JPH01312529A - Nonlinear optical element - Google Patents

Nonlinear optical element

Info

Publication number
JPH01312529A
JPH01312529A JP63145142A JP14514288A JPH01312529A JP H01312529 A JPH01312529 A JP H01312529A JP 63145142 A JP63145142 A JP 63145142A JP 14514288 A JP14514288 A JP 14514288A JP H01312529 A JPH01312529 A JP H01312529A
Authority
JP
Japan
Prior art keywords
nonlinear optical
lens
optical element
light
resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63145142A
Other languages
Japanese (ja)
Inventor
Kiminori Mizuuchi
公典 水内
Tetsuo Yanai
哲夫 谷内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63145142A priority Critical patent/JPH01312529A/en
Publication of JPH01312529A publication Critical patent/JPH01312529A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3542Multipass arrangements, i.e. arrangements to make light pass multiple times through the same element, e.g. using an enhancement cavity

Abstract

PURPOSE:To facilitate miniaturization and stabilization by providing a lens consisting of a nonlinear optical material in a resonator consisting of two reflecting mirrors, a condensing optical system which excites light to the resonator and a coherent light source. CONSTITUTION:The lens 5 consisting of the nonlinear optical material in the resonator consisting of the two reflecting mirrors 3, 4, the condensing optical system 2 which excites light to the resonator and the coherent light source 1 are provided. The light emitted from the light source 1 is resonated by using the two reflecting mirrors 3, 4 and the lens 5 consisting of the nonlinear optical material as the light which condenses in the case of the forward wave and as the light which diverges once and is again condensed by the lens 5 in the case of the backward wave 1. Since the second higher harmonic wave is generated only by the forward wave of the high energy density, the nonlinear optical element is stably operated and is miniaturized.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、レーザを応用した通信、光情報処理、光加工
及び光応用計測制御分野に使用する非線形光学素子に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a nonlinear optical element used in the fields of communication, optical information processing, optical processing, and optical application measurement and control using lasers.

従来の技術 従来゛の非線形光学素子としては、例えば、シーテ゛−
1tネ°−ス°、 夕°プリュー、 ジュー、 コス°
ロフスキー、 アント° アール、 エル、 バイヤー
  nlフフシュント tコント° ハーモニック シ
゛エネレーションオブ ア ダイオード°−ネ°ンブト
 シータ゛フ゛リュー ニオブ: ワイエーシ。
2. Description of the Related Art Conventional nonlinear optical elements include, for example, a sheet.
1t Ness°, Evening Prue, Ju, Koss°
Rofsky, Ant° R, L, Beyer nlfuschund tconte° harmonic energy generation of a diode ° - neonbutton theta type niobium: y.

−レー号゛ ニージンク゛ アン エクスクーナリー 
レソ゛、ナンド キャビティー”。
-Lee-gou Nijinku An Excunary
"Reso, Nando Cavity".

オーイー エルI−4スイー’  88.  Oンアン
t゛ルス、  10−17.  シ′ヤニュアリー、1
988.  へ’ −ハ゛−898−18(C,D、N
abors、W、J、Kozlovsky、and  
R,L、Byer、’Efflc1ent  5eco
nd  harmonic  generatlon 
 of  a  dlode−pomped  cm 
 Nd:YAGlaser  using  an  
externally  resonant  cav
lty″、0−E  LASE’88.Los  An
geles、10−17  Jan、1988.pap
er898−18)がある。第7図はこの従来の非線形
光学素子の基本的構成図を示すものであり、21はコヒ
ーレント光源、22は集光光学系、25は非線形光学結
晶、23.24は反射膜、26は結晶上面、27は光路
である。
OE L I-4SEE' 88. O'Antlers, 10-17. Shyannuary, 1
988. H'-H-898-18 (C, D, N
abors, W., J., Kozlovsky, and
R, L, Byer, 'Efflc1ent 5eco
nd harmonic generator
of a dlode-pumped cm
Nd:YAGlaser using an
externally resonant cav
lty'', 0-E LASE'88.Los An
geles, 10-17 Jan, 1988. pap
er898-18). FIG. 7 shows a basic configuration diagram of this conventional nonlinear optical element, in which 21 is a coherent light source, 22 is a condensing optical system, 25 is a nonlinear optical crystal, 23 and 24 are reflective films, and 26 is the top surface of the crystal. , 27 are optical paths.

以上のように構成された従来の発光素子においては、゛
コヒーレント光源21から出射された光は集光光学系2
2によって集光され反射膜23を透過して反射膜24に
達する、反射膜24によって反射された光は結晶上面2
6で全反射して反射膜23に達し、再び反射膜24に向
、かう。以上の行程を繰り返すことにより光を共振させ
る。共振器内で反射膜23から反射膜24に向かう光路
においてだけ基本波と第2高調波の位相整合がとれるよ
うに結晶方向を制御すると、この部分でのみ第2高調波
が発生し、高効率で第2高調波を発生する共振器型の非
線形光学素子となる。
In the conventional light emitting element configured as described above, the light emitted from the coherent light source 21 is collected by the condensing optical system 2.
The light reflected by the reflective film 24 is focused by the crystal upper surface 2 and transmitted through the reflective film 23 to reach the reflective film 24.
6, it is totally reflected and reaches the reflective film 23, and then goes to the reflective film 24 again. By repeating the above steps, the light is made to resonate. If the crystal direction is controlled so that the fundamental wave and the second harmonic are phase-matched only in the optical path from the reflective film 23 to the reflective film 24 within the resonator, the second harmonic is generated only in this part, resulting in high efficiency. It becomes a resonator-type nonlinear optical element that generates a second harmonic.

発明が解決しようとする課題 上記のような構成では、前進波と後進波とが非対称の光
路をとって共振するため複雑でかつ、精度の高い研磨加
工が必要である。また基本波と第2高調波の位相整合を
とるために光源の波長、結晶の温度を制御する必要があ
り安定性に欠ける。
Problems to be Solved by the Invention In the above configuration, the forward wave and the backward wave take asymmetrical optical paths and resonate, which requires complicated and highly accurate polishing. Furthermore, in order to achieve phase matching between the fundamental wave and the second harmonic, it is necessary to control the wavelength of the light source and the temperature of the crystal, resulting in a lack of stability.

さらにバルク構造のため小型化に限界がある。Furthermore, there is a limit to miniaturization due to the bulk structure.

本発明は以上の点に鑑み複雑で高い精度の研磨加工を必
要としない構造で、かつ小型Φ安定な非線形光学素子を
提供することを目的とする。
In view of the above points, it is an object of the present invention to provide a small and stable nonlinear optical element with a structure that does not require complicated and highly accurate polishing.

課題を解決するための手段 2つの反射鏡からなる共振器と前記共振器内に置かれた
非線形光学物質からなるレンズと前記共振器に光を励起
する集光光学系とコヒーレント光源を備えたことを特徴
とする非線形光学素子である。ま、た非線形光学効果を
もつ基板と前記基板」二に作製したスラブ導波路と前記
スラブ導波路上に形成したレンズと前記スラブ導波路の
両端に形成した反射膜と前記スラブ導波路に光を励起す
る集光光学系とコヒーレント光源とを備えたことを特徴
とする非線形光学素子である。
Means for Solving the Problems: A resonator made of two reflecting mirrors, a lens made of a nonlinear optical material placed in the resonator, a condensing optical system for exciting light into the resonator, and a coherent light source. This is a nonlinear optical element characterized by: In addition, a substrate having a nonlinear optical effect, a slab waveguide prepared on the substrate, a lens formed on the slab waveguide, a reflective film formed on both ends of the slab waveguide, and light passing through the slab waveguide. This is a nonlinear optical element characterized by comprising a condensing optical system for excitation and a coherent light source.

作用 本発、明は前述した構成により、コヒーレント光源から
出射した光を2つの反射鏡と非線形光学物質からなるレ
ンズを用いて、前進波は集光する光、後進波は1度発散
してレンズにより再び集光する光として共振させる。第
2高調波はエネルギー密度の高い前進波によってのみ発
生する。以上の構成をとると、2つの反射鏡と非線形光
学物質からなるレンズによって第2高調波発生用共振器
を構成でき複雑で高い精度の研磨加工を必要とせず非線
形光学素子を作製できる。
According to the above-described configuration, the present invention uses two reflecting mirrors and a lens made of a non-linear optical material to collect light emitted from a coherent light source, condensing the light for forward waves and diverging once for backward waves. The light is refocused and resonates. Second harmonics are generated only by forward waves with high energy density. With the above configuration, a second harmonic generation resonator can be configured with two reflecting mirrors and a lens made of a nonlinear optical material, and a nonlinear optical element can be manufactured without requiring complicated and highly accurate polishing.

また非線形光学物質からなる基板上に形成したスラブ導
波路上に2つの反射膜とレンズを作製することにより、
基本波と第2高調波の位相整合をとる必要がなくなり非
線形光学素子は安定に動作する。さらに導波路上に2つ
の反射膜とレンズを作製することにより非線形光学素子
の小型化を図れる。
In addition, by creating two reflective films and a lens on a slab waveguide formed on a substrate made of nonlinear optical material,
There is no need to phase match the fundamental wave and the second harmonic, and the nonlinear optical element operates stably. Furthermore, by fabricating two reflective films and a lens on the waveguide, the nonlinear optical element can be made smaller.

実施例 (実施例1) 第1図は、第1の実施例における非線形光学素子の構成
図を示すもので、2つの反射鏡からなる共振器と前記共
振器内に置かれた非線形光学物質からなるレンズと前記
共振器に光を励起する集光光学系とコヒーレント光源を
備えた非線形光学素子である。第1図において1は波長
1.064umのNd:YAGレーザ、2は集光光学系
、3,4は波長1.084umの光に対して透過率0.
3%、波長0.532umの光に対しては透過率90%
の誘電体反射鏡、5は非線形光学物質であるKTP結晶
により作製したレンズである。
Example (Example 1) Fig. 1 shows a configuration diagram of a nonlinear optical element in a first example. This is a nonlinear optical element that includes a lens, a condensing optical system that excites light into the resonator, and a coherent light source. In FIG. 1, 1 is a Nd:YAG laser with a wavelength of 1.064 um, 2 is a condensing optical system, and 3 and 4 have a transmittance of 0.00 for light with a wavelength of 1.084 um.
3%, transmittance 90% for light with a wavelength of 0.532 um.
The dielectric reflecting mirror 5 is a lens made of KTP crystal, which is a nonlinear optical material.

以上のように構成された第1の実施例の非線形光学素子
について、以下その動作を説明する。波長1 、(H4
umのNd:YAGレーザ1から出射した光は、集光光
学系2によって集光され、誘電体反射鏡3を透過して前
進波は集光する光、後進波は1度発散してレンズ5によ
り集光する光となって誘電体反射鏡4によって反射され
再び前進波となる。以上の行程を繰り返すことにより光
は共振する。光の共振条件は2つの反射鏡とレンズの位
置を調整することにより行う。波長0.532%mの第
2高調波はエネルギー密度の高い前進波によってレンズ
部分発生し誘電体反射鏡4を透過する。第2高調波の変
換効率は、入射光強度40r*Wに対して60%であっ
た。
The operation of the nonlinear optical element of the first embodiment configured as described above will be described below. Wavelength 1, (H4
The light emitted from the um Nd:YAG laser 1 is condensed by a condensing optical system 2, transmitted through a dielectric reflector 3, the forward wave is condensed, and the backward wave is diverged once and passes through the lens 5. The light becomes condensed, is reflected by the dielectric reflecting mirror 4, and becomes a forward wave again. By repeating the above steps, the light resonates. The light resonance conditions are determined by adjusting the positions of the two reflecting mirrors and the lens. The second harmonic with a wavelength of 0.532% m is generated in the lens portion by a forward wave with high energy density and is transmitted through the dielectric reflecting mirror 4. The conversion efficiency of the second harmonic was 60% with respect to the incident light intensity of 40r*W.

以上のように本実施例によれば、コヒーレント光源と集
光光学系と非線形光学物質からなるレンズと2つの反射
鏡によって、高い精度の研磨加工を必要としない構成で
共振器型の非線形光学素子が構成できた。
As described above, according to this embodiment, a resonator-type nonlinear optical element with a configuration that does not require high-precision polishing is created using a coherent light source, a focusing optical system, a lens made of a nonlinear optical material, and two reflecting mirrors. was configured.

第2図は、本発明筒2の実施例を示す非線形光学素子の
構成図である。同図において1は波長1゜084%mの
Nd : YAGレーザ、2は集光光学系、3.4は波
長!、H4umの光に対して透過率0.397f1、波
長06532uI11の光に対しては透過率80%の誘
電体反射鏡で、以上は、第1図の構成と同様のものであ
る。第1の構成と異なるのは、非線形光学効果物質より
成るレンズのかわりにレンズ6.8と非線形光学結晶 
−であるKTP結晶7を用いた点である。
FIG. 2 is a configuration diagram of a nonlinear optical element showing an embodiment of the tube 2 of the present invention. In the figure, 1 is a Nd: YAG laser with a wavelength of 1°084% m, 2 is a focusing optical system, and 3.4 is a wavelength! , H4um, and has a transmittance of 80% for light with a wavelength of 06532uI11, and is similar to the configuration shown in FIG. The difference from the first configuration is that instead of the lens made of a nonlinear optical effect material, a lens 6.8 and a nonlinear optical crystal are used.
The point is that KTP crystal 7 with - is used.

前記のよう構成された第2の実施例の非線形光学素子に
ついて以下その動作を説明する。反射鏡3.4の間にレ
ンズ6.8と非線形光学物質7を用いる°ことにより非
線形光学素子を形成した。第2高調波の変換効率は、入
射光強度40mWに対して30%であった。
The operation of the nonlinear optical element of the second embodiment configured as described above will be explained below. A nonlinear optical element was formed by using a lens 6.8 and a nonlinear optical material 7 between the reflecting mirror 3.4. The conversion efficiency of the second harmonic was 30% for an incident light intensity of 40 mW.

以上のように構成された本実施例によれば、非線形光学
物質に複雑な加工を加え、ることなしに非線形光学素子
を形成できた。
According to this example configured as described above, a nonlinear optical element could be formed without adding complicated processing to the nonlinear optical material.

第3図は、本発明筒2の実施例を示す非線形光学素子の
構成図である。同図において1は波長1゜H4umのN
d : YAGレーザ、2は集光光学系、5は非線形光
学物質であるKTP結晶からなるレンズで以上は第1図
の構成と同様のものである。第1の構成と異なるのは、
3.4の反射鏡のかわりに波長1.0B4umの光に対
して0.3%、波長0.532%mの光に対して゛は9
0%の透過率をもつ凹型の誘電体反射鏡9と凸型の誘電
体反射鏡10を用いた点である。
FIG. 3 is a configuration diagram of a nonlinear optical element showing an embodiment of the tube 2 of the present invention. In the same figure, 1 is N with a wavelength of 1°H4um.
d: YAG laser; 2 is a condensing optical system; 5 is a lens made of KTP crystal, which is a nonlinear optical material; the above structure is the same as that shown in FIG. The difference from the first configuration is that
3.4 instead of a reflecting mirror, 0.3% for light with a wavelength of 1.0B4um, and 9 for light with a wavelength of 0.532%m.
The point is that a concave dielectric reflector 9 and a convex dielectric reflector 10 having a transmittance of 0% are used.

前記のよう構成された第2の実施例の非線形光学素子に
ついて以下その動作を説明する。2つの凹型と凸型の反
射鏡を用いることにより共振器長を短くできた。
The operation of the nonlinear optical element of the second embodiment configured as described above will be explained below. By using two concave and convex reflectors, the resonator length could be shortened.

以上のように本実施例によれば、共振器長を短くするこ
とで非線形光学素子の小型化を図ることができた。
As described above, according to this embodiment, by shortening the resonator length, it was possible to downsize the nonlinear optical element.

なお、第1の実施例においてレンズはKTP結晶で作製
したがレンズは他の非線形物質で作製してもよい。
In the first embodiment, the lens was made of KTP crystal, but the lens may be made of other nonlinear materials.

(実施例2) 第41図は、第4の実施例における非線形光学素子の構
成図を示すもので、非線形光学効果をもつ基板と前記基
板上に作製したスラブ導波路と前記スラブ導波路上に形
成したレンズと前記スラブ導波路の両端に形成した反射
膜と前記スラブ導波路に光を励起する集光光学系とコヒ
ーレント光源とを備えた小型、安定な非線形光学素子で
ある。第4図において11は波長Q、84ua+の半導
体レーザ、12は集光光学系、13.14は波長0.8
4%mの光に対して透過率0.3%波長0.42%mの
光に対しては透過率 90%の誘電体反射膜、15はT
lO2膜で形成したレンズ、16は非線形光学物、質で
あるLINbOs基板、17はプロトン交換スラブ導波
路である。
(Example 2) FIG. 41 shows a configuration diagram of a nonlinear optical element in a fourth example, in which a substrate having a nonlinear optical effect, a slab waveguide fabricated on the substrate, and a slab waveguide formed on the slab waveguide. The present invention is a small and stable nonlinear optical element that includes a formed lens, a reflective film formed at both ends of the slab waveguide, a condensing optical system that excites light into the slab waveguide, and a coherent light source. In Fig. 4, 11 is a semiconductor laser with a wavelength Q of 84 ua+, 12 is a focusing optical system, and 13.14 is a wavelength of 0.8
Dielectric reflective film with a transmittance of 0.3% for light with a wavelength of 4%m and a transmittance of 90% for light with a wavelength of 0.42%m, 15 is T
A lens formed of an lO2 film, 16 a LINbOs substrate made of a nonlinear optical material, and 17 a proton exchange slab waveguide.

以上のように構成された本実施例の非線形光学素子につ
いて、以下その動作を説明する。波長0゜84%mの半
導体レーザ11から出射した光は、集光光学系12によ
って集光し、反射膜13を透過する。前進波は集光する
光、後進波は1度発散してレンズ15により集光する光
となって反射膜14によって反射され再び前進波となる
The operation of the nonlinear optical element of this embodiment configured as described above will be described below. Light emitted from the semiconductor laser 11 with a wavelength of 0°84% m is focused by a focusing optical system 12 and transmitted through a reflective film 13 . The forward wave is condensed light, and the backward wave is diverged once, becomes condensed light by the lens 15, is reflected by the reflective film 14, and becomes a forward wave again.

以上の行程を繰り返すことにより光は共振する。By repeating the above steps, the light resonates.

光の共振条件は両端面とレンズの位置により調整する。The light resonance conditions are adjusted by the positions of both end faces and the lens.

波長0,42%mの第2高調波はエネルギー密度の高い
前進波によってのみ発生し、反射膜14を透過する。第
2高調波の変換効率は、入射光強度40mWに対して5
1%であった。また温度変化10〜50℃に対・する出
力光強度の変化は、8%以下、波長0.84υmの半導
体レーザ11の波長変動±20nmに対してして出力光
強度の変化は10%以下であった。
The second harmonic with a wavelength of 0.42% m is generated only by forward waves with high energy density and is transmitted through the reflective film 14. The conversion efficiency of the second harmonic is 5 for an incident light intensity of 40 mW.
It was 1%. In addition, the change in output light intensity with respect to a temperature change of 10 to 50°C is less than 8%, and the change in output light intensity with respect to a wavelength variation of ±20 nm of the semiconductor laser 11 with a wavelength of 0.84 υm is less than 10%. there were.

以上のように本実施例によれば、コヒーレント光源と集
光光学系と非線形光学物質からなる基板と前記基板上に
作製したスラブ導波路と前記スラブ導波路上に形成した
レンズと前記スラブ導波路の両端゛に形成した反射膜に
よって、複雑で高い精度の結晶加工を必要としない構成
で共振器型の非線形光学素子が構成できた。また導波路
構造にすることにより非線形光学素子を小型化できた。
As described above, according to this embodiment, a coherent light source, a condensing optical system, a substrate made of a nonlinear optical material, a slab waveguide fabricated on the substrate, a lens formed on the slab waveguide, and the slab waveguide By using reflective films formed on both ends of the resonator-type nonlinear optical element, a resonator-type nonlinear optical element was constructed that did not require complicated and highly accurate crystal processing. Furthermore, by using a waveguide structure, the nonlinear optical element could be made smaller.

さらに導波路構造にすることにより非線形光学素子光波
の位相整合をとる必要がなくなり素子は安定に動作した
Furthermore, by using a waveguide structure, there was no need to phase match the light waves of the nonlinear optical element, and the element operated stably.

第5図は、本発明第5の実施例を示す非線形光学素子の
構成図である。同図において11は波長0.84u++
+の半導体レーザ、12は集光光学系、13.14は波
長0.84umの光に対して透過率0.3%波長0.4
2u11の光に対しては透過率90%の誘電体膜、17
はプロトン交換導波路で以上は第4図の構成と同様のも
のである。第4の構成と異なるのは、16の非線形光学
物質からなる基板のかわりに光学物質であるLINbO
s基板を用い、15のレンズのかわりに非線形光学物質
MNAからなる薄膜でレンズ18を形成した点である。
FIG. 5 is a configuration diagram of a nonlinear optical element showing a fifth embodiment of the present invention. In the same figure, 11 is a wavelength of 0.84u++
+ semiconductor laser, 12 is a focusing optical system, 13.14 is a transmittance of 0.3% for light with a wavelength of 0.84 um, and a wavelength of 0.4
A dielectric film with a transmittance of 90% for light of 2u11, 17
is a proton exchange waveguide, and the above structure is similar to that shown in FIG. The difference from the fourth configuration is that instead of the substrate made of 16 nonlinear optical materials, the optical material is LINbO.
The point is that the lens 18 is formed using a thin film made of a nonlinear optical material MNA instead of the lens 15 using the s-substrate.

前記のよう構成された第5の実施例の非線形光学素子に
ついて以下その動作を説明する。スラブ導波路を伝搬す
る前進波は非線形光学物質からなるレンズ18の部分で
第2高調波を発生する。MNAは薄膜形成技術によって
加工がおこなえるため容易に薄膜レンズが作製できた。
The operation of the nonlinear optical element of the fifth embodiment configured as described above will be explained below. The forward wave propagating through the slab waveguide generates a second harmonic at the lens 18 made of a nonlinear optical material. Since MNA can be processed using thin film forming technology, thin film lenses can be easily produced.

以上にのように本実施例によれば、薄膜形成技術により
容易に非線形光学素子を作製できた。
As described above, according to this example, a nonlinear optical element could be easily manufactured using thin film formation technology.

第6図は、本発明第6の実施例を示す非線形光学素子の
構成図である。同図において11は波長0.84umの
半導体レーザ、12は集光光学系、13.14は波長0
.84un+の光に対して透過率0.3%波長0.42
u++の光に対しては透過率90%の誘電体反射膜、1
5はTlO2膜で形成したレンズ、17はプロトン交換
スラブ導波路で以上は第4図の構成と同様のものである
。第4の構成と異なるのは、16の非線形光学物質から
なる基板の両端を凹型と凸型に研磨したことである。
FIG. 6 is a configuration diagram of a nonlinear optical element showing a sixth embodiment of the present invention. In the figure, 11 is a semiconductor laser with a wavelength of 0.84 um, 12 is a condensing optical system, and 13.14 is a wavelength of 0.
.. Transmittance 0.3% wavelength 0.42 for 84un+ light
For U++ light, a dielectric reflective film with a transmittance of 90%, 1
5 is a lens formed of a TlO2 film, and 17 is a proton exchange slab waveguide, which has the same structure as that shown in FIG. 4. The difference from the fourth configuration is that both ends of the substrate made of 16 nonlinear optical materials are polished into concave and convex shapes.

前記のよう構成された第6の実施例の非線形光学素子に
ついて以下その動作を説明する。基板の両端を凹型と凸
型に研磨すると共振器長を短くできた。
The operation of the nonlinear optical element of the sixth embodiment configured as described above will be explained below. By polishing both ends of the substrate into concave and convex shapes, the resonator length could be shortened.

以上のように本実施例によれば、非線形光学素子の小型
化を図ることができる。
As described above, according to this embodiment, it is possible to downsize the nonlinear optical element.

なお、第4の実施例において基板はLINbOsとした
が、基板は他の非線形結晶でもよい。
In the fourth embodiment, the substrate is made of LINbOs, but the substrate may be made of other nonlinear crystals.

なお、第4の実施例においてレンズは、グレーティング
レンズでもよい。
Note that in the fourth embodiment, the lens may be a grating lens.

なお、第4の実施例においてレンズは、導波路上に作製
したがレンズは導波路内部、または導波路下部に作製し
でもよい。
Note that in the fourth embodiment, the lens was fabricated on the waveguide, but the lens may be fabricated inside the waveguide or below the waveguide.

発明の詳細 な説明したように、2つの反射鏡からなる共振器と前記
共振器内に置かれた非線形光学物質からなる・レンズと
前記共振器に光を励起する集光光学系とコヒーレント光
源を備えたことにより複雑で高い精度の研磨加工を必要
としない構造の非線形光学素子が作製できるため、その
実用効果を大きい。
As described in detail, the invention includes a resonator made up of two reflecting mirrors, a lens made of a nonlinear optical material placed inside the resonator, a condensing optical system that excites light into the resonator, and a coherent light source. This makes it possible to fabricate a nonlinear optical element with a structure that does not require complicated and high-precision polishing, thereby increasing its practical effects.

また非線形光学効果をもつ基板と前記基板上に作製した
スラブ導波路と前記スラブ導波路上に形成したレンズと
前記スラブ導波路の両端に形成した反射膜と前記スラブ
導波路に光を励起するコヒーレント光源と集光光学系と
を備えたことにより、複雑で高い精度の研磨加工を必要
としない構造を有する共振器型の第2高調波発生、素子
が作製でき、しかも、素子は、小型で安定な動作を行う
ため、その実用効果は大きい。
Also, a substrate with a nonlinear optical effect, a slab waveguide fabricated on the substrate, a lens formed on the slab waveguide, a reflective film formed on both ends of the slab waveguide, and a coherent film that excites light to the slab waveguide. By being equipped with a light source and a condensing optical system, it is possible to fabricate a resonator-type second harmonic generation device with a structure that does not require complicated and high-precision polishing, and the device is small and stable. Its practical effects are great because it performs various actions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における非線形光学素子の第1の実施例
の構成図、第2図は本発明の他の実施例の同素子の構成
図、第3図は本発明の他の実施例の同素子の構成図、第
4図は本発明における非線形光学素子の第4の実施例の
構成図、第5図は本発明の他の実施例の同素子の構成図
、第6図は本発明の他の実施例の同素子の構成図、第7
図は従来の非線形光学素子の基本構成図である。 lee・コヒーレント光源、211・・集光光学系、3
・O・反射鏡、4・・φ反射鏡、5・φ・非線形光学物
質からなるレンズ、6・・・コヒーレント光源、11・
・・集光光、学系、12・・・集光光学系、13・・・
反射膜、14・・・反射[,15・・壷レンズ、16・
・・非線形光学物質からなる基板、17・・・スラブ導
波路。 代理人の氏名 弁理士 中尾敏男 ばか1名第4図 第5図 第 6 図 Jり 第7図
Fig. 1 is a block diagram of a first embodiment of a nonlinear optical element according to the present invention, Fig. 2 is a block diagram of the same element according to another embodiment of the present invention, and Fig. 3 is a block diagram of the same element according to another embodiment of the present invention. Fig. 4 is a block diagram of the fourth embodiment of the nonlinear optical element according to the present invention, Fig. 5 is a block diagram of the same element according to another embodiment of the present invention, and Fig. 6 is a block diagram of the same element according to the present invention. A configuration diagram of the same element in another embodiment, No. 7
The figure is a basic configuration diagram of a conventional nonlinear optical element. lee・Coherent light source, 211・・Condensing optical system, 3
・O・Reflector, 4・φ・Reflector, 5・φ・Lens made of nonlinear optical material, 6・・Coherent light source, 11・
...Condensing light, academic system, 12...Condensing optical system, 13...
Reflective film, 14... Reflection [, 15... Urn lens, 16...
... Substrate made of nonlinear optical material, 17... Slab waveguide. Name of agent Patent attorney Toshio Nakao One idiot Figure 4 Figure 5 Figure 6 Figure Jri Figure 7

Claims (6)

【特許請求の範囲】[Claims] (1)2つの反射鏡からなる共振器と、前記共振器内に
置かれた非線形光学物質からなるレンズと、前記共振器
に光を励起する集光光学系と、コヒーレント光源を備え
たことを特徴とする非線形光学素子。
(1) A resonator made up of two reflecting mirrors, a lens made of a nonlinear optical material placed in the resonator, a condensing optical system that excites light into the resonator, and a coherent light source. Characteristic nonlinear optical elements.
(2)2つのレンズと非線形光学結晶を備えたことを特
徴とする特許請求の範囲第1項記載の非線形光学素子。
(2) The nonlinear optical element according to claim 1, comprising two lenses and a nonlinear optical crystal.
(3)凹型の反射鏡と凸型の反射鏡を備えたことを特徴
とする特許請求の範囲第1項記載の非線形光学素子。
(3) The nonlinear optical element according to claim 1, characterized by comprising a concave reflecting mirror and a convex reflecting mirror.
(4)非線形光学効果をもつ基板と、前記基板上に作製
したスラブ導波路と前記スラブ導波路上に形成したレン
ズと、前記スラブ導波路の両端に形成した反射膜と前記
スラブ導波路に光を励起する集光光学系と、コヒーレン
ト光源とを備えたことを特徴とする非線形光学素子。
(4) A substrate with a nonlinear optical effect, a slab waveguide fabricated on the substrate, a lens formed on the slab waveguide, a reflective film formed on both ends of the slab waveguide, and an optical waveguide formed on the slab waveguide. A nonlinear optical element characterized by comprising a condensing optical system that excites the light and a coherent light source.
(5)光学物質からなる基板と、前記基板上に形成した
スラブ導波路と、前記スラブ導波路上に形成した非線形
光学物質からなるレンズを備えたことを特徴とする特許
請求の範囲第4項記載の非線形光学素子。
(5) Claim 4, characterized by comprising a substrate made of an optical material, a slab waveguide formed on the substrate, and a lens made of a nonlinear optical material formed on the slab waveguide. The described nonlinear optical element.
(6)非線形光学物質からなる基板の両端面を片側は凹
型に、片側は凸型に研磨することを特徴とする特許請求
の範囲第4項記載の非線形光学素子。
(6) The nonlinear optical element according to claim 4, wherein both end surfaces of the substrate made of a nonlinear optical material are polished so that one side is concave and the other side is convex.
JP63145142A 1988-06-13 1988-06-13 Nonlinear optical element Pending JPH01312529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63145142A JPH01312529A (en) 1988-06-13 1988-06-13 Nonlinear optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63145142A JPH01312529A (en) 1988-06-13 1988-06-13 Nonlinear optical element

Publications (1)

Publication Number Publication Date
JPH01312529A true JPH01312529A (en) 1989-12-18

Family

ID=15378389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63145142A Pending JPH01312529A (en) 1988-06-13 1988-06-13 Nonlinear optical element

Country Status (1)

Country Link
JP (1) JPH01312529A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03276135A (en) * 1990-03-27 1991-12-06 Nippon Oil & Fats Co Ltd Optical converting element and laser beam harmonic producer
EP0689087A1 (en) * 1994-06-20 1995-12-27 International Business Machines Corporation Device and method for wavelength conversion
JPH086082A (en) * 1994-06-20 1996-01-12 Internatl Business Mach Corp <Ibm> Wavelength converter, wavelength converting method and bbo crystal for wavelength conversion
JP2006146175A (en) * 2004-11-19 2006-06-08 Kenho Rin Multilayer single lens with zoom function and focus function
JP2007322695A (en) * 2006-05-31 2007-12-13 Mitsubishi Electric Corp Wavelength conversion element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03276135A (en) * 1990-03-27 1991-12-06 Nippon Oil & Fats Co Ltd Optical converting element and laser beam harmonic producer
EP0689087A1 (en) * 1994-06-20 1995-12-27 International Business Machines Corporation Device and method for wavelength conversion
JPH086082A (en) * 1994-06-20 1996-01-12 Internatl Business Mach Corp <Ibm> Wavelength converter, wavelength converting method and bbo crystal for wavelength conversion
JPH086081A (en) * 1994-06-20 1996-01-12 Internatl Business Mach Corp <Ibm> Device and method for converting wavelength
US5592326A (en) * 1994-06-20 1997-01-07 International Business Machines Corporation Device and method for wavelength conversion
JP2006146175A (en) * 2004-11-19 2006-06-08 Kenho Rin Multilayer single lens with zoom function and focus function
JP2007322695A (en) * 2006-05-31 2007-12-13 Mitsubishi Electric Corp Wavelength conversion element

Similar Documents

Publication Publication Date Title
JP2000261081A (en) Laser
JP2685969B2 (en) Second harmonic generator
JP3129028B2 (en) Short wavelength laser light source
JP2824884B2 (en) Polarization control element and solid-state laser device
JP3156444B2 (en) Short wavelength laser light source and method of manufacturing the same
JP3683360B2 (en) Polarization control element and solid-state laser
JPH01312529A (en) Nonlinear optical element
JP2003503739A (en) Method and apparatus for frequency conversion of fixed frequency laser radiation
JP2000216465A (en) Laser resonator
JPS60112023A (en) Light wavelength conversion element
JP2005055528A (en) Method and device for oscillating blue laser beam
JPH1055005A (en) Laser beam generator
KR100366699B1 (en) Apparatus for generating second harmonic having internal resonance type
JPH02214180A (en) Coherent light source
JPH06265955A (en) Wavelength converting element
JPH07202309A (en) Short wavelength laser light source
JP3031740B2 (en) Harmonic generator
JPS6118933A (en) Device for changing wavelength of light
JP2663197B2 (en) Laser diode pumped solid state laser
JPH0697545A (en) Solid laser equipment
JP2738155B2 (en) Waveguide type wavelength conversion element
JPH0715061A (en) Wavelength converter for laser
JPH09127565A (en) Light source device
JPH06350173A (en) Polarized beam and longitudinal mode control element and solid-state laser device
JPS60112024A (en) Light wavelength converter