JPH04129233A - Semiconductor h bridge circuit - Google Patents

Semiconductor h bridge circuit

Info

Publication number
JPH04129233A
JPH04129233A JP2251253A JP25125390A JPH04129233A JP H04129233 A JPH04129233 A JP H04129233A JP 2251253 A JP2251253 A JP 2251253A JP 25125390 A JP25125390 A JP 25125390A JP H04129233 A JPH04129233 A JP H04129233A
Authority
JP
Japan
Prior art keywords
transistors
series
semiconductor
bridge circuit
lead frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2251253A
Other languages
Japanese (ja)
Inventor
Satoshi Sueyoshi
末吉 聡
Hiroshi Kanbayashi
神林 弘
Takayuki Mihara
三原 孝行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2251253A priority Critical patent/JPH04129233A/en
Publication of JPH04129233A publication Critical patent/JPH04129233A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance

Abstract

PURPOSE:To connect each terminal at the common potential level of two transistors, and to simplify a lead frame by connecting two transistors having different conductivity types formed by discrete semiconductor chips series through the common lead frame. CONSTITUTION:Two transistors Q1, Q2 and Q3, Q4 having different conductivity types formed discrete semiconductor chips are connected in series respectively while being connected in parallel between one power supply V1 and the other power supply V2 respectively. Inductance load L is bonded between each mutual midpoint in the series connection of the two transistors Q1, Q2 and Q3, Q4, and the inductance load L is supplied with currents based on each state of the drive of the two transistors Q1, Q2 and Q3, Q4. Sections between each series connection end T1, T2 and T2, T3 of the two transistors Q1, Q2 and Q3, Q4 are connected in series through common lead frames 10, 20 respectively. Accordingly, each terminal at the common potential level of the two transistors can be connected, thus simplifying the lead frame.

Description

【発明の詳細な説明】 〔概要〕 電動機等のインダクタンス負荷を駆動制御する8197
9回路に関し、特にリードフレーム上にマウント形成さ
れる半導体87979回路に関し、前記課題を解消する
ためになされたもので、プリントと配線板装着時におけ
る実装面積を縮小化できると共に装着作業の簡略化がで
きるは81979回路を提案することを目的とし、 個別の半導体チップで形成される導電形の異なる二つの
トランジスタを各々直列に接続すると共に、当該直列接
続した二つのトランジスタを一の電源と他の電源との間
に並列接続し、前記二つのトランジスタの直列接続にお
ける各接続中点相互間にインダクタンス負荷を接続し、
前記二つのトランジスタの各駆動状態に基づきインダク
タンス負荷に電流を供給する81979回路において、
前記二つのトランジスタの各直列接続端間を共通のリー
ドフレームを介して各々直列接続するものである。
[Detailed Description of the Invention] [Summary] 8197 that drives and controls inductance loads such as electric motors
This was done in order to solve the above-mentioned problems regarding the 87979 circuit, especially the semiconductor 87979 circuit mounted on a lead frame, and it is possible to reduce the mounting area during printing and mounting on a wiring board, and to simplify the mounting work. The purpose is to propose an 81979 circuit in which two transistors of different conductivity types formed on individual semiconductor chips are connected in series, and the two series-connected transistors are connected to one power source and another power source. and an inductance load is connected between the middle points of each connection in the series connection of the two transistors,
In an 81979 circuit that supplies current to an inductance load based on each driving state of the two transistors,
The series connection ends of the two transistors are connected in series via a common lead frame.

〔産業上の利用分野〕[Industrial application field]

本発明は、電動機等のインダクタンス負荷を駆動制御す
る81979回路に関し、特にリードフレーム上にマウ
ント形成される半導体87979回路に関する。
The present invention relates to an 81979 circuit for driving and controlling an inductance load such as an electric motor, and more particularly to a semiconductor 87979 circuit mounted on a lead frame.

近年、81979回路は、モータドライブ等のインダク
タンス(L)負荷ドライブに使用され、ドライブ制御の
高精度化から特に重要なものとなってきている。
In recent years, the 81979 circuit has been used for inductance (L) load drives such as motor drives, and has become particularly important as drive control becomes more precise.

この81979回路は、NチャネルMO8FET又はN
PNトランジスタを4個組合せて構成し、またPチャネ
ルMO8FET、PNPトランジスタを2個とNチャネ
ルMO8FET。
This 81979 circuit is an N-channel MO8FET or an N-channel MO8FET.
It consists of a combination of four PN transistors, a P-channel MO8FET, two PNP transistors, and an N-channel MO8FET.

NPN)ランジスタを2個と各々組合せて構成されるこ
とから、各素子相互間の接続配線が複雑化し、パッケー
ジが大型化することとなる。従って接続配線を簡略化す
ると共に、高密度実装が可能な半導体87979回路が
要求される。
Since the device is constructed by combining two (NPN) transistors, the interconnections between the elements become complicated and the package becomes large. Therefore, there is a need for a semiconductor 87979 circuit that simplifies the connection wiring and allows for high-density packaging.

〔従来の技術〕[Conventional technology]

従来、この種の81979回路として第8図及び第9図
に示すものがあった。前記各図において従来の8197
9回路は、各々の素子として個別形成されたPチャネル
FET  Q  (又はQ3、)とNチャネルFET 
 Q  (又はQ4、)とを配線板30上に直列にボン
ディング接続すると共に、この直接接続の接続中点相互
間にインダクタンス負荷りを接続する構成である。
Conventionally, there have been 81979 circuits of this type as shown in FIGS. 8 and 9. In each of the above figures, the conventional 8197
9 circuits include a P-channel FET Q (or Q3,) and an N-channel FET formed individually as each element.
Q (or Q4,) are bonded in series on the wiring board 30, and an inductance load is connected between the connection midpoints of this direct connection.

前記PチャネルFETQQ  及びNチャ11ゝ 31 ネルFET  Q  、Q  のゲートに入力される制
214制 御信号に基づいてインダクタンス負荷りの励磁方向を切
替え、また0N−OFF制御を行なう。
Based on the control signal 214 input to the gates of the P-channel FET QQ and the N-channel FET Q, Q, the excitation direction of the inductance load is switched and ON-OFF control is performed.

なお、前記PチャネルFET  Q  SQ  とNチ
ャネルFET  Q  、Q  との組合せ以外にPN
P )ランジスタとNPN )ランジスタとの組合せ等
により81979回路を構成していた。
In addition to the combination of the P-channel FET Q SQ and the N-channel FETs Q and Q, PN
The 81979 circuit was composed of a combination of P) transistors and NPN) transistors.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の81979回路は以上にように構成されていたこ
とから、独立に形成された単体としてのFETやトラン
ジスタにおける端子相互間の接続関係及びリードフレー
ムが複雑なものとなり、またパッケージも大きなものと
なる課題を有していた。
Since the conventional 81979 circuit was configured as described above, the connection relationship between the terminals of the independently formed single FET and transistor and the lead frame were complicated, and the package was also large. I had an issue.

本発明は前記課題を解消するためになされたもので、プ
リントと配線板装着時における実装面積を縮小化できる
と共に装着作業の簡略化ができるはHブリッジ回路を提
案することを目的とする。
The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to propose an H-bridge circuit that can reduce the mounting area during printing and mounting on a wiring board, and simplify the mounting work.

〔課題を解決するための手段〕[Means to solve the problem]

第1図は本発明の原理説明図を示す。 FIG. 1 shows a diagram explaining the principle of the present invention.

同図において本発明に係る半導体Hブリッジ回路回路は
、個別の半導体チップで形成される導電形の異なる二つ
のトランジスタ(Q、、Q )、(Q3、Q4)を各々
直列に接続すると共に、当該直列接続した二つのトラン
ジスタ(Q  、Q  )、、  (Q  SQ  )
を一の電源(V  )と他の電源(V2)との間に並列
接続し、■ 前記二つのトランジスタ(Q3、Q4)、(Q3、Q4
)の直列接続における各接続中点相互間にインダクタン
ス負荷(L)を接続し、前記二つのトランジスタ(Q 
 SQ)、(Q3、Q4)の各駆動状態に基づきインダ
クタンス負荷(L)に電流を供給するHブリッジ回路に
おいて、前記二つのトランジスタ(Q3、Q4)、(Q
3、Q4)の各直列接続端(T、T)、(T、T)間を
共通のリードフレーム(10,20)を介して各々直列
接続するものである。
In the figure, the semiconductor H-bridge circuit according to the present invention connects in series two transistors (Q, , Q), (Q3, Q4) of different conductivity types formed by individual semiconductor chips, and Two transistors connected in series (Q, Q), (Q SQ)
are connected in parallel between one power supply (V) and the other power supply (V2), and the two transistors (Q3, Q4), (Q3, Q4
), an inductance load (L) is connected between the connection midpoints of the series connection of the two transistors (Q
In the H-bridge circuit that supplies current to the inductance load (L) based on each drive state of the transistors (Q3, Q4) and (Q3, Q4), the two transistors (Q3, Q4) and (Q
3, Q4), the series connection ends (T, T), (T, T) are connected in series via a common lead frame (10, 20).

〔作用〕[Effect]

本発明においては個別の半導体チップで形成される導電
形の異なる二つのトランジスタの直列接続を共通のリー
ドフレームを介して接続することにより、二つのトラン
ジスタの共通する電位レベルにおける各端子を接続する
ことができることとなり、リードフレームを簡略化でき
る。また、共通のリードフレームで直接に二つのトラン
ジスタを直列接続することから、配線板への実装作業を
簡略化できる。
In the present invention, two transistors of different conductivity types formed on separate semiconductor chips are connected in series through a common lead frame, thereby connecting respective terminals of the two transistors at a common potential level. This allows the lead frame to be simplified. Furthermore, since the two transistors are directly connected in series using a common lead frame, the mounting work on the wiring board can be simplified.

〔実施例〕〔Example〕

(a)本発明の一実施例 以下、本発明の一実施例を第2図ないし第4図及び第7
図に基づいて説明する。前記第2図は本実施例全体概略
構成図、第3図は本実施例部分拡大図、第4図は第2図
中のA−A線拡大断面図を示す。
(a) One embodiment of the present invention An embodiment of the present invention will be described below with reference to FIGS. 2 to 4 and 7.
This will be explained based on the diagram. 2 is a schematic diagram of the overall configuration of this embodiment, FIG. 3 is a partially enlarged view of this embodiment, and FIG. 4 is an enlarged sectional view taken along the line A--A in FIG. 2.

前記各図において本実施例に係る半導体Hブリッジ回路
は、PチャネルMO8FET(以下、P−MOS  F
ET)Q  (又はQ3)とNチャネルMOS  FE
T (以下、N−MOSFET)Q2 (又はQ4)と
をモールド樹脂封止領域30中に隣接して実装し、前記
P−MO8FET  QlとN−MOS  FET  
Q2との各ドレインをリードフレーム10を介して接続
すると共に、前記P−MO8FET  Q3とN−MO
S  FETQ4との各ドレインをリードフレーム20
を介して接続し、各P−MO8゜N−MOSの各FET
Q1〜Q4の各ゲート、ソースをモールド樹脂封止領域
30上の対応するり−ドフレーム11〜14.21〜2
4にボンディングワイヤ101〜104.201〜20
4により接続する構成である。
In each of the above figures, the semiconductor H-bridge circuit according to this embodiment is a P-channel MO8FET (hereinafter referred to as P-MOS FET).
ET) Q (or Q3) and N-channel MOS FE
T (hereinafter referred to as N-MOSFET) Q2 (or Q4) is mounted adjacently in the molded resin sealing area 30, and the P-MO8FET Ql and N-MOSFET
The drains of the P-MO8FET Q2 and the N-MO8FET are connected via the lead frame 10, and the P-MO8FET Q3 and the N-MO
Connect each drain of S FETQ4 to the lead frame 20
each FET of each P-MO8°N-MOS
The respective gates and sources of Q1 to Q4 are connected to the corresponding board frames 11 to 14 and 21 to 2 on the molded resin sealing region 30.
4 bonding wires 101-104.201-20
4.

次に、前記構成に基づ(本実施例回路の実装・結線動作
について説明する。
Next, the mounting and wiring operations of the circuit of this embodiment will be explained based on the above configuration.

まず、前記P−MO3FET  Q、及びN−MOS 
 FET  Q2をモールド樹脂封止領域30中に形成
されるリードフレーム10上に各サブストレーhsUB
を接触させてマウントすると共に、前記P−MO8FE
T  Q3及びN−MOS  FET  Q4をIJ−
ドア1/−ム20上に各サブストレートSUBを接触さ
せてマウントする。前記マウントによりP−MOS  
FETQl及びN−MOS  FET  Q2の各ドレ
インD、D2はリードフレーム10を介して接続される
こととなる。また、前記P−MO8FETQ3及びN−
MOS  FET  Q4の各ドレインD  SD 4
はリードフレーム20を介して接続される。
First, the P-MO3FET Q and the N-MOS
FET Q2 is placed on each substray hsUB on the lead frame 10 formed in the molded resin sealing area 30.
At the same time, the P-MO8FE is mounted in contact with the P-MO8FE.
T Q3 and N-MOS FET Q4 to IJ-
Mount each substrate SUB in contact on the door 1/-20. The mount allows P-MOS
The drains D and D2 of the FET Ql and the N-MOS FET Q2 are connected via the lead frame 10. In addition, the P-MO8FETQ3 and N-
Each drain D SD 4 of MOS FET Q4
are connected via a lead frame 20.

また、前記各P−MO3,N−MO3FETQ1〜Q4
は各ゲート01〜G4及びソースs1〜S4を対応する
リードフレーム11〜14.21〜24にワイヤボンデ
ィング接続されることにより、実装を完了する。
In addition, each of the P-MO3, N-MO3FETQ1 to Q4
The mounting is completed by connecting each gate 01-G4 and source s1-S4 to the corresponding lead frame 11-14 and 21-24 by wire bonding.

さらに、前記実装された本実施例回路の動作は次の通り
である。
Furthermore, the operation of the implemented circuit of this embodiment is as follows.

前記第4図においてP−MOS  FET  Q。In FIG. 4, P-MOS FET Q.

はゲートG1に所定レベルの電圧が印加されると、n−
ウェル中にp形のチャネル(斜線部分)の伝導層が形成
されることとなり、ソース電極S1及びアルミ配線層A
7からP形波散層−チャネルP層−P+層−サブストレ
ートSUBを介してリードフレーム10のドレインDI
へ正孔が移動して電流が流れることとなる。
When a voltage of a predetermined level is applied to the gate G1, n-
A p-type channel (hatched area) conductive layer is formed in the well, and the source electrode S1 and aluminum wiring layer A
7 to the drain DI of the lead frame 10 via the P-type dispersion layer-channel P layer-P+ layer-substrate SUB
Holes move to the hole, causing current to flow.

同様にして前記N −M OS  F E T  Q 
2についてもゲートG2に所定の電圧が印加されるとド
レインD2からソース電極S2へチャネルを介して電子
が移動して電流が流れることとなる。
Similarly, the N-MOS FETQ
2 as well, when a predetermined voltage is applied to the gate G2, electrons move from the drain D2 to the source electrode S2 via the channel, causing a current to flow.

前記P−MO8FET  Ql及びN−MO8FETQ
2の共通ドレインがチップ下面側に形成されることから
、各チップをリードフレーム10上に実装するだけで別
途ワイヤボンディング接続することなく各ドレインを接
続することができることとなる また、P −M OS  F E T  Q 3及びN
−MOS  FET  Q4の接続においても、前記P
−MO8FET  Ql及びN−MOSFET Q2の
接続と同様に各ドレインを接続できることとなる。
Said P-MO8FET Ql and N-MO8FETQ
Since the common drains of the two chips are formed on the bottom side of the chip, it is possible to connect each drain by simply mounting each chip on the lead frame 10 without making separate wire bonding connections. F E T Q 3 and N
- Also in the connection of MOS FET Q4, the above P
-Each drain can be connected in the same way as the connection of MO8FET Ql and N-MOSFET Q2.

(b)本発明の他の実施例 第5図に本発明の他実施例全体概略構成図を示す。(b) Other embodiments of the present invention FIG. 5 shows a schematic diagram of the overall configuration of another embodiment of the present invention.

同図において他の実施例回路はモールド樹脂封止領域3
0の表面側に形成されリードフレーム10上にP −M
 OS  F E T  Q lをマウントし、同じ表
面側のリードフレーム20上にP−MOSFET Q3
をマウントすると共に、前記モールド樹脂封止領域30
の裏面側のリードフレーム10上にN −M OS  
F E T  Q 2をマウントし、同じ裏面側のリー
ドフレーム20上にN−MO8FETQ4をマウントす
る構成である。
In the figure, another example circuit is a molded resin sealed area 3.
P-M is formed on the surface side of lead frame 10.
Mount the OS FET Q1 and place the P-MOSFET Q3 on the lead frame 20 on the same surface side.
At the same time, the mold resin sealing area 30 is mounted.
N-M OS is placed on the lead frame 10 on the back side of the
The structure is such that the FET Q2 is mounted and the N-MO8FETQ4 is mounted on the lead frame 20 on the same back side.

このように、リードフレーム10.20の表面上にマウ
ントされたP−MOS  FETQ 及びN−MOS 
 FET  Q  SP−MOSi2 FET  Q  及びN−MOS  FET  Q4(
7)各ドレインD t ”” D 4が共通のリードフ
レームを介して接続され、各ドレインD  −D4とリ
ードフレーム10.20との間にワイヤボンディング接
続を行なうことなく接続することができることとなる。
In this way, the P-MOS FETQ and N-MOS mounted on the surface of the lead frame 10.20
FET Q SP-MOSi2 FET Q and N-MOS FET Q4 (
7) Each drain D t "" D 4 is connected via a common lead frame, so that the connection can be made without making a wire bonding connection between each drain D - D4 and the lead frame 10.20. .

なお、P−MOS、N−MOSの各FETQ1〜Q の
各ゲートG  −G  、ソースS1〜S4と対応する
リードフレーム11〜14.21〜24との間はワイヤ
ボンディングにより接続される。
Note that the gates GG and sources S1 to S4 of the P-MOS and N-MOS FETs Q1 to Q and the corresponding lead frames 11 to 14 and 21 to 24 are connected by wire bonding.

前記のようにリードフレームの表裏面にP−MOS、N
−MOS(7)各FETQ1〜Q4を実装することによ
り、配線が簡略化できると共に実装密度をさらに向上さ
せることができる。
As mentioned above, P-MOS, N
-MOS (7) By mounting each of the FETs Q1 to Q4, the wiring can be simplified and the packaging density can be further improved.

(c)本発明のその他の実施例 第6図に本発明のその他の実施例全体概略構成図を示す
(c) Other Embodiments of the Present Invention FIG. 6 shows a general schematic diagram of another embodiment of the present invention.

同図においてその他の実施例回路はモールド樹脂封止領
域30の表裏面におけるリードフレーム10.20.3
0.40上に8ケのMOSFETをマウント実装する構
成である。この他の実施例回路の回路構成図を第7図に
示す。
In the figure, other example circuits are lead frames 10, 20, 3 on the front and back surfaces of the molded resin sealing area 30.
This is a configuration in which 8 MOSFETs are mounted on a 0.40mm. A circuit configuration diagram of this other embodiment circuit is shown in FIG.

このように、多相モータMの制御に用いられるHブリッ
ジ回路の実装密度もさらに向上させることができること
となる。
In this way, the mounting density of the H-bridge circuit used to control the multiphase motor M can also be further improved.

なお、前記各実施例においては共通するリードフレーム
を介してP−MOS  FETとN−MOS  FET
とを接続する構成としたが、PNP トランジスタとN
PN トランジスタとをリードフレームを介して接続し
てHブリッジ回路を構成することもできる。また、PN
PトランジスタとN−MOS  FETとをリードフレ
ームを介して接続してHブリッジ回路を構成することが
できる。
In each of the above embodiments, the P-MOS FET and the N-MOS FET are connected via a common lead frame.
However, the PNP transistor and the N
An H-bridge circuit can also be configured by connecting a PN transistor via a lead frame. Also, P.N.
An H-bridge circuit can be configured by connecting a P transistor and an N-MOS FET via a lead frame.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明においては個別の半導体チ
ップで形成される導電形の異なる二つのトランジスタの
直列接続を共通のリードフレームを介して接続すること
により、二つのトランジスタの共通する電位レベルにお
ける各端子を接続することができることとなり、リード
フレームを簡酪化できる。また、共通のリードフレーム
で直接に二つのトランジスタを直列接続することから、
配線板への実装作業を簡略化できるという効果を有する
As explained above, in the present invention, by connecting two transistors of different conductivity types formed on individual semiconductor chips in series through a common lead frame, a common potential level of the two transistors can be maintained. Since each terminal can be connected, the lead frame can be simplified. In addition, since two transistors are directly connected in series using a common lead frame,
This has the effect of simplifying the mounting work on the wiring board.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理説明図、 第2図は本発明の一実施例全体概略構成図、第3図は第
2図記載実施例の部分拡大図、第4図は第2図記載実施
例のA−A線部分拡大断面図、 第5図は本発明の他の実施例全体概略構成図、第6図は
本発明のその他の実施例全体概略構成図、 第7図は第6図記載実施例の回路構成図、第8図はHブ
リッジ回路の構成図、 第9図は従来のHブリッジ回路の概略構成図である。 Q %Q3・・・P−MOS  FET ()ランジス
り) Q2、Q4・・P−MOS  FET (トランジス タ) T  −T4・・・接続端 30・・・モールド樹脂封止領域 101〜104.201〜204 グワイヤ L・・・インダクタンス負荷 ・ホンデイン
Fig. 1 is an explanatory diagram of the principle of the present invention, Fig. 2 is an overall schematic diagram of an embodiment of the present invention, Fig. 3 is a partially enlarged view of the embodiment shown in Fig. 2, and Fig. 4 is an implementation of the embodiment shown in Fig. 2. FIG. 5 is a schematic diagram of the overall configuration of another embodiment of the present invention; FIG. 6 is a schematic diagram of the entire configuration of another embodiment of the present invention; FIG. A circuit configuration diagram of the described embodiment, FIG. 8 is a configuration diagram of an H-bridge circuit, and FIG. 9 is a schematic configuration diagram of a conventional H-bridge circuit. Q %Q3...P-MOS FET () Q2, Q4...P-MOS FET (transistor) T-T4...Connection end 30...Mold resin sealing area 101~104.201~ 204 Gwire L...Inductance load/Hondain

Claims (1)

【特許請求の範囲】 1、個別の半導体チップで形成される導電 形の異なる二つのトランジスタ(Q_1、Q_2)、(
Q_3、Q_4)を各々直列に接続すると共に、当該直
列接続した二つのトランジスタ(Q_1、Q_2)、(
Q_3、Q_4)を一の電源(V_1)と他の電源(V
_2)との間に並列接続し、前記二つのトランジスタ(
Q_1、Q_2)、(Q_3、Q_4)の直列接続にお
ける各接続中点相互間にインダクタンス負荷(L)を接
続し、前記二つのトランジスタ(Q_1、Q_2)、(
Q_3、Q_4)の各駆動状態に基づきインダクタンス
負荷(L)に電流を供給するHブリッジ回路において、 前記二つのトランジスタ(Q_1、Q_2)、(Q_3
、Q_4)の各直列接続端(T_1、T_2)、(T_
2、T_3)間を共通のリードフレーム(10、20)
を介して接続することを 特徴とする半導体Hブリッジ回路。 2、前記請求項1記載の半導体Hブリッジ回路において
、 前記異なる導電形の二つのトランジスタ(Q_1、Q_
2)、(Q_3、Q_4)は共通するリードフレーム(
10又は20)の各表・裏面に設けられ、前記リードフ
レーム(10又は20)を介して各接続端(T_1、T
_2)、(T_3、T_4)を各々直列接続することを 特徴とする半導体Hブリッジ回路。 3、前記請求項1又は2記載の半導体Hブリッジ回路に
おいて 前記導電形の異なる二つのトランジスタ(Q_1、Q_
2)、(Q_3、Q_4)はP形チャネルFETとN形
チャネルFETとを直列接続することを特徴とする半導
体Hブリッジ回路。 4、前記請求項1又は2記載の半導体Hブリッジ回路に
おいて、 前記異なる導電形の二つのトランジスタ(Q_1、Q_
2)、(Q_3、Q_4)はPNP形トランジスタとN
PN形トランジスタとを直列接続することを特徴とする
半導体Hブリッジ回路。 5、前記請求項1又は2記載の半導体Hブリッジ回路に
おいて、 前記異なる導電形の二つのトランジスタ(Q_1、Q_
2)、(Q_3、Q_4)はPNP形トランジスタとN
チャンネルFETとを直列接続することを特徴とする半
導体Hブリッジ回路。
[Claims] 1. Two transistors (Q_1, Q_2) of different conductivity types formed on individual semiconductor chips, (
Q_3, Q_4) are connected in series, and the two series-connected transistors (Q_1, Q_2), (
Q_3, Q_4) from one power supply (V_1) and the other power supply (V
_2), and the two transistors (
An inductance load (L) is connected between each connection center point in the series connection of Q_1, Q_2), (Q_3, Q_4), and the two transistors (Q_1, Q_2), (
In the H-bridge circuit that supplies current to the inductance load (L) based on each drive state of the two transistors (Q_1, Q_2), (Q_3)
, Q_4), each series connection terminal (T_1, T_2), (T_
2, T_3) with a common lead frame (10, 20)
A semiconductor H-bridge circuit characterized in that it is connected via. 2. In the semiconductor H-bridge circuit according to claim 1, the two transistors of different conductivity types (Q_1, Q_
2), (Q_3, Q_4) are common lead frames (
10 or 20), and each connection end (T_1, T
_2), (T_3, T_4) are each connected in series. 3. In the semiconductor H-bridge circuit according to claim 1 or 2, the two transistors of different conductivity types (Q_1, Q_
2), (Q_3, Q_4) are semiconductor H-bridge circuits characterized by connecting a P-type channel FET and an N-type channel FET in series. 4. In the semiconductor H-bridge circuit according to claim 1 or 2, the two transistors of different conductivity types (Q_1, Q_
2), (Q_3, Q_4) are PNP type transistors and N
A semiconductor H-bridge circuit characterized by connecting a PN type transistor in series. 5. In the semiconductor H-bridge circuit according to claim 1 or 2, the two transistors of different conductivity types (Q_1, Q_
2), (Q_3, Q_4) are PNP type transistors and N
A semiconductor H-bridge circuit characterized by connecting a channel FET in series.
JP2251253A 1990-09-19 1990-09-19 Semiconductor h bridge circuit Pending JPH04129233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2251253A JPH04129233A (en) 1990-09-19 1990-09-19 Semiconductor h bridge circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2251253A JPH04129233A (en) 1990-09-19 1990-09-19 Semiconductor h bridge circuit

Publications (1)

Publication Number Publication Date
JPH04129233A true JPH04129233A (en) 1992-04-30

Family

ID=17220020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2251253A Pending JPH04129233A (en) 1990-09-19 1990-09-19 Semiconductor h bridge circuit

Country Status (1)

Country Link
JP (1) JPH04129233A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006060255A (en) * 2005-11-07 2006-03-02 Nec Electronics Corp Leadless package semiconductor device
JP2006066712A (en) * 2004-08-27 2006-03-09 Sanyo Electric Co Ltd Circuit device with full bridge circuit packaged therein and data recording apparatus using the same
JP2007073581A (en) * 2005-09-05 2007-03-22 Renesas Technology Corp Semiconductor device
JP2009065201A (en) * 2008-11-20 2009-03-26 Sanyo Electric Co Ltd Method of manufacturing semiconductor device
JP2011108946A (en) * 2009-11-19 2011-06-02 Aisin Seiki Co Ltd Method of mounting transistor, and electronic component

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066712A (en) * 2004-08-27 2006-03-09 Sanyo Electric Co Ltd Circuit device with full bridge circuit packaged therein and data recording apparatus using the same
JP4587743B2 (en) * 2004-08-27 2010-11-24 三洋電機株式会社 Circuit equipment
JP2007073581A (en) * 2005-09-05 2007-03-22 Renesas Technology Corp Semiconductor device
JP2006060255A (en) * 2005-11-07 2006-03-02 Nec Electronics Corp Leadless package semiconductor device
JP2009065201A (en) * 2008-11-20 2009-03-26 Sanyo Electric Co Ltd Method of manufacturing semiconductor device
JP2011108946A (en) * 2009-11-19 2011-06-02 Aisin Seiki Co Ltd Method of mounting transistor, and electronic component

Similar Documents

Publication Publication Date Title
US7732929B2 (en) Power semiconductor component with semiconductor chip stack in a bridge circuit and method for producing the same
JP4067967B2 (en) Integrated field effect transistor and driver
US7002249B2 (en) Microelectronic component with reduced parasitic inductance and method of fabricating
US20140061884A1 (en) Stacked die power converter
JP3394377B2 (en) Semiconductor device and semiconductor module
US20130200952A1 (en) Power mosfets with improved efficiency for multi-channel class d audio amplifiers and packaging therefor
US20120228696A1 (en) Stacked die power converter
US8581416B2 (en) Method of forming a semiconductor device and leadframe therefor
KR960000799B1 (en) Component for three-phase bridge conversion circuit
US9659845B2 (en) Power quad flat no-lead (PQFN) package in a single shunt inverter circuit
JP4004460B2 (en) Semiconductor device
US20030107120A1 (en) Intelligent motor drive module with injection molded package
US8023276B2 (en) Circuit arrangement comprising having plurality of half bridges
JP2002083927A (en) Semiconductor device
JP4124690B2 (en) Integrated circuit driver with stable bootstrap power supply
JPH04129233A (en) Semiconductor h bridge circuit
EP0151870A2 (en) Gate array integrated circuit using schottky-barrier FETs
US5159515A (en) Protection circuit for power FETs in a half-bridge circuit
JP2002057282A (en) Semiconductor device and inverter circuit using it
JP2001320009A (en) Semiconductor device
US5442218A (en) CMOS power fet driver including multiple power MOSFET transistors connected in parallel, each carrying an equivalent portion of the total driver current
JPS61264747A (en) Semiconductor device
JP6200820B2 (en) Power quad flat no lead (PQFN) semiconductor package with leadframe island for multiphase power stage
JP2002299544A (en) Semiconductor device
WO2023157569A1 (en) Drive circuit, transistor drive system, and transistor module