JPH0412A - Bearing system - Google Patents

Bearing system

Info

Publication number
JPH0412A
JPH0412A JP9561490A JP9561490A JPH0412A JP H0412 A JPH0412 A JP H0412A JP 9561490 A JP9561490 A JP 9561490A JP 9561490 A JP9561490 A JP 9561490A JP H0412 A JPH0412 A JP H0412A
Authority
JP
Japan
Prior art keywords
shaft member
bearing
magnet
magnetic
bearing members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9561490A
Other languages
Japanese (ja)
Inventor
Saburo Kikuchi
三郎 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Gunma Ltd
Original Assignee
NEC Gunma Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Gunma Ltd filed Critical NEC Gunma Ltd
Priority to JP9561490A priority Critical patent/JPH0412A/en
Publication of JPH0412A publication Critical patent/JPH0412A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stabilize rotational movement in a bearing system of a spidle motor adopted for a disc device or the like by providing a magnet which generate magnetic force on a part of a bearing surface of bearing members for journalling a magnetic shaft member. CONSTITUTION:A magnetic circuit C is formed by providing a magnet 3 between sintered alloy bearing members 2a and 2b which support a shaft member 1 made of magnetic material. Attraction force is generated on the shaft member 1 in a G direction to always cause linear contact. Mechanical oscillations and unbalanceness are eliminated, so that inexpensive and stable rotation is obtained.

Description

【発明の詳細な説明】 技術分野 本発明は軸受機構に関し、特に焼結軸受を用いた場合の
ダイレクト駆動用のフロッピディスク装置、ハードディ
スク装置、光デイスク装置等に広く用いられるスピンド
ルモータの軸受機構に関する。
Detailed Description of the Invention Technical Field The present invention relates to a bearing mechanism, and more particularly to a bearing mechanism for a spindle motor that uses a sintered bearing and is widely used in direct drive floppy disk devices, hard disk devices, optical disk devices, etc. .

従来技術 従来、この種の軸受機構においては、第4図に示されて
いるように軸部材1は2個もしくは1個の円環状の焼結
含油軸受により支持されている。
Prior Art Conventionally, in this type of bearing mechanism, the shaft member 1 is supported by two or one annular sintered oil-impregnated bearing, as shown in FIG.

そして、軸部材1は軸受部材2a、2bに挿入後、回動
自在とされる。
The shaft member 1 is rotatable after being inserted into the bearing members 2a and 2b.

また、軸受部材2a、2bは非磁性材からなるハウジン
グ5に圧入されて固定され、ステータ7及び駆動マグネ
ット8の反発力による回転動力はロータヨーク9を介し
て治具部材1に伝達されていた。
Further, the bearing members 2a and 2b were press-fitted and fixed in a housing 5 made of a non-magnetic material, and the rotational power due to the repulsive force of the stator 7 and the drive magnet 8 was transmitted to the jig member 1 via the rotor yoke 9.

なお、6はハウジング5を固定するための取付板、10
はロータヨーク9を軸1に固定するためのネジである。
Note that 6 is a mounting plate for fixing the housing 5, and 10 is a mounting plate for fixing the housing 5.
is a screw for fixing the rotor yoke 9 to the shaft 1.

上述した従来の軸受機構は、ステータ7の起磁力の変化
と永久磁石8との吸引・反発によりモタ、としての回転
力を得゛てロータヨーク9及びネジ10を介して軸部材
1に回転動力を伝達していた。
The conventional bearing mechanism described above obtains rotational force as a motor by changes in the magnetomotive force of the stator 7 and attraction/repulsion with the permanent magnet 8, and applies rotational force to the shaft member 1 via the rotor yoke 9 and screws 10. was communicating.

ところが、ステータ7と永久磁石8との吸引・反発の際
に生ずる回転力以外の軸方向の力Fにより、いわゆるス
リコギ運動か発生し、ロータヨーク9及びネジ10を介
して軸部材1に伝達され、軸部材1は軸受部材2a、2
bとのクリアランス4の範囲で矢印りの方向に移動して
しまうため、軸振精度の向上か得られないという欠点が
あった。
However, due to the axial force F other than the rotational force generated when the stator 7 and the permanent magnets 8 attract and repel, a so-called slicing motion occurs, which is transmitted to the shaft member 1 via the rotor yoke 9 and the screw 10. The shaft member 1 has bearing members 2a, 2
Since it moves in the direction of the arrow within the range of clearance 4 with respect to b, there was a drawback that the axial vibration accuracy could not be improved.

また、軸振精度の向上のため、軸部材]と軸受部材2a
、2bとのクリアランス4を小さくするという方法もあ
る。これにより、ある程度の精度の向上を得ることが可
能となる。ところか、クリアランス4を小さくすること
により、フリクションロスは増加し、モータとしての入
出力の効率は悪化するという欠点がある。さらに、軸部
材1及び軸受部材2’a、2bの部品としての精度の向
上はもとより、寸法管理及び油膜の形成、温度変化によ
る膨脂、収縮等を考えた場合、クリアランス4を小さく
するにも限度があり、軸振れを有効に抑えることかでき
ないという欠点があった。
In addition, in order to improve the axial vibration accuracy, the shaft member] and the bearing member 2a are
, 2b may be reduced. This makes it possible to improve accuracy to some extent. However, by reducing the clearance 4, there is a drawback that friction loss increases and the input/output efficiency of the motor deteriorates. Furthermore, in addition to improving the precision of the shaft member 1 and bearing members 2'a and 2b as parts, it is also possible to reduce the clearance 4 when considering dimensional control, oil film formation, fat expansion and contraction due to temperature changes, etc. There are limitations, and the disadvantage is that shaft runout cannot be effectively suppressed.

発明の目的 本発明は上述した従来の欠点を解決するためになされた
ものであり、その目的は安定した回転運動が得られる軸
受機構を提供することである。
OBJECTS OF THE INVENTION The present invention has been made to solve the above-mentioned conventional drawbacks, and its purpose is to provide a bearing mechanism that provides stable rotational motion.

発明の構成 本発明による軸受機構は、磁性体で形成された軸部材と
、前記軸部材を回動自在に軸支する軸受部材と、前記軸
受部材の軸受面の一部に磁力を与える磁石とを有するこ
とを特徴とする。
Structure of the Invention A bearing mechanism according to the present invention includes a shaft member formed of a magnetic material, a bearing member that rotatably supports the shaft member, and a magnet that applies magnetic force to a part of the bearing surface of the bearing member. It is characterized by having the following.

実施例 次に、本発明について図面を参照して説明する。Example Next, the present invention will be explained with reference to the drawings.

第1図は本発明による軸受機構の一実施例の縦断面図で
あり、第4図と同等部分は同一符号により示されている
。図において、軸部材1は磁性材からなり、ロータヨー
ク9とともに回動自在となっている。
FIG. 1 is a longitudinal sectional view of an embodiment of a bearing mechanism according to the present invention, and parts equivalent to those in FIG. 4 are designated by the same reference numerals. In the figure, a shaft member 1 is made of a magnetic material and is rotatable together with a rotor yoke 9.

軸受部材2a、2bにはほぼ同形状の円環のものを用い
る。これら軸受部材2a、2bは、従来と同様に焼結合
金により形成し、含油軸受とする。
The bearing members 2a and 2b are circular rings having substantially the same shape. These bearing members 2a and 2b are made of a sintered alloy and are oil-impregnated bearings as in the conventional case.

また、これら軸受部材2aと2bとの間に円環形状のマ
グネット3を設ける。このマグネット3は第2図(a)
に示されているような形状とし、さらにその一部に着磁
処理を行う。着磁処理を行う範囲は本例では図中の斜線
部Hのように円環の180度の範囲とする。すなわち、
上面から見ると半分だけに着磁処理を行うのである。よ
って、同図(a)のA−A部の断面図である同図(b)
を参照すれば、マグネット3は上面、下面にN極、S極
が夫々現れるように分極することとなる。
Further, an annular magnet 3 is provided between these bearing members 2a and 2b. This magnet 3 is shown in Figure 2 (a).
The shape is as shown in , and a part of it is subjected to magnetization treatment. In this example, the range in which the magnetization process is performed is a range of 180 degrees around the ring, as shown by the shaded area H in the figure. That is,
When viewed from the top, only half is magnetized. Therefore, the same figure (b) which is a sectional view of the A-A section of the same figure (a)
Referring to , the magnet 3 is polarized so that an N pole and an S pole appear on the top and bottom surfaces, respectively.

したがって、これを軸受部材2aと2bとの間に設けれ
ば、第1図中に破線で示されているように磁気回路Cが
形成される。これにより、軸部材1には矢印G方向の吸
引力が働き、マグネット3の着磁部分側に引き寄せられ
る。よって、軸部材1は軸受部材2a、2bの内面、す
なわち軸受面の片側に線接触しつつ回転することとなる
Therefore, if this is provided between the bearing members 2a and 2b, a magnetic circuit C is formed as shown by the broken line in FIG. As a result, an attractive force acts on the shaft member 1 in the direction of arrow G, and the shaft member 1 is drawn toward the magnetized portion of the magnet 3. Therefore, the shaft member 1 rotates while being in line contact with the inner surfaces of the bearing members 2a and 2b, that is, one side of the bearing surface.

このように、軸受部材2a、2bと接触しつつ軸部材1
が回転することにより焼結合金の油膜形成の理論本来の
状態となり、かつモータの駆動系からの磁気的アンバラ
ンス及び機械的振れを解決し、高精度な回転特性が得ら
れるのである。
In this way, the shaft member 1 is in contact with the bearing members 2a and 2b.
By rotating the sintered alloy, the oil film formation on the sintered alloy is in the original state according to the theory, and the magnetic imbalance and mechanical runout from the motor drive system are resolved, resulting in highly accurate rotation characteristics.

なお、マグネット3の着磁部分については、軸部材1を
片方に引き寄せるため、最大180度の範囲とする。よ
って、それより狭い範囲、例えば90度の範囲等でも良
い。
Note that the magnetized portion of the magnet 3 has a maximum range of 180 degrees in order to draw the shaft member 1 to one side. Therefore, a narrower range, such as a 90 degree range, may be used.

また、第3図(a)に示されている半円環形状のマグネ
ット3aを用いても良い。この場合にも、同図(a)の
B−B部の断面図である同図(b)に示されているよう
に上面、下面にN極、S極が夫々現れるように分極して
るものを用いれば、第2図のマグネットを用いる場合と
同様の効果が得られることは明らかである。さらに、1
/4の円環形状のマグネットを用いても良い。
Alternatively, a semicircular magnet 3a shown in FIG. 3(a) may be used. In this case as well, as shown in Figure (b), which is a cross-sectional view of section B-B in Figure (a), the polarization is such that N and S poles appear on the top and bottom surfaces, respectively. It is clear that the same effect as in the case of using the magnet shown in FIG. 2 can be obtained by using the magnet shown in FIG. Furthermore, 1
A /4 annular magnet may also be used.

また、軸部材1は磁性体とする必要があるため、ステン
レス合金を用いるか、または焼結処理の際に磁性体粒子
を混入すれば良い。その他、軸受部材、軸部材には機械
的強度を考慮し、色々な材質を用いることか可能である
Further, since the shaft member 1 needs to be made of a magnetic material, it is sufficient to use a stainless steel alloy or to mix magnetic particles during the sintering process. In addition, it is possible to use various materials for the bearing member and shaft member in consideration of mechanical strength.

発明の詳細 な説明したように本発明は、磁性材料で構成された軸部
材及び2個の軸受部材を用い、さらに2個の軸受部材の
間にマクネットを挿入し、軸部材を軸受部材の一部と常
時線接触させることにより、焼結メタル本来の油膜形成
をなし、かつ軸部材は軸受部材の内面の片側に寄せられ
、モータの駆動部からの磁気的吸引、反発力のロータヨ
ークのスリコギ運動か抑えられ、ロータヨークの機械的
振れ、アンバランス等も解決でき、軸振精度は向上し、
軸部材と軸受部材とのクリアランス管理の必要もなく、
安価で、品質の面でも安定した軸受機構を供給できると
いう効果がある。
DETAILED DESCRIPTION OF THE INVENTION As described above, the present invention uses a shaft member and two bearing members made of a magnetic material, further inserts a macnet between the two bearing members, and connects the shaft member to the bearing member. By being in constant line contact with a part of the bearing, an oil film is formed that is inherent to sintered metal, and the shaft member is moved to one side of the inner surface of the bearing member, and the magnetic attraction from the motor drive unit and the repulsive force of the rotor yoke are prevented. The movement is suppressed, the mechanical vibration and unbalance of the rotor yoke can be resolved, and the axial vibration accuracy is improved.
There is no need to manage the clearance between the shaft member and bearing member.
This has the advantage of being able to supply a bearing mechanism that is inexpensive and stable in terms of quality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例による軸受機構の縦断面図、第
2図及び第3図はマグネットの着磁態様を夫々示す外形
図、第4図は従来の軸受機構の縦断面図である。 主要部分の符号の説明 1・・・・・・軸部材 2a、2b・・・・・・軸受部材 3.3a・・・・・・マグネット
FIG. 1 is a longitudinal sectional view of a bearing mechanism according to an embodiment of the present invention, FIGS. 2 and 3 are external views showing the magnetization mode of the magnet, and FIG. 4 is a longitudinal sectional view of a conventional bearing mechanism. . Explanation of symbols of main parts 1...Shaft members 2a, 2b...Bearing members 3.3a...Magnet

Claims (1)

【特許請求の範囲】[Claims] (1)磁性体で形成された軸部材と、前記軸部材を回動
自在に軸支する軸受部材と、前記軸受部材の軸受面の一
部に磁力を与える磁石とを有することを特徴とする軸受
機構。
(1) A shaft member made of a magnetic material, a bearing member that rotatably supports the shaft member, and a magnet that applies magnetic force to a part of the bearing surface of the bearing member. Bearing mechanism.
JP9561490A 1990-04-11 1990-04-11 Bearing system Pending JPH0412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9561490A JPH0412A (en) 1990-04-11 1990-04-11 Bearing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9561490A JPH0412A (en) 1990-04-11 1990-04-11 Bearing system

Publications (1)

Publication Number Publication Date
JPH0412A true JPH0412A (en) 1992-01-06

Family

ID=14142430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9561490A Pending JPH0412A (en) 1990-04-11 1990-04-11 Bearing system

Country Status (1)

Country Link
JP (1) JPH0412A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5463511A (en) * 1992-09-17 1995-10-31 Hitachi, Ltd. Spindle unit having pre-load mechanism
US7552453B2 (en) 2005-06-20 2009-06-23 Nidec Corporation Disk driving apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63163022A (en) * 1986-12-25 1988-07-06 Mitsubishi Heavy Ind Ltd Bearing for high speed rotating machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63163022A (en) * 1986-12-25 1988-07-06 Mitsubishi Heavy Ind Ltd Bearing for high speed rotating machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5463511A (en) * 1992-09-17 1995-10-31 Hitachi, Ltd. Spindle unit having pre-load mechanism
US7552453B2 (en) 2005-06-20 2009-06-23 Nidec Corporation Disk driving apparatus

Similar Documents

Publication Publication Date Title
JPH0686503A (en) Motor, polygon mirror motor and disk driving motor
JP2003079095A (en) Axial vibration preventing mechanism and brushless motor provided therewith
JPH09149586A (en) Spindle motor
JPH0412A (en) Bearing system
JPH06311698A (en) Magnetically levitated gas dynamic-pressure bearing for axial gap-type motor
JP3138696B2 (en) Bearing structure
JP2637096B2 (en) Air magnetic bearing type optical deflector
JP2520416Y2 (en) Spindle motor
JP2638941B2 (en) motor
JPS61294218A (en) Fluid bearing device
JP2000308291A (en) Electric motor
JPH0416627Y2 (en)
JPS63157663A (en) Hysteresis brake
JP3176070B2 (en) Dynamic pressure air bearing type rotating device
KR100267696B1 (en) A motor for disk driving
JP3218795B2 (en) Motor bearing device
JPH05252713A (en) Brushless motor
JPH0893764A (en) Bearing device
JPS58134219A (en) Fluid bearing device
JPS58180828A (en) Hydraulic bearing cylinder device
JPH09311287A (en) Polygon scanner
JPH0757079B2 (en) Spindle motor
JPS58134220A (en) Fluid bearing device
JPH05316680A (en) Bearing device for motor
JPH0327747A (en) Rotational driving gear for polygon mirror