuma
良平 田沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP25095190A priority Critical patent/JPH04130686A/en
Publication of JPH04130686A publication Critical patent/JPH04130686A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve a wavelength conversion efficiency by aligning condensing angles to a predetermined angle capable of accurately satisfying phase aligning condition of all lights to be converted in a laser luminous flux. CONSTITUTION:A parallel laser luminous flux 21 is applied to a convex conical lens 40 to convert it to a conical luminous flux 22 to be incident to a nonlinear optical crystal 50. In this case, a conical axis FL is brought into coincidence with the direction of a crystal optical axis (z), the light 20 to be converted is condensed in the vicinity of a focal line FL to be enhanced to form a high intensity region of a polarized wave. The vertex angle of the lens 40 is so set that the vertex of the flux 21 becomes an angle for satisfying phase aligning conditions. A second harmonic wave conversion light 30 generated by wavelength conversion in the nonlinear optical crystal 40 is converted to a parallel output luminous flux 31 by a conical lens 60 to be externally output. Thus, it is condensed to the condensing angle coincident with the phase aligning angle to satisfy the phase aligning condition and to improve its wavelength conversion efficiency.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はβ−硼酸バリウム(BBO)やリチウムナイオ
ベート等の非線形光学結晶にレーザ光を投射してこれと
異なる波長の光に変換するレーザ光波長変換装置に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a laser that projects a laser beam onto a nonlinear optical crystal such as β-barium borate (BBO) or lithium niobate and converts it into light of a different wavelength. The present invention relates to an optical wavelength conversion device.

〔従来の技術〕[Conventional technology]

周知のようにレーザは強力で鋭い指向性をもつコヒーレ
ント光を発生するので、その応用分野は材料加工や計測
分野に止まらず、最近では医学。
As is well known, lasers generate coherent light that is powerful and has sharp directivity, so their applications are not limited to the fields of material processing and measurement, but recently in medicine.

化学工業分野にも広く浸透しつつあるが、一部を除いて
特定の波長でしか発振せず、これが応用に際して最大の
障害の一つになっている。
Although they are becoming widespread in the chemical industry, they only oscillate at specific wavelengths, with some exceptions, and this is one of the biggest obstacles to their application.

本発明が対象とする非線形光学結晶を利用するレーザ光
の波長変換技術は、この問題を解決する有力な手段とし
て注目されているもので、以下にその原理と主な従来技
術を簡単に説明する。
Laser light wavelength conversion technology using nonlinear optical crystals, which is the subject of the present invention, is attracting attention as a promising means of solving this problem.The principle and main conventional techniques will be briefly explained below. .

一般に非線形光学結晶に周波数が異なる2個のレーザ光
が入射すると、その内部に各レーザ光の光電場に比例す
る強度の分極波のほかに両電場の積に比例する強度の分
極波が発生する。後者は再入射レーザ光の周波数の和の
周波数をもち、これから元のレーザ光と異なる周波数な
いしは波長の光が得られる。これが和周波生成と呼ばれ
る波長変換の原理であるが、実用的に重要なのは2個の
入射レーザ光の周波数が同じ場合、つまり単一のレーザ
光をその2倍の周波数ないしは半波長の光に変換する場
合で、第2高−波発生ないし5HG(Second H
armonic Generatlon)  と呼ばれ
る。
Generally, when two laser beams with different frequencies enter a nonlinear optical crystal, a polarized wave with an intensity proportional to the optical electric field of each laser beam and a polarized wave with an intensity proportional to the product of both electric fields is generated inside the crystal. . The latter has a frequency that is the sum of the frequencies of the re-entering laser light, and from this, light with a frequency or wavelength different from that of the original laser light is obtained. This is the principle of wavelength conversion called sum frequency generation, but what is practically important is when two incident laser beams have the same frequency, that is, converting a single laser beam into light with twice the frequency or half the wavelength. In this case, the second high wave generation or 5HG (Second H
It is called "Armonic Generatlon".

一方、上と逆の波長変換、すなわちある周波数のレーザ
光を非線形光学結晶に与えてそれぞれの周波数の和が元
のレーザ光の周波数に等しい2個の光に変換することも
可能である。
On the other hand, it is also possible to do the opposite wavelength conversion, that is, apply a laser beam of a certain frequency to a nonlinear optical crystal and convert it into two beams whose sum of frequencies is equal to the frequency of the original laser beam.

この場合ふつうは非線形光学結晶を共振器内に組み込ん
で共振条件を調整することにより、2個の変換光の双方
または一方のみを発振させて取り出すようにする。これ
は光パラメトリツク発振ないしOP O(Optica
l Parasetric 0scillation)
と呼ばれる。
In this case, a nonlinear optical crystal is usually incorporated into the resonator and resonance conditions are adjusted so that both or only one of the two converted lights can be oscillated and extracted. This is optical parametric oscillation or OPO (Optica
l Parasétric 0scillation)
It is called.

ところで、かかるSHG、OPOいずれの方式でも、波
長変換効率を上げるためには非線形光学結晶内で被変換
光であるレーザ光と変換光を位相を揃えて進行させる必
要があり、これを位相整合と呼んでいる0例えばSHG
では被変換光である基本波と変換光である第2高調波を
位相整合条件下で同方向に進行させる。このためには、
両波の速度つまり両波に対する非線形光学結晶の屈折率
が同じでなければならないが、光の周波数が高いほど屈
折率がふつう高くなるから、一般にはこの位相整合条件
は満たされない、このため、結晶の光学的異方性を位相
整合に利用することが多い。
By the way, in both the SHG and OPO systems, in order to increase the wavelength conversion efficiency, it is necessary to advance the laser light, which is the light to be converted, and the converted light in a nonlinear optical crystal with the same phase, and this is called phase matching. Calling 0 e.g. SHG
Then, the fundamental wave, which is the light to be converted, and the second harmonic, which is the converted light, are made to travel in the same direction under phase matching conditions. For this purpose,
The velocity of both waves, that is, the refractive index of the nonlinear optical crystal for both waves, must be the same, but since the higher the frequency of light, the higher the refractive index, this phase matching condition is generally not satisfied. The optical anisotropy of is often used for phase matching.

以下、1軸性負結晶を利用する場合につい−てこの位相
整合の要$■を説明する。
Hereinafter, the essential cost of phase matching in the case of using a uniaxial negative crystal will be explained.

この種の結晶に入射された光は常光と異常光に分かれて
進行し、前者に対する屈折率は入射方向によらず一定で
あるが、後者に対しては屈折率が方向により変化する。
Light incident on this type of crystal travels as ordinary light and extraordinary light, and the refractive index for the former is constant regardless of the direction of incidence, but the refractive index for the latter changes depending on the direction.

負結晶とは異常光の屈折率が常光の屈折率より低いもの
をいい、その光学的異方性の例を第9図に示す、この図
では屈折率を原点から各曲線に引いた線分の長さで表す
、常光と異常光の屈折率が等しくなる方向が結晶の光軸
であり、通例のようにこれを2軸とする0図のように、
常光については基本波の屈折率nleおよび第2高調波
の屈折率ntoはどの方向でも一定であるが、異常光に
ついては基本波の屈折率l1lsおよび第2高調波の屈
折率ntmが光軸2からの角度θにより楕円状に変化す
る。
A negative crystal is one in which the refractive index of extraordinary light is lower than the refractive index of ordinary light, and an example of its optical anisotropy is shown in Figure 9. In this figure, the refractive index is drawn from the origin to the line segment of each curve. The optical axis of the crystal is the direction in which the refractive index of ordinary light and extraordinary light are equal, expressed by the length of
For ordinary light, the refractive index nle of the fundamental wave and the refractive index nto of the second harmonic wave are constant in all directions, but for extraordinary light, the refractive index l1ls of the fundamental wave and the refractive index ntm of the second harmonic wave are on the optical axis 2. It changes into an elliptical shape depending on the angle θ from

さて、図示のように常光の基本波の屈折率n、。Now, as shown in the figure, the refractive index of the fundamental wave of ordinary light is n.

と異常光の第2高調波の屈折率nfsとが光軸2から角
度θ1の方向で等しくなるから、被変換光を基本波とし
てこの光学結晶に対しその内部でこの角度θ□の方向に
進行するように入射すれば位相整合が満たされることに
なる。
Since and the refractive index nfs of the second harmonic of the extraordinary light are equal in the direction of angle θ1 from optical axis 2, the converted light is used as a fundamental wave and propagates inside this optical crystal in the direction of this angle θ□. If the beam is incident in such a way, phase matching will be satisfied.

このように、基本波を常光とし、第2高調波を異常光と
する場合の位相整合をタイプIという。
In this way, phase matching in which the fundamental wave is the ordinary light and the second harmonic is the extraordinary light is called Type I.

このほか、基本波を常光と異常光とし第2高調波を異常
光とする波長変換も可能であり、この場合の位相整合条
件はn tm=  (n 1゜+ n l@ )/ ”
で、図の角度θ1諺の方向でこれが満たされる。これを
タイプnの位相整合条件という。
In addition, it is also possible to perform wavelength conversion in which the fundamental wave is ordinary light and extraordinary light and the second harmonic is extraordinary light. In this case, the phase matching condition is n tm = (n 1 ° + n l @ ) / ”
This is satisfied in the direction of the angle θ1 in the figure. This is called a type n phase matching condition.

上のタイプIと■のいずれも非線形光学結晶の光軸に対
する被変換光の入射角度を調整して位相整合を取るので
角度位相整合法と呼ばれ、調整が原理上簡単な点からこ
の方式のレーザ光波長変換装置が従来から広く用いられ
る。
Both types I and ■ above are called angular phase matching methods because they achieve phase matching by adjusting the incident angle of the converted light with respect to the optical axis of the nonlinear optical crystal.This method is popular because the adjustment is easy in principle. Laser light wavelength conversion devices have been widely used.

しかし、かかる位相整合方式による場合でも、波長変換
効率を実用に耐え得る程度に上げるには被変換光の入射
強度を高める必要があり、このため従来から被変換光を
レンズ等の手段で集光しながら位相整合条件を満たす角
度方向から非線形光学結晶に入射して、それによる分極
波の高強度領域を結晶内部のレンズの焦点付近のできる
だけ狭い範囲内に形成するのが常であった。
However, even when such a phase matching method is used, it is necessary to increase the incident intensity of the light to be converted in order to increase the wavelength conversion efficiency to a level that can be used in practice. However, it has been customary to enter the nonlinear optical crystal from an angular direction that satisfies the phase matching condition, and to form a high-intensity region of the resulting polarized wave within as narrow a range as possible near the focal point of the lens inside the crystal.

〔発明が解決しようとする課題] 上のように位相整合条件を満たしつつ被変換光による分
極波の高強度領域を非線形光学結晶内に形成すれば、原
理上は高い波長変換効率が得られるはずであるが、実際
にはこのねらいどおりには必ずしも行かないことが多い
[Problem to be solved by the invention] In principle, high wavelength conversion efficiency should be obtained if a high-intensity region of polarized waves by the converted light is formed in a nonlinear optical crystal while satisfying the phase matching condition as described above. However, in reality, things often do not always go as planned.

この原因の一つは、分極波の高強度領域を形成するため
被変換光をレンズの焦点付近に集光すると角度位相整合
条件が正確に満たされなくなる点にある。すなわち、被
変換光の光束が焦点つまり1点に集まるからには光束中
に種々の角度成分の被変換光が含まれており、位相整合
条件がその内の特定の角度成分に対して満たされても他
の角度成分には成立しないからである0例えば、第9図
の角度θ5.で屈折率n1゜とnteが一層するが、こ
れから角度がごく僅か外れるだけで両者が大きく変化す
るので位相整合条件が成立しなくなり、この外れに対す
る許容角はふつう15rad程度とごく小さい、もちろ
ん、かかる狭い角度で被変換光を集光することは不可能
に近い。
One of the reasons for this is that when the converted light is focused near the focal point of the lens to form a high-intensity region of polarized waves, the angular phase matching condition is no longer accurately satisfied. In other words, since the light flux of the converted light converges at a focal point, that is, one point, the light flux contains various angular components of the converted light, and even if the phase matching condition is satisfied for a specific angular component among them, This is because it does not hold true for other angle components. For example, the angle θ5 in FIG. , the refractive index n1° and nte become even greater, but even a slight deviation in the angle will cause a large change in both, so the phase matching condition no longer holds true, and the allowable angle for this deviation is usually very small, about 15 rad. It is nearly impossible to focus the converted light at a narrow angle.

もう一つの原因は、被変換光と変換光が離れて行くいわ
ゆるウオークオフにある。1軸性の光学結晶では、光軸
とそれに直角な方向を除き常光と異常光の伝播方向が異
なるので被変換光と変換光との間にウオークオフが必ず
生じ、両者の分極波が相互作用し得る領域が制約されて
波長変換効率が低下しやすい、当然ながら、被変換光を
レンズ等で強く集光する程この逆効果が高まる。
Another cause is so-called walk-off, where the converted light and the converted light separate. In a uniaxial optical crystal, the propagation directions of ordinary and extraordinary light are different except for the optical axis and the direction perpendicular to it, so a walk-off always occurs between the converted light and the converted light, and the polarization waves of both interact. The range in which the wavelength conversion can be performed is restricted, and the wavelength conversion efficiency tends to decrease.Of course, the more strongly the light to be converted is focused by a lens or the like, the more this adverse effect increases.

本発明の目的は、かがる矛盾や難点を克服して変換効率
の高いレーザ光波長変換装置を提供することにある。
An object of the present invention is to overcome these contradictions and difficulties and provide a laser light wavelength conversion device with high conversion efficiency.

〔l[題を解決するための手段〕[l[Means for solving the problem]

この目的は本件の第1発明によれば、光学手段により被
変換光のレーザ光束を円錐状光束に変換して1軸性の非
線形光学結晶の内部に集光させ、この円錐状光束の円錐
軸の方向を非線形光学結晶の光軸方向に一層させ、かつ
非線形光学結晶内に集光する円錐状光束の頂角を被変換
光と変換光の間の位相整合条件を満たすように設定する
ことによって達成される。
According to the first invention of the present case, this purpose is to convert a laser beam of light to be converted into a conical beam by an optical means and converge it inside a uniaxial nonlinear optical crystal; by aligning the direction of the light beam with the optical axis direction of the nonlinear optical crystal, and setting the apex angle of the conical light beam condensed within the nonlinear optical crystal so as to satisfy the phase matching condition between the converted light and the converted light. achieved.

なお、上記構成中の光学手段は凸な円錐レンズあるいは
その一部で1成するのが有利で、非線形光学結晶に対す
る被変換光の位相整合条件を満たす入射角度が比較的大
な場合は、凹な円錐ミラー部分で構成するのが有利であ
る。これを凹な円筒ミラー部分とすることもできる。
Note that it is advantageous for the optical means in the above structure to consist of a convex conical lens or a part thereof; if the angle of incidence that satisfies the phase matching condition of the converted light with respect to the nonlinear optical crystal is relatively large, it is preferable to use a concave conical lens. Advantageously, it consists of a conical mirror section. This can also be a concave cylindrical mirror section.

さらに、波長変換効率を一層向上させるには、非線形光
学結晶の光学手段と反対側に被変換光に対し高反射性を
有する共振ミラーを設け、これを共振ミラー対の一方と
して被変換光用レーザ発振器の共振系内に光学手段と非
線形光学結晶を挿入するのが有利である。
Furthermore, in order to further improve the wavelength conversion efficiency, a resonant mirror with high reflectivity for the converted light is provided on the opposite side of the optical means of the nonlinear optical crystal, and this is used as one of the resonant mirror pairs to create a laser for the converted light. It is advantageous to insert optical means and a nonlinear optical crystal into the resonant system of the oscillator.

また、本件の第2発明によれば、90度の頂角をもち中
心軸が結晶光軸と一層する円錐面を備える一軸性の非線
形光学結晶に対し、結晶光軸と平行な被変換光のレーザ
光束を非線形光学結晶の円錐面の内面で全反射されるよ
うに入射して円錐面の中心軸上に集光し、被変換光を変
換光に両光間の90度位相整合条件下で波長変換するこ
とによって上述の目的が達成される。
Further, according to the second invention of the present case, for a uniaxial nonlinear optical crystal having a conical surface having an apex angle of 90 degrees and whose central axis is flush with the optical axis of the crystal, the converted light parallel to the optical axis of the crystal is The laser beam is incident on the inner surface of the conical surface of the nonlinear optical crystal so as to be totally reflected and focused on the central axis of the conical surface, and the converted light is converted into converted light under the condition of 90 degree phase matching between the two lights. The above objectives are achieved by wavelength conversion.

この第2発明では波長変換効率を一層向上するため、非
線形光学結晶をその円錐面を共振ミラー対の一方として
被変換光の発振用レーザ共振系内に挿入するのがとくに
有利である。
In this second invention, in order to further improve the wavelength conversion efficiency, it is particularly advantageous to insert the nonlinear optical crystal with its conical surface as one of a pair of resonant mirrors into a laser resonant system for oscillating the light to be converted.

また、その実施面では波長選択性ミラーを利用して変換
光を被変換光から分離し、かつそれと異なる方向に取り
出すのが便利である。
Further, in terms of implementation, it is convenient to use a wavelength selective mirror to separate the converted light from the converted light and to take it out in a different direction.

なお、第1および第2発明のいずれも、SHGすなわち
被変換光を基本波としその第2高調波の変換光に波長変
換するに適する。また、第1発明は波長変換をタイプI
および■の位相整合条件のいずれで行なう際にも適する
Note that both the first and second inventions are suitable for converting the wavelength of SHG, that is, the light to be converted, into converted light of the second harmonic of the fundamental wave. Further, the first invention performs wavelength conversion by type I
It is suitable for both of the phase matching conditions (1) and (2).

[作用] 本発明でも従来と同様に波長変換効率を上げるため被変
換光のレーザ光束を非線形光学結晶内に集光するが、本
発明では集光手段が従来と異なり集光角度をレーザ光束
内のすべての被変換光について位相整合条件を正確に満
たし得る一定角度に揃えることにより、波長変換効率を
向上して所期の課題を解決する。
[Function] In the present invention as well, the laser beam of the converted light is condensed into a nonlinear optical crystal in order to increase the wavelength conversion efficiency, as in the conventional case. By aligning all of the converted lights to a certain angle that can accurately satisfy the phase matching condition, the wavelength conversion efficiency is improved and the desired problem is solved.

すなわち第1発明では光学手段により被変換光の光束を
円錐状光束に変換することにより、第2発明では非線形
光学結晶に光軸方向の中心軸をもつ90度の頂角の円錐
面を設けて結晶光軸と平行な被変換光の光束を円錐面の
内面で全反射されるように入射することにより、いずれ
の場合も円錐の中心軸上に被変換光を集光する。つまり
、従来は被変換光をレンズ等の焦点付近に集光していた
のに対し、本発明では被変換光を円錐軸上の焦線の付近
に集光するので、この焦線に沿ってすべての被変換光の
集光角度を一定に揃え、位相整合条件を正確に満たすこ
とができる。
That is, in the first invention, the light beam to be converted is converted into a conical light beam by an optical means, and in the second invention, a conical surface having a central axis in the optical axis direction and having an apex angle of 90 degrees is provided in the nonlinear optical crystal. In either case, the converted light is focused on the central axis of the cone by making the beam of the converted light parallel to the optical axis of the crystal incident so as to be totally reflected on the inner surface of the conical surface. In other words, whereas in the past, the converted light was focused near the focal point of a lens, etc., in the present invention, the converted light is focused near the focal line on the cone axis. The condensing angles of all the converted lights can be made constant and the phase matching condition can be accurately satisfied.

また、ウオークオフについても、焦線内のある部分で発
生した変換光が被変換光から離れた後にも焦線内の他の
部分に集光されつつある被変換光と相互作用をすること
ができるので、本発明では被変換光と変換光の分極波同
士が相互作用し得る範囲が従来よりずっと広くなり、ウ
オークオフの悪影響を従来より格段に軽減して波長変換
効率を一層向上することができる。
Also, regarding walk-off, even after the converted light generated in a certain part of the focal line leaves the converted light, it interacts with the converted light that is being focused in another part of the focal line. Therefore, in the present invention, the range in which the polarized waves of the converted light and the converted light can interact with each other is much wider than before, and the adverse effects of walk-off can be reduced more than before, and the wavelength conversion efficiency can be further improved. can.

〔実施例〕〔Example〕

図を参照して本件発明のレーザ光波長変換装置の実施例
を説明する。以下の実施例では、説明の便宜上から波長
変換をSHGとするが、本件発明はもちろんOPOにも
通用できる。
An embodiment of the laser light wavelength conversion device of the present invention will be described with reference to the drawings. In the following embodiments, wavelength conversion is performed using SHG for convenience of explanation, but the present invention can of course also be applied to OPO.

第1図に第1発明の第1実施例を示す。この例では、図
示しないYAGレーザにより発生された1、06pの波
長の被変換光20をBBO等の1軸性の非線形光学結晶
50に与えて、これを基本波とするSHGにより0.5
31!mの波長の第2高調波を発生して変換光30とし
て取り出すものとする。
FIG. 1 shows a first embodiment of the first invention. In this example, the converted light 20 with a wavelength of 1.06p generated by a YAG laser (not shown) is applied to a uniaxial nonlinear optical crystal 50 such as BBO, and SHG using this as the fundamental wave
31! It is assumed that a second harmonic with a wavelength of m is generated and extracted as converted light 30.

第1実施例では光学手段に凸な円錐レンズ40を用い、
これに図のように被変換光20の望ましく番よ平行なレ
ーザ光束21を与えて円錐状光束22に変換した上で非
線形光学結晶50内に入射させる。またこの際、円錐状
光束22の円錐軸PLを1軸性非線形光学結晶50の結
晶光軸2の方向に一致させることにより、被変換光20
をこの光軸2方向に一致する焦線PLの付近に集光して
元の103倍程程度高めたその分極波の高強度領域を形
成させる。
In the first embodiment, a convex conical lens 40 is used as the optical means,
As shown in the figure, a desirably parallel laser beam 21 of the converted light 20 is applied to this, and the conical beam 22 is converted into a conical beam 22, which is then input into the nonlinear optical crystal 50. In addition, at this time, by aligning the conical axis PL of the conical light beam 22 with the direction of the crystal optical axis 2 of the uniaxial nonlinear optical crystal 50, the converted light 20
is focused in the vicinity of the focal line PL that coincides with the two directions of the optical axis to form a high-intensity region of the polarized wave, which is about 103 times higher than the original intensity.

また、この被変換光20は円錐レンズ40によりその進
行方向が揃った円錐状光束21の形で集光されるので、
焦線FL上のすべての点に対し常に一定の集光角度で入
射される。さらにこの実施例では、かかる集光角度を決
定する円錐状光束21の非線形光学結晶40内の頂角が
例えばタイプ■の位相整合条件を満たす第9図の角度θ
□になるように円錐レンズ40の頂角を設定する。なお
、この位相整合条件を満たす集光角度θ1は非線形光学
結晶40がBBOの場合は22.8”になる。
In addition, since this converted light 20 is condensed by the conical lens 40 in the form of a conical light beam 21 whose traveling directions are aligned,
The light is always incident on all points on the focal line FL at a constant condensing angle. Furthermore, in this embodiment, the apex angle in the nonlinear optical crystal 40 of the conical light beam 21 that determines the condensing angle is, for example, the angle θ in FIG.
The apex angle of the conical lens 40 is set so that it becomes □. Note that the condensing angle θ1 that satisfies this phase matching condition is 22.8” when the nonlinear optical crystal 40 is BBO.

非線形光学結晶40内の波長変換により発生した第2高
調波である変換光30は、上の集光角度θ、1と同じ発
散角度をもつ円錐状光束の形で出射されるので、例えば
図示のように円錐レンズ40と同し円錐レンズ60を逆
向きに用いて平行な出力光束31にした上で外部に取り
出される。なお、この出力光束31には変換光30のほ
かに波長変換に貢献しなかった被変換光20が含まれる
が、必要な場合これを波長選択性ミラー等の手段によっ
て出力光束31から取り除くことができる。
The converted light 30, which is the second harmonic generated by the wavelength conversion within the nonlinear optical crystal 40, is emitted in the form of a conical light beam having the same divergence angle as the condensing angle θ, 1 above. A conical lens 60, which is the same as the conical lens 40, is used in the opposite direction to form a parallel output beam 31, which is then taken out to the outside. Note that, in addition to the converted light 30, this output light beam 31 includes the converted light 20 that did not contribute to wavelength conversion, but if necessary, this can be removed from the output light beam 31 by means such as a wavelength selective mirror. can.

第2図の第2実施例では第1図の波長変換装置が被変換
光20の発振用レーザ装置の共振系の中に組み込まれる
。レーザ装置10は光源10aで光劫起されるYAG等
のレーザ媒質11により被変換光20を発生するもので
、全反射ミラー12と波長選択性ミラー13とで構成さ
れるそのレーザ共振系の中に上述の円錐レンズ40と非
線形光学結晶50からなり円錐レンズ70を備える波長
変換装置を挿入する。
In the second embodiment shown in FIG. 2, the wavelength conversion device shown in FIG. 1 is incorporated into a resonant system of a laser device for oscillating light 20 to be converted. The laser device 10 generates converted light 20 using a laser medium 11 such as YAG, which is energized by a light source 10a. A wavelength conversion device comprising the above-mentioned conical lens 40 and nonlinear optical crystal 50 and including a conical lens 70 is inserted.

波長選択性ミラー13の図の左側の面には1.06−の
波長に対し高反射性であるが0.53−の波長に対して
は無反射性のコーティング13aが1右側の面には青波
長に対して無反射性性のコーティング13bがそれぞれ
設けられる。
On the left side of the wavelength selective mirror 13 in the drawing, there is a coating 13a on the right side that is highly reflective for wavelengths of 1.06- but non-reflective for wavelengths of 0.53-. Each is provided with a coating 13b that is non-reflective for blue wavelengths.

この第2実施例では、波長変換装置内にレーザ共振系内
の高強度の被変換光20が通過するので、その非線形光
学結晶50が受ける被変換光20の強度が第1実施例よ
り少なくとも1桁高く、波長変換効率を一層向上できる
。この第2実施例はレーザ装置10の出力レベルが比較
的低い場合の波長変換効率の向上にとくに有用である。
In this second embodiment, since the high-intensity converted light 20 in the laser resonant system passes through the wavelength conversion device, the intensity of the converted light 20 received by the nonlinear optical crystal 50 is at least 1 This is an order of magnitude higher, making it possible to further improve wavelength conversion efficiency. This second embodiment is particularly useful for improving wavelength conversion efficiency when the output level of laser device 10 is relatively low.

第3U2!Jの第3実施例では光学手段に円錐レンズ部
分41を用いる。この円錐レンズ41には、例えば第1
図の円錐レンズ40より大径であるがその半分や3分の
1程度のセクタ状の部分が用いられる。
3rd U2! In the third embodiment of J, a conical lens portion 41 is used as the optical means. This conical lens 41 includes, for example, a first
Although the diameter is larger than that of the conical lens 40 shown in the figure, a sector-shaped portion having a diameter of about half or one third is used.

この第3実施例の波長変換の原理は第1実施例と同しで
あり、変換光30を平行な出力光束31にするため出力
側に円錐レンズ41と同し円錐レンズ61を逆向きに配
設するのも同しであるが、図示のように非線形光学結晶
50を円錐レンズ41や61から離しても、非線形光学
結晶50内に被変換光20を集光する焦線PLを形成で
きる利点を有゛する。井線形光学媒質50に潮解性があ
る場合、これをセル等に収納する必要があるのでその周
囲に若干のスペースを要するからである。
The principle of wavelength conversion in this third embodiment is the same as that in the first embodiment, and in order to convert the converted light 30 into a parallel output beam 31, a conical lens 61, which is the same as the conical lens 41, is arranged in the opposite direction on the output side. However, even if the nonlinear optical crystal 50 is separated from the conical lenses 41 and 61 as shown in the figure, the advantage is that the focal line PL that condenses the converted light 20 can be formed within the nonlinear optical crystal 50. have. This is because if the linear optical medium 50 has deliquescent properties, it needs to be housed in a cell or the like, which requires some space around it.

第4図の第4実施例では、例えば第1実施例で得られる
0、534の波長の第2高調波を被変換光2゜として、
0.26−の波長の第4高調波の変換光3oを発生させ
る。しかし、この際の例えばタイプIの位相整合条件を
滴たす角度θ1はBBOを非線形光学結晶に用いる場合
47.5°となる。
In the fourth embodiment of FIG. 4, for example, the second harmonic of the wavelength of 0,534 obtained in the first embodiment is assumed to be the converted light of 2°,
A converted light 3o of the fourth harmonic having a wavelength of 0.26- is generated. However, in this case, for example, the angle θ1 at which the Type I phase matching condition is applied is 47.5° when BBO is used for the nonlinear optical crystal.

このように位相整合角度θ□が大きいので、この第4実
施例では光学手段として凹な円錐ミラー部分42を用い
る。同図(a)にこれまでと同じ正面図を、同図(b)
に側面図をそれぞれ示す。この実施例では、図示のよう
に非線形光学結晶5oを円柱状に形成して、円錐ミラー
部分42による被変換光2oの円錐状光束22をその円
周面から入射し、光軸2と同方向の魚&1lptに集光
する。集光用と同形の円錐ミラー部分62により変換光
30を平行な出力光束31にするのはこれまでと同じで
ある。
Since the phase matching angle θ□ is thus large, a concave conical mirror portion 42 is used as the optical means in this fourth embodiment. Figure (a) shows the same front view as before, Figure (b)
The side views are shown respectively. In this embodiment, as shown in the figure, the nonlinear optical crystal 5o is formed into a cylindrical shape, and the conical light beam 22 of the light 2o to be converted by the conical mirror portion 42 is incident from the circumferential surface of the nonlinear optical crystal 5o in the same direction as the optical axis 2. The light is focused on the fish & 1lpt. As before, converting the converted light 30 into a parallel output light beam 31 using the conical mirror portion 62 having the same shape as that for condensing light.

この第4実施例は、上のようにタイプIの位相整合角度
θ1が大きい場合に適するほか、第9図かられかるよう
にタイプ■の位相整合角度θ、!がタイプ■の場合より
も大きくなるので、タイプ■の位相整合をとる場合にも
適する。
This fourth embodiment is suitable not only when the phase matching angle θ1 of type I is large as shown above, but also when the phase matching angle θ1 of type II is large as shown in FIG. is larger than that of type (2), so it is also suitable for phase matching of type (2).

第5図の第5実施例では、光学手段に凹な円筒ミラー部
分43を用い、その軸を非線形光学結晶5゜の光軸2と
平行に配置し、反射面に被変換光2oの光束21を図の
ように斜め方向から入射して円錐状光束22を焦線PL
に集光する。
In the fifth embodiment shown in FIG. 5, a concave cylindrical mirror portion 43 is used as the optical means, and its axis is arranged parallel to the optical axis 2 of the nonlinear optical crystal 5°. is incident from an oblique direction as shown in the figure, and the conical light beam 22 is transformed into a focal line PL.
The light is focused on.

また、これまでと同様に同し円筒ミラー部分63により
変換光30を平行な出力光束31にする。この第5実”
雄側は円筒ミラー部分43や63を最も簡単に製作でき
る利点があるが、円筒ミラー面で反射された被変換光2
0の円錐状光束22の集光性に光学的な収差が生じやす
いので、ミラーの曲率をあまり大きくしないようにする
のが望ましい。
Further, as before, the converted light 30 is made into a parallel output light beam 31 by the same cylindrical mirror portion 63. This fifth fruit”
The male side has the advantage that the cylindrical mirror parts 43 and 63 can be manufactured most easily, but the converted light 2 reflected on the cylindrical mirror surface
Since optical aberrations are likely to occur in the convergence of the zero conical light beam 22, it is preferable not to make the curvature of the mirror too large.

以上説明した第1発明では角度位相整合を利用するが、
その特殊な場合として位相整合角度θ。
Although the first invention described above uses angular phase matching,
A special case is the phase matching angle θ.

あるいはθ1を90度にすることが可能で、これを90
度位相整合と呼んでいる。
Alternatively, it is possible to set θ1 to 90 degrees;
This is called degree phase matching.

第8図にかかる90度位相整合条件を満たし得る1軸性
の非線形光学結晶の屈折率特性をタイプIの場合につい
て示す。前述のように基本波および第2高調波の異常光
に対する屈折率n+eとnteの曲線が楕円であるから
、このタイプ1の90度位相整合条件下では図のように
基本波の常光に対する屈折率n1゜の曲線と第2高調波
の異常光に対する屈折率n8.の曲線とがθ□−90”
の方向で互いに接することになる。
The refractive index characteristics of a uniaxial nonlinear optical crystal that can satisfy the 90 degree phase matching condition shown in FIG. 8 is shown for the case of type I. As mentioned above, the curves of the refractive index n+e and nte for the fundamental wave and the second harmonic extraordinary light are ellipsoids, so under this Type 1 90 degree phase matching condition, the refractive index for the fundamental wave ordinary light is as shown in the figure. n1° curve and the refractive index n8 for the second harmonic extraordinary light. The curve is θ□−90”
They will touch each other in the direction of .

従って、この位相整合角度θ1=90°の付近では角度
が若干ずれても両層折率n、。とn!、の間にほとんど
差がない、このため、第8図の90度位相整合は第9図
のふつうの角度位相整合より非線形光学結晶への被変換
光の入射角度に対する裕度が広< lOmrad程度の
外れを許容できる。また、90度位相整合点ではn、。
Therefore, in the vicinity of this phase matching angle θ1=90°, even if the angle is slightly shifted, the refractive index of both layers is n. And n! Therefore, the 90-degree phase matching shown in Figure 8 has a wider tolerance for the incident angle of the converted light to the nonlinear optical crystal than the normal angle phase matching shown in Figure 9, on the order of < lOmrad. Can tolerate deviations. Also, at the 90 degree phase matching point, n.

とn8.の屈折率曲線の交叉角が0になるからウオーク
オフも発生しない。
and n8. Since the intersection angle of the refractive index curves becomes 0, no walk-off occurs.

かか、る利点から90度位相整合は波長変換効率の向上
に有利である。これに適する非線形光学結晶に酸化マグ
ネシウムをドープしたリチウムナイオベート(LiNb
Os)があり、100°C付近の温度下で第8図の屈折
率条件を満たす。
Because of these advantages, 90 degree phase matching is advantageous in improving wavelength conversion efficiency. Lithium niobate (LiNb) doped with magnesium oxide is a suitable nonlinear optical crystal for this purpose.
Os), which satisfies the refractive index condition shown in FIG. 8 at a temperature around 100°C.

この90度位相整合条件下で波長変換するには、例えば
第4図(a)の円錐ミラー部分42の円錐面42aの頂
角を90度に設定し、非線形光学結晶50に対して円錐
状光束22を光軸2に垂直な方向から与えることでもよ
いが、第2発明は非線形光学結晶自身にこの90度位相
整合条件を満たす機能を持たせるものである。
To perform wavelength conversion under this 90 degree phase matching condition, for example, the apex angle of the conical surface 42a of the conical mirror portion 42 in FIG. 4(a) is set to 90 degrees, and the conical light beam 22 may be applied from a direction perpendicular to the optical axis 2, but in the second invention, the nonlinear optical crystal itself has the function of satisfying this 90 degree phase matching condition.

第6図に第2発明の第1実施例を示す。非線形光学結晶
51には90度位相整合に適する1軸性光学結晶として
例えばリチウムナイオベートを用い、その一方の端面を
光学研磨することにより図のように中心軸PLが結晶光
軸2の方向に一致する90度の頂角の円錐面52に形成
する。次に、この非線形光学結晶51を適宜な窓81を
備える容器80内に収納して、温度制御器90等の手段
により前述の100°C付近の温度に保つ。
FIG. 6 shows a first embodiment of the second invention. For the nonlinear optical crystal 51, for example, lithium niobate is used as a uniaxial optical crystal suitable for 90-degree phase matching, and by optically polishing one end surface, the central axis PL is aligned in the direction of the crystal optical axis 2 as shown in the figure. A conical surface 52 having a matching 90 degree apex angle is formed. Next, this nonlinear optical crystal 51 is housed in a container 80 provided with a suitable window 81, and maintained at a temperature near the aforementioned 100° C. by means such as a temperature controller 90.

この非線形光学結晶51に例えばYAGレーザで発生さ
れた1、061mの波長の被変換光20の光束21を光
軸Zに平行な方向から入射し、図の屈曲光路で示すよう
に円錐面52の内面で2回全反射させることにより、無
線FL上に集光した後に入射と逆方向に出射させる。従
って、被変換光20は非線形光学結晶51内の焦線FL
付近にそれと常に直角な方向から高強度に集光され、S
HGにより0,53μの波長の変換光30がウオークオ
フなしの条件で高い波長変換効率で発生されて、円錐面
51で全反射された後に非線形光学結晶51から出射さ
れる。
A light beam 21 of the converted light 20 with a wavelength of 1,061 m generated by a YAG laser, for example, is incident on this nonlinear optical crystal 51 from a direction parallel to the optical axis Z, and the conical surface 52 is By completely reflecting the light twice on the inner surface, the light is focused on the wireless FL and then emitted in the opposite direction to the direction of incidence. Therefore, the converted light 20 is the focal line FL within the nonlinear optical crystal 51.
High intensity light is always focused in the vicinity from a direction perpendicular to the S
Converted light 30 with a wavelength of 0.53 μ is generated by the HG with high wavelength conversion efficiency without walk-off, and is emitted from the nonlinear optical crystal 51 after being totally reflected by the conical surface 51 .

第2発明では、このように非線形光学結晶51に入射す
る被変換光20および逆出射される変換光30と波長変
換に貢献しなかった被変換光20の経路が同じなので、
図示の波長選択性ミラー70によって被変換光20と変
換光30を分離するのがよい、波長選択性ミラー70は
光束21に対し45度に置かれ、その一方の表面に1.
06*の波長に高反射性で0.53μの波長tこ無反射
性のコーティング71が1反対側の面に両波長に対し無
反射性性のコーティング72がそれぞれ設けられる。
In the second invention, the paths of the converted light 20 that enters the nonlinear optical crystal 51 and the converted light 30 that is reversely emitted are the same as the converted light 20 that does not contribute to wavelength conversion.
The wavelength-selective mirror 70 shown preferably separates the converted light 20 and the converted light 30, the wavelength-selective mirror 70 being placed at 45 degrees to the light beam 21 and having one surface on one of its surfaces.
A coating 71 that is highly reflective at a wavelength of 0.06* and non-reflective for a wavelength t of 0.53 μm is provided, and a coating 72 that is non-reflective for both wavelengths is provided on the opposite side.

これにより、被変換光20の光束21を波長選択性ミラ
ー70により反射させながら非線形光学結晶5】に出入
させ、変換光30の出力光束32を波長選択性ミラー7
0を通してこれから分離して取り出すことができる。な
お、非線形光学結晶5】の円錐面52は光束21に対し
全反射ミラーとして機能するので、YAGレーザ装置へ
の被変換光20の戻りを避ける必要がある場合には、光
束21の図の上下方向部分に対しアイソレータを挿入す
る等の適宜な手段を講することができる。
As a result, the light beam 21 of the converted light 20 is reflected by the wavelength-selective mirror 70 while passing into and out of the nonlinear optical crystal 5, and the output light beam 32 of the converted light 30 is reflected by the wavelength-selective mirror 70.
It can be separated and taken out from this through 0. Note that the conical surface 52 of the nonlinear optical crystal 5] functions as a total reflection mirror for the light beam 21, so if it is necessary to prevent the converted light 20 from returning to the YAG laser device, it is necessary to Appropriate measures such as inserting an isolator in the direction portion can be taken.

第7図の第2発明の第2実旅例では第1実施例が被変換
光20の発振用レーザ装置lIOの共振系の中に組み込
まれる。このレーザ装置10は光源10aによりYAG
のレーザ媒質11を光励起して1.06−の波長の被変
換光20を発生する。そのレーザ共振系の共振ミラー対
の一方には全発振ミラー12を通例のように用いるが、
他方の共振ミラーには非線形光学結晶51の上述のよう
に全発振性の円錐面52を利用することにより、非線形
光学結晶51をレーザ共振系内に紐み込む。
In the second practical example of the second invention shown in FIG. 7, the first embodiment is incorporated into the resonant system of the laser device lIO for oscillating the converted light 20. This laser device 10 uses a light source 10a to generate YAG
The laser medium 11 is optically excited to generate converted light 20 having a wavelength of 1.06-. A full oscillation mirror 12 is normally used as one of the pair of resonant mirrors in the laser resonant system.
By utilizing the fully oscillating conical surface 52 of the nonlinear optical crystal 51 as described above for the other resonant mirror, the nonlinear optical crystal 51 is tied into the laser resonant system.

レーザ媒質11と非線形光学結晶51の間には前述の波
N遺灰性ミラー7oが配設され、一方の面71で光束2
1を反射してレーザ共振系内に被変換光2oを往復させ
る。非線形光学結晶51内の焦線PLの付近に集光され
た被変換光2oがらsHGにより0.53tsの波長の
変換光30が発生し、円錐面52で全反射された後に波
長選択性ミラー7oを通して平行な出力光束32として
外部に取り出される。第2図の場合と同様に非線形光学
結晶51は容器8oに収納され、温度側ill器90に
よる定温下に置かれる。
The aforementioned wave N ashes mirror 7o is disposed between the laser medium 11 and the nonlinear optical crystal 51, and one surface 71 of the wave N ashes mirror 7o
1 and causes the converted light 2o to reciprocate within the laser resonant system. Converted light 30 with a wavelength of 0.53ts is generated by sHG from the converted light 2o focused near the focal line PL in the nonlinear optical crystal 51, and after being totally reflected by the conical surface 52, the wavelength selective mirror 7o It is extracted to the outside as a parallel output light beam 32 through the light beam. As in the case of FIG. 2, the nonlinear optical crystal 51 is housed in a container 8o and placed at a constant temperature using a temperature side illumination device 90.

上の構成の第2実施例では、非線形光学結晶51がレー
ザ共振系内の第1実施例より1桁以上高い強度の被変換
光20を受け、しかもSHGでは第2高調波である変換
光30が基本波である被変換光20の2乗に比例する強
度で発生ずるので、高い波長変換効率を達成することが
できる。
In the second embodiment with the above configuration, the nonlinear optical crystal 51 receives the converted light 20 in the laser resonant system, which has an intensity that is more than one order of magnitude higher than that in the first embodiment, and in addition, in the SHG, the converted light 30 is the second harmonic. is generated with an intensity proportional to the square of the converted light 20, which is the fundamental wave, so high wavelength conversion efficiency can be achieved.

〔発明の効果〕〔Effect of the invention〕

以上のとおり、第1発明では、被変換光を光学手段によ
り円錐状光束にしてl軸性の非線形光学結晶内の焦線上
に集光させ、この際に円錐状光束の円錐軸の方向を結晶
光軸の方向に一致させ、かつその非線形光学結晶内の頂
角を位相整合条件を満たすように設定することにより、
また第2発明では、1軸性の非線形光学結晶に中心軸が
結晶の光軸方向と一致する90度の頂角の円錐面を設け
、結晶光軸と平行な被変換光の光束を円錐面の内面で全
反射されるように入射して円錐面の中心軸上の焦線に集
光し、90度位相整合条件下で波長変換を行なわセるご
とによって、以下に述べる効果を奏することができる。
As described above, in the first invention, the light to be converted is made into a conical light beam by an optical means and is focused on the focal line in the l-axis nonlinear optical crystal, and at this time, the direction of the cone axis of the conical light beam is By matching the direction of the optical axis and setting the apex angle within the nonlinear optical crystal to satisfy the phase matching condition,
Further, in the second invention, a uniaxial nonlinear optical crystal is provided with a conical surface having an apex angle of 90 degrees whose central axis coincides with the optical axis direction of the crystal, and the beam of the light to be converted parallel to the optical axis of the crystal is directed to the conical surface. The light is incident on the inner surface of the cone so as to be totally reflected, is focused on a focal line on the central axis of the conical surface, and is subjected to wavelength conversion under 90 degree phase matching conditions, thereby achieving the effects described below. can.

(a)被変換光が円錐状光束の形で非線形光学結晶内の
焦線に沿って位相整合角度に合致した集光角度に一定に
揃えて集光されるので、波長変換すべきすべての被変換
光について位相整合条件が正確に満たされるようになり
、波長変換効率が従来より格段に向上する。
(a) Since the light to be converted is condensed in the form of a conical light beam along the focal line in the nonlinear optical crystal at a condensing angle that matches the phase matching angle, all the targets to be wavelength converted are The phase matching condition is now accurately satisfied for the converted light, and the wavelength conversion efficiency is significantly improved compared to the conventional method.

(b)焦線付近で発生した変換光がウオークオフにより
被変換光から離れた後も焦線に向けて集光されつつある
被変換光と相互作用するので、被変換光と変換光の分極
波同士の相互作用範囲が従来より格段に広がり、ウオー
クオフの悪影響が軽減して波長変換効率が一層向上する
(b) Even after the converted light generated near the focal line separates from the converted light due to walk-off, it interacts with the converted light that is being focused toward the focal line, resulting in polarization of the converted light and converted light. The interaction range between waves is much wider than before, reducing the adverse effects of walk-off and further improving wavelength conversion efficiency.

(C)第2発明では非線形光学結晶に円錐面を設ける簡
単な構成ですべての被変換光につき90度位相整合条件
を正確に満たされかつウオークオフもなくなるので、波
長変換効率が格段に向上する。
(C) In the second invention, with a simple configuration in which a conical surface is provided in the nonlinear optical crystal, the 90 degree phase matching condition is accurately satisfied for all the converted light and there is no walk-off, so the wavelength conversion efficiency is significantly improved. .

(dll波長変装装置被変換光発生用のレーザ装置のレ
ーザ共振系内に組み込む態様によれば、非線形光学結晶
に与える被変換光の強度を1桁以上高めて波長変換効率
を大幅に向上できる。
(According to the embodiment in which the dll wavelength disguise device is incorporated into the laser resonant system of the laser device for generating the converted light, the intensity of the converted light given to the nonlinear optical crystal can be increased by one order of magnitude or more, and the wavelength conversion efficiency can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はすべて本発明に関する。第1図〜第5図が第1発
明によるレーザ光波長変換装置に関し、第1図は光学手
段に円錐レンズを用いる第1実施例の構成図、第2図は
第1実施例の波長変換装置をレーザ装置内に組み込む第
2実施例の構成図、第3図は光学手段に円錐レンズ部分
を用いる第3実施例の構成図、第4図は光学手段に円錐
ミラー部分を用いる第4実施例の構成図で、同図(a)
がその正面図で、同図(ハ)がその側面図、第5図は光
学手段に円筒ミラー部分を用いる第5実施例の構成図で
ある。第6図および第7図が第2発明によるレーザ光波
長変換装置に関し、第6図はその第1実施例の構成図、
第7図は第1実施例の波長変換装置をレーザ装置内に組
み込む第2実施例の構成図である。第8図は第2発明に
関連して90度位相整合条件を示す非線形光学結晶の角
度対屈折率特性線図、第9図は第1発明に関連して角度
位相整合条件を示す非線形光学結晶の角度対屈折率特性
線図である。これらの図において、 lO:レーザ装置、20;被変換光、21:被変換光の
レーザ光束、22:被変換光の円錐状光束、30:変換
光、40:光学手段として円錐レンズ、41:光学手段
としての円錐レンズ部分、42:光学手段としての円錐
ミラー部分、43:光学手段としての円筒ミラー部分、
50:第1発明の非線形光学結晶、51:第2発明の非
線形光学結晶、52:非線形光学結晶の円錐面、PL:
被変換光が集光される焦線、θ□:タイプ■の位相整合
角度、θ1:タイプ■の位相整合角度、2:結晶光軸、
である。 ゛、14ノ 第 図 第 図 第 図 第 図 第 図 蛤 図 第 図 第 図
All drawings relate to the invention. 1 to 5 relate to a laser beam wavelength conversion device according to the first invention, FIG. 1 is a block diagram of a first embodiment using a conical lens as an optical means, and FIG. 2 is a wavelength conversion device of the first embodiment. Fig. 3 is a block diagram of a third embodiment that uses a conical lens section as an optical means, and Fig. 4 shows a fourth embodiment that uses a conical mirror section as an optical means. This is a configuration diagram of the same figure (a).
is its front view, FIG. 6 and 7 relate to a laser beam wavelength conversion device according to the second invention, and FIG. 6 is a configuration diagram of the first embodiment thereof,
FIG. 7 is a configuration diagram of a second embodiment in which the wavelength conversion device of the first embodiment is incorporated into a laser device. FIG. 8 is an angle versus refractive index characteristic diagram of a nonlinear optical crystal showing a 90 degree phase matching condition in relation to the second invention, and FIG. 9 is a nonlinear optical crystal showing an angular phase matching condition in relation to the first invention. FIG. 2 is an angle vs. refractive index characteristic diagram. In these figures, lO: laser device, 20: converted light, 21: laser beam of converted light, 22: conical beam of converted light, 30: converted light, 40: conical lens as optical means, 41: Conical lens part as optical means, 42: Conical mirror part as optical means, 43: Cylindrical mirror part as optical means,
50: Nonlinear optical crystal of the first invention, 51: Nonlinear optical crystal of the second invention, 52: Conical surface of nonlinear optical crystal, PL:
Focal line on which the light to be converted is focused, θ□: Phase matching angle of type ■, θ1: Phase matching angle of type ■, 2: Crystal optical axis,
It is.゛, 14th figure figure figure figure figure figure figure figure figure figure figure

Claims (1)

【特許請求の範囲】 1)被変換光のレーザ光束を円錐状光束に変換して円錐
軸上に集光する光学手段と、円錐状光束を円錐軸が結晶
光軸に一致するよう受け被変換光を異なる波長の変換光
に変換する1軸性の非線形光学結晶とを備え、非線形光
学結晶内の円錐状光束の頂角が被変換光と変換光の間の
位相整合条件を満たすように設定されたことを特徴とす
るレーザ光波長変換装置。 2)請求項1に記載の装置において、光学手段が凸な円
錐レンズであることを特徴とするレーザ光波長変換装置
。 3)請求項2に記載の装置において、光学手段が凸な円
錐レンズ部分であることを特徴とするレーザ光波長変換
装置。 4)請求項1に記載の装置において、光学手段が凹な円
錐ミラー部分であることを特徴とするレーザ光波長変換
装置。 5)請求項1に記載の装置において、光学手段が凹な円
筒ミラー部分であることを特徴とするレーザ光波長変換
装置。 6)請求項1に記載の装置において、非線形光学結晶の
光学手段と反対側に被変換光に対し高反射性の共振ミラ
ーが設けられ、これを共振ミラー対の一方とする被変換
光発振用のレーザ共振系の中に光学手段および非線形光
学結晶が挿入されることを特徴とするレーザ光波長変換
装置。 7)90度の頂角をもち中心軸が結晶光軸と一致する円
錐面を備える一軸性の非線形光学結晶に被変換光の結晶
光軸と平行なレーザ光束を円錐面の内面で全反射される
よう入射して円錐面の中心軸上に集光し、被変換光を異
なる波長の変換光に両光間の90度位相整合条件下で変
換するようにしたことを特徴とするレーザ光波長変換装
置。 8)請求項7に記載の装置において、円錐面を共振ミラ
ー対の一方とする被変換光発振用レーザ共振系内に非線
形光学結晶が挿入されることを特徴とするレーザ光波長
変換装置。 9)請求項7に記載の装置において、変換光が波長選択
性ミラーにより被変換光から分離して異なる方向に取り
出されるようにしたことを特徴とするレーザ光波長変換
装置。 10)請求項1または7に記載の装置において、変換光
が被変換光を基本波とする第2高調波であることを特徴
とするレーザ光波長変換装置。
[Scope of Claims] 1) Optical means for converting a laser beam of light to be converted into a conical beam and condensing it on a conical axis; and an optical means for receiving and converting the conical beam so that the conical axis coincides with the optical axis of the crystal. Equipped with a uniaxial nonlinear optical crystal that converts light into converted light of different wavelengths, and set so that the apex angle of the conical light beam within the nonlinear optical crystal satisfies the phase matching condition between the converted light and the converted light. A laser light wavelength conversion device characterized by: 2) A laser beam wavelength conversion device according to claim 1, wherein the optical means is a convex conical lens. 3) A laser beam wavelength conversion device according to claim 2, wherein the optical means is a convex conical lens portion. 4) A laser beam wavelength conversion device according to claim 1, wherein the optical means is a concave conical mirror portion. 5) A laser beam wavelength conversion device according to claim 1, wherein the optical means is a concave cylindrical mirror portion. 6) In the device according to claim 1, a resonant mirror having high reflectivity for the converted light is provided on the side opposite to the optical means of the nonlinear optical crystal, and this is used as one of a pair of resonant mirrors for oscillating the converted light. A laser beam wavelength conversion device characterized in that an optical means and a nonlinear optical crystal are inserted into a laser resonant system. 7) A uniaxial nonlinear optical crystal has a conical surface with an apex angle of 90 degrees and whose central axis coincides with the crystal optical axis.The laser beam parallel to the crystal optical axis of the converted light is totally reflected on the inner surface of the conical surface. The wavelength of laser light is such that the light is incident on the central axis of a conical surface, and the light to be converted is converted into converted light of a different wavelength under conditions of 90 degree phase matching between the two lights. conversion device. 8) A laser light wavelength conversion device according to claim 7, wherein a nonlinear optical crystal is inserted into a laser resonant system for oscillating light to be converted, in which a conical surface is one of a pair of resonant mirrors. 9) A laser beam wavelength conversion device according to claim 7, wherein the converted light is separated from the converted light by a wavelength selective mirror and extracted in a different direction. 10) The laser light wavelength conversion device according to claim 1 or 7, wherein the converted light is a second harmonic of the converted light as a fundamental wave.
JP25095190A 1990-09-20 1990-09-20 Laser light wavelength converter Pending JPH04130686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25095190A JPH04130686A (en) 1990-09-20 1990-09-20 Laser light wavelength converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25095190A JPH04130686A (en) 1990-09-20 1990-09-20 Laser light wavelength converter

Publications (1)

Publication Number Publication Date
JPH04130686A true JPH04130686A (en) 1992-05-01

Family

ID=17215437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25095190A Pending JPH04130686A (en) 1990-09-20 1990-09-20 Laser light wavelength converter

Country Status (1)

Country Link
JP (1) JPH04130686A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02191386A (en) * 1988-10-12 1990-07-27 Fuji Electric Co Ltd Laser light wavelength conversion device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02191386A (en) * 1988-10-12 1990-07-27 Fuji Electric Co Ltd Laser light wavelength conversion device

Similar Documents

Publication Publication Date Title
JP2746315B2 (en) Wavelength converter
JPH04226092A (en) Single frequency ring laser
JP2892938B2 (en) Wavelength converter
US5541765A (en) Wavelength conversion device
US5943350A (en) Laser light generating apparatus
US5173799A (en) Wavelength conversion device
US5410560A (en) Wavelength conversion apparatus
JPH11271823A (en) Wavelength converter
US5444571A (en) Non-linear optical devices
JPH09185094A (en) Laser having frequency multiplexer
CN113904208B (en) High-purity Laguerre Gaussian beam generation system and generation method thereof
JPH1055005A (en) Laser beam generator
JPH04130686A (en) Laser light wavelength converter
JP2743517B2 (en) Laser light wavelength converter
CN101299508A (en) Annular resonant cavity laser
JPH0318833A (en) Higher harmonic wave generating element and higher harmonic wave generator
JPH01312529A (en) Nonlinear optical element
JPH03148888A (en) Harmonic generator
JPH03234073A (en) Harmonic wave generating laser device
JPH02150084A (en) Laser device
JPH04239787A (en) Laser light wavelength conversion device
JPH0595144A (en) Semiconductor laser-excited solid state laser
JP2704337B2 (en) Optical wavelength converter
US6421488B1 (en) Photon beam generator
JPS60112024A (en) Light wavelength converter