JPH0412901B2 - - Google Patents

Info

Publication number
JPH0412901B2
JPH0412901B2 JP61024152A JP2415286A JPH0412901B2 JP H0412901 B2 JPH0412901 B2 JP H0412901B2 JP 61024152 A JP61024152 A JP 61024152A JP 2415286 A JP2415286 A JP 2415286A JP H0412901 B2 JPH0412901 B2 JP H0412901B2
Authority
JP
Japan
Prior art keywords
weight
component
copolymer
aromatic
butadiene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61024152A
Other languages
Japanese (ja)
Other versions
JPS62184051A (en
Inventor
Noryuki Akagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2415286A priority Critical patent/JPS62184051A/en
Publication of JPS62184051A publication Critical patent/JPS62184051A/en
Publication of JPH0412901B2 publication Critical patent/JPH0412901B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は樹脂組成物に関し、更に詳しくは表面
外観性に優れ、且つ成形性および機械的特性、特
に低温衝撃性に優れた熱可塑性樹脂組成物に関す
る。 [従来技術] 芳香族ポリステルは、一般に耐酸化性、耐溶剤
性をはじめ種々のすぐれた特性を有する熱可塑性
材料であり、溶融成形により良好な物理的、機械
的性質を有する繊維やフイルムを得るのに適して
いる。しかしながら、これらの重合体はその構造
上結晶性が大きいため射出成形等により成形物を
成形した場合寸法安定性が悪く、更に耐衝撃性や
耐熱性に劣るという欠点を有している。 一方、芳香族ポリカーボネート(特に4,4′−
ジヒドロキシジフエニルアルカン系ポリカーボネ
ート)は溶融粘度が高過ぎる為成形が非常に困難
であり、また、耐溶剤性に劣るという欠点を有し
ている。 そのため芳香族ポリエステルと芳香族ポリカー
ボネートとを溶融状態において均一に混合し、両
重合体相互の前記欠点を補う試み(例えば特公昭
36−14035号公報参照)がなされている。このよ
うに芳香族ポリエステルと芳香族ポリカーボネー
トを混合することにより芳香族ポリエステルの寸
法安定性などの成形用樹脂としての物性が改良さ
れると同時に芳香族ポリカーボネートの溶融粘度
が低下し成形が容易になると共に耐溶剤性が向上
するという利点があるが、このようにして得られ
た樹脂組成物は耐衝撃性が不十分なため耐衝撃性
が要求される用途への進出が制限されるという欠
点を有する。 芳香族ポリエステルと芳香族ポリカーボネート
樹脂組成物の耐衝撃性を向上させる方法として、
オレフイン又はオレフイン共重合体を配合する方
法が提案されている(特開昭59−89352号)が、
耐衝撃性の向上は十分でなく、又かかる樹脂組成
物は非相溶性のため得られる成形品は層剥離現象
をおこし表面に縞模様を生じ易く、外観良好なも
のが得られない。 そこで本発明は、かかる樹脂組成物の耐衝撃性
向上をはかるためα−オレフインとα,β−不飽
和酸のグリシジルエステルから成るオレフイン系
共重合体を添加したところ衝撃強度の向上はみら
れたが低温におけるそれが十分でなく、表面特性
も満足すべきものが得られなかつた。 [発明の目的] 本発明は表面外観性に優れ、且つ、機械的特
性、特に低温衝撃特性;熱的特性及び成形性の良
好な樹脂組成物の提供を目的とする。 [発明の構成] 本発明は、 (A) 芳香族ポリエステル 4〜95重量%, (B) 芳香族ポリカーボネート(B)4〜95重量%, (C) ブタジエン系重合体(イ)にメタクリル酸エステ
ル(ロ),芳香族モノビニル化合物(ハ)及びシアン化
ビニル化合物(ニ)よりなる群から選ばれたビニル
系単量体の1種以上をグラフト共重合せしめた
ブタジエン系グラフト共重合体 1〜20重量%, (D) エチレン系共重合体1〜20重量%,および (E) α−オレフインとα,β−不飽和酸のグリシ
ジルエステルからなるオレフイン系共重合体
0.5〜10重量% より成る熱可塑性樹脂組成物である。 本発明に用いられる芳香族ポリエステル(A)は芳
香族を重合体の主鎖中に有するポリエステルで、
芳香族ジカルボン酸、あるいはそのエステル形成
性誘導体とジオール、あるいはそのエステル形成
誘導体とを主成分とする縮合反応により得られる
重合体又は共重合体である。芳香族ジカルボン酸
成分としては、例えば、テレフタル酸、イソフタ
ル酸などのベンゼン核を有するジカルボン酸、ナ
フタレン−2,6−ジカルボン酸、ナフタレン−
1,5−ジカルボン酸、ナフタレン−2,7−ジ
カルボン酸などのナフタレン核を有するジカルボ
ン酸あるいはそのエステル形成性誘導体が挙げら
れる。 かかる芳香族ジカルボン酸あるいはそのエステ
ル形成誘導体にかえて、酸成分の20モル%以下の
芳香族ジカルボン酸以外のジカルボン酸、例えば
アジピン酸、セバシン酸又はこれらのエステル形
成性誘導体を使用することもできる。ジオール成
分としては例えばエチレングリコール、テトラメ
チレングリコール、ヘキサメチレングリコール、
ジエチレングリコール、シクロヘキサンジメタノ
ールなどの脂肪族グリコール、1,4−ビスオキ
シエトキシベンゼン、ビスフエノールAなどの芳
香環を有するジオールあるいはそのエステル形成
性誘導体などがある。 本発明に用いられる芳香族ポリエステルは1種
の芳香族ポリエステルのみでなく2種以上の芳香
族ポリエステルの混合物であつても差支えない。 本発明に用いられる芳香族ポリカーボネート(B)
は、特に4,4′−ジヒドロキシジフエニルアルカ
ン系ポリカーボネートであり、更に具体的には
2,2−(4,4′−ジヒドロキシジフエニル)プ
ロパン(以下ビスフエノールAと略記する)をジ
ヒドロキシ成分として用い、エステル交換法ある
いはホスゲン法により得られたポリカーボネート
が好ましい。更にビスフエノールAの一部または
全部を他の4,4′−ジヒドロキシジフエニルアル
カンあるいは4,4′−ジヒドロキシジフエニルス
ルホン、4,4′−ジヒドロキシジフエニルエーテ
ルなどに置換しても良く、また二種以上の芳香族
ポリカーボネートを混合して用いても良い。 本発明で使用するブタジエン系グラフト共重合
体(C)はブタジエン系グラフト重合体(イ)にメタクリ
ル酸(ロ)、芳香族モノビニル化合物(ハ)及びシアン化
ビニル化合物(ニ)よりなる群から選ばれてビニル系
単量体の1種以上をグラフト共重合せしめたもの
である。該グラフト共重合体(C)において、ブタジ
エン系重合体(イ)の量は10〜85重量%であり、特に
30〜70重量%であることが好ましい。10重量%よ
り少ない場合は、得られる樹脂組成物の衝撃強度
が低く、一方85重量%より多い場合は得られる樹
脂組成物の成形性が低下し好ましくない。ブタジ
エン系重合体(イ)としてはブタジエン系単量体とビ
ニル系単量体、例えばスチレンとの共重合体を使
用することもできるが、共重合体においては耐衝
撃性の点でブタジエン成分が50重量%以上である
ことが好ましい。 ブタジエン系重合体(イ)にグラフト共重合される
ビニル系単量体はメタクリル酸エステル(ロ)、芳香
族モノビニル化合物(ハ)及びシアン化ビニル化合物
(ニ)の1種以上であるが、ビニル系単量体相互の使
用比率は任意であり、その小割合を他のビニル系
単量体で置換してもよい。また、ビニル系単量体
をグラフト共重合せしめる際の使用順序は任意で
あり、2種以上を同時に使用してもよく、また
別々に使用してグラフト共重合せしめて支障な
い。メタクリル酸エステルとしては炭素数1〜4
のアルキルエステルがよく、特にメチルエステル
が好ましい。芳香族モノビニル化合物としては、
例えばスチレン、ビニルトルエン、α−メチルス
チレン、核ハロゲン化スチレン、ビニルナフタレ
ン等があげられ、特にスチレンが好ましい。シア
ン化ビニル化合物としては例えばアクリロニトリ
ル、メタクリルニトリル、α−ハロゲン化アクリ
ルニトリルなどががあげられ、特にアクリロニト
リルが好ましい。ブタジエン系グラフト共重合体
としてはABS,MBSが好ましく用いられる。 またブタジエン系グラフト共重合体は、耐衝撃
性および表面外観性の点からグラフト率が15〜
200%であることが好ましい。ここでグラフト率
とは次式より求めた値である。 「グラフト率=(アセトン可溶分の重量/ゴ
ム成分〔(イ)成分〕の重量−1)×100」 但し、式中アセトン不溶分はグラフト共重合体
をアセトンに十分浸漬させた後、遠心分離によつ
て不溶沈澱物を厳密に採取して求める。 本発明に用いられるブタジエン系クラフト共重
合体(C)は、塊状重合、懸濁重合、塊状懸濁重合、
溶液重合あるいは乳化重合のいずれの方法でも製
造することができる。特にゴム含量の多い成分を
製造する場合には乳化グラフト重合によつて製造
することが望ましい。 本発明のブタジエン系グラフト共重合体(C)は硬
質熱可塑性樹脂と混合して用いても良いが、ブタ
ジエン系重合体成分(イ)が、該グラフト共重合体(C)
と硬質熱可塑性樹脂との総量に対して10%以上で
あることが必要である。硬質熱可塑性樹脂として
は、該グラフト共重合体(C)に使用されたビニル系
単量体と同一の単量体を重合して得られたもので
も異なる単量体から得られた熱可塑性樹脂でも使
用できるが相溶性の点から同一単量体から得られ
たものが好ましい。 本発明に用いられるエチレン系共重合体(D)とし
ては、エチレンとプロピレン、ブテン−1、ヘキ
セン−1、デセン−1、4−メチルブテン−1、
4−メチルペンテン−1のようなα−オレフイン
もしくはスチレン、アクリロニトリル、酢酸ビニ
ル、プロピオン酸ビニル、アクリル酸エステル、
メタクリル酸エステルのようなエチレン性不飽和
単量体、ジシクロペンタジエン、1,4−ヘキサ
ジエン、エチリデンノルボーネン、メチルノルボ
ーネン、1,5−ジシクロオクタジエンのような
ジエンモノマーとを主体とした共重合体が挙げら
れ、該共重合体のガラス転移温度は0℃以下であ
ることが好ましく、−20℃以下であることが特に
好ましい。 本発明に用いられるα−オレフインとα,β−
不飽和酸のグリシジルエステルから成るオレフイ
ン系共重合体(E)におけるα−オレフインとはエチ
レン、プロピレン、ブテン−1などであり、エチ
レンが特に好ましい。またα,β−不飽和酸のグ
リシジルエステルとは、一般式 (式中Rは水素原子、低級アルキル基あるいは
グリシジルエステル基で置換された低級アルキル
基である)で示される化合物であり具体的にはア
クリル酸グリシジル、メタクリル酸グリシジル、
エタクリル酸グリシジル、イタコン酸グリシジル
などであり、なかでもメタクリル酸グリシジルが
好ましい。グリシジル基含有重合体におけるα,
β−不飽和酸のグリシジルエステルの共重合比率
は0.5〜40重量%が好ましく、更には1〜30重量
%、より好ましくは2〜20重量%の範囲が適当で
ある。共重合量が0.5重量%以下の場合衝撃改良
効果が十分でなく、40重量%以上の場合成形時の
流動性が低下し好ましくない。α−オレフインと
α,β−不飽和酸のグリシジルエステルは標準的
な共重合あるいはグラフト反応によつて共重合せ
しめることができる。また、更に40重量%以下で
あれば上記の共重合体と共重合可能な不飽和モノ
マー、すなわちビニルエーテル類、酢酸ビニル、
プロピオン酸ビニルなどのビニルエステル類、メ
チル、エチル、プロピル、ブチルなどのアクリル
酸およびメタクリル酸エステル類、アクリルニト
リル、スチレン、一酸化炭素などを1種以上共重
合せしめても良い。好ましいオレフイン系共重合
体の例としては、エチレン/メタクリル酸グリシ
ジル共重合体、エチレン/酢酸ビニル/メタクリ
ル酸グリシジル共重合体、エチレン/一酸化炭
素/メタクリル酸グリシジル共重合体、エチレ
ン/アクリル酸グリシジル/酢酸ビニル共重合体
などが挙げられ、中でもエチレン/メタクリル酸
グリシジル共重合体が最も好ましい。 芳香族ポリエステル(A)及び芳香族ポリカーボネ
ート(B)から成る樹脂組成物に(D)成分及び(E)成分を
配合しても得られる成形品に層剥離を生じ表面外
観が劣り、耐衝撃性、特に低温における耐衝撃性
が十分でないが、(C)成分を添加することにより縞
模様が現われず光沢に優れ、且つ低温衝撃性にす
ぐれた成形品を得ることができる。この理由は明
らかではないが、推定するに、本来ポリオレフイ
ンとポリエステル、ポリカーボネートとは相溶性
パラメータ差が大きく非相溶性であるが、(E)成分
のグリシジル基とポリエステルの末端カルボキシ
ル基が化学的に結合し、(E)成分のオレフイン成分
とエチレン系共重合体である(D)成分が相溶化し、
(D)成分と(C)成分のブタジエンとが相溶化し、更に
(C)成分のスチレンがポリカーボネートと相溶化す
ることにより、均一性が増し、層剥離のない表面
性の優れた成形品が得られると思われる。 かかる熱可塑性樹脂組成物の混合割合は、樹脂
組成物あたり、(A)成分が4〜95重量%、(B)成分が
4〜95重量%、(C)成分が1〜10重量%、好ましく
は5〜15重量%、(D)成分が1〜20重量%、好まし
くは5〜15重量%および(E)成分が0.5〜10重量%、
好ましくは1〜5重量%を含有するように混合し
なければならない。(A)成分の含量が4重量%より
少ない場合は得られる組成物の耐溶剤性が不十分
であり、一方(A)成分の含量が95重量%より多い場
合は得られる組成物の寸法安定性が不十分であ
る。(B)成分の含量が4重量%より少ない場合は、
得られる組成物の寸法安定性が悪くしかも熱変形
温度が向上せず不十分であり、一方(B)成分の含量
が95重量%より多い場合は得られる組成物の成形
性がよくない。また(C)成分の含量が1重量%より
少ない場合は得られる組成物の衝撃強度および表
面外観が改良されず、一方20重量%より多い場合
は、組成物の熱変形温度が低下し好ましくない。
(D)成分の含量についても、1重量%より少ない場
合は、得られる組成物の衝撃強度が改良されず、
一方20重量%よりも多い場合は、組成物の熱変形
温度が低下するばかりでなく、(C)成分の存在下に
おいても表面外観性そこなわれ好ましくない。更
に(E)成分の含量が0.5重量%より少ない場合は得
られる組成物の衝撃強度は改良されず、一方10重
量%より多い場合はゲル状態となり表面特性が悪
くなり好ましくない。 なお、本発明組成物に対して、本発明の目的を
損わない範囲で各種の添加剤(例えば各種の安定
剤、顔料、難燃剤、離型剤、無機充填剤)が含ま
れていても良い。 本発明の熱可塑性樹脂組成物を調整する方法
は、固体状物質を混合する任意の方法(例えば、
バンバリーミキサー、加熱ロールや単軸または多
軸押出機による方法)が適用できる。 [実施例] 以下実施例を挙げて本発明の効果をさらに詳述
する。 なお、実施例中「部」及び「%」はすべて重量
基準であり、衝撃強度はASTM−256の方法によ
り、成形収縮率はASTM−955の方法によりそれ
ぞれ測定した。表面外観性は表面の縞模様と光沢
で評価した。また、還元比粘度はオルソクロロフ
エノール100mlに重合体を1.2g溶解し、35℃で測
定した値である。 実施例1〜5,及び比較例1〜5 芳香族ポリエステルとして130℃にて5時間乾
燥したポリエチレンテレフタレート(還元比粘度
0.71)、芳香族ポリカーボネートとして130℃にて
5時間乾燥した“パンライトL−1250”(商品
名;帝人化成KK製)、ブタジエン系グラフト共
重合体としてブタジエン−スチレン共重合体ゴム
60部の存在下にメチルメタクリレート24部、スチ
レン16部を乳化グラフト共重合して得られたブタ
ジエン系グラフト共重合体(グラフト率57.3%)、
エチレン系共重合体およびα−オレフインとα,
β−不飽和酸のグリシジルエステルから成るオレ
フイン系共重合体を第1表に示した種々の割合で
V型ブレンダーで均一に混合した。 得られた混合物を65mmφの押出機でバレル温度
270℃にて溶融混練し、ダイスから吐出されるス
レツドを冷却、切断して成形用ペレツトを得た。 次いでこのペレツトを130℃で5時間熱風乾燥
したあと5オンスの射出成形機に物性測定用試験
片モールドを取り付けてシリンダー温度270℃、
金型温度90℃、射出圧力700Kg/cm2、冷却時間20
秒及び全サイクル35秒の成形条件で試験片を成形
した。 得られた試験片について衝撃強度、表面外観性
を評価した。 結果を第1表に示す。
[Industrial Application Field] The present invention relates to a resin composition, and more particularly to a thermoplastic resin composition that has excellent surface appearance, moldability, and mechanical properties, particularly low-temperature impact resistance. [Prior art] Aromatic polyester is generally a thermoplastic material that has various excellent properties including oxidation resistance and solvent resistance, and can be melt-molded to obtain fibers and films with good physical and mechanical properties. It is suitable for However, since these polymers have a highly crystalline structure, they have poor dimensional stability when molded by injection molding or the like, and also have poor impact resistance and heat resistance. On the other hand, aromatic polycarbonates (especially 4,4'-
Dihydroxydiphenylalkane-based polycarbonate) has the disadvantage of being extremely difficult to mold due to its excessively high melt viscosity and poor solvent resistance. Therefore, attempts were made to uniformly mix aromatic polyester and aromatic polycarbonate in a molten state to compensate for the above-mentioned defects of both polymers (for example,
36-14035)). By mixing aromatic polyester and aromatic polycarbonate in this way, the physical properties of aromatic polyester as a molding resin such as dimensional stability are improved, and at the same time, the melt viscosity of aromatic polycarbonate is reduced, making molding easier. However, the resin composition obtained in this way has the disadvantage that it has insufficient impact resistance, which limits its application to applications that require impact resistance. have As a method for improving the impact resistance of aromatic polyester and aromatic polycarbonate resin compositions,
A method of blending olefin or olefin copolymer has been proposed (Japanese Patent Application Laid-Open No. 89352/1989),
The impact resistance is not sufficiently improved, and since such resin compositions are incompatible, the obtained molded products tend to cause delamination and striped patterns on the surface, making it impossible to obtain a molded product with a good appearance. Therefore, in the present invention, in order to improve the impact resistance of such resin compositions, an olefin copolymer consisting of α-olefin and glycidyl ester of α,β-unsaturated acid was added, and an improvement in impact strength was observed. However, the properties at low temperatures were not sufficient, and satisfactory surface properties could not be obtained. [Object of the Invention] The object of the present invention is to provide a resin composition that has excellent surface appearance and good mechanical properties, particularly low-temperature impact properties, thermal properties, and moldability. [Structure of the invention] The present invention comprises (A) 4 to 95% by weight of aromatic polyester, (B) 4 to 95% by weight of aromatic polycarbonate (B), (C) methacrylic acid ester in butadiene polymer (A). (b) A butadiene-based graft copolymer obtained by graft copolymerizing one or more vinyl monomers selected from the group consisting of aromatic monovinyl compounds (c) and vinyl cyanide compounds (d) 1 to 20 % by weight, (D) 1 to 20% by weight of an ethylene copolymer, and (E) an olefinic copolymer consisting of an α-olefin and a glycidyl ester of an α,β-unsaturated acid.
It is a thermoplastic resin composition consisting of 0.5 to 10% by weight. The aromatic polyester (A) used in the present invention is a polyester having an aromatic group in the main chain of the polymer,
It is a polymer or copolymer obtained by a condensation reaction containing an aromatic dicarboxylic acid or an ester-forming derivative thereof and a diol or an ester-forming derivative thereof as main components. Examples of the aromatic dicarboxylic acid component include dicarboxylic acids having a benzene nucleus such as terephthalic acid and isophthalic acid, naphthalene-2,6-dicarboxylic acid, and naphthalene-2,6-dicarboxylic acid.
Examples include dicarboxylic acids having a naphthalene nucleus such as 1,5-dicarboxylic acid and naphthalene-2,7-dicarboxylic acid, or ester-forming derivatives thereof. Instead of such aromatic dicarboxylic acids or ester-forming derivatives thereof, dicarboxylic acids other than aromatic dicarboxylic acids, such as adipic acid, sebacic acid, or ester-forming derivatives thereof, can also be used in an amount of 20 mol% or less of the acid component. . Examples of diol components include ethylene glycol, tetramethylene glycol, hexamethylene glycol,
Examples include aliphatic glycols such as diethylene glycol and cyclohexanedimethanol, diols having aromatic rings such as 1,4-bisoxyethoxybenzene and bisphenol A, and ester-forming derivatives thereof. The aromatic polyester used in the present invention may be not only one type of aromatic polyester but also a mixture of two or more types of aromatic polyester. Aromatic polycarbonate (B) used in the present invention
is particularly a 4,4'-dihydroxydiphenylalkane-based polycarbonate, and more specifically, 2,2-(4,4'-dihydroxydiphenyl)propane (hereinafter abbreviated as bisphenol A) as a dihydroxy component. Polycarbonates obtained by the transesterification method or the phosgene method are preferred. Furthermore, part or all of bisphenol A may be substituted with other 4,4'-dihydroxydiphenyl alkane, 4,4'-dihydroxydiphenyl sulfone, 4,4'-dihydroxydiphenyl ether, etc. A mixture of two or more types of aromatic polycarbonates may be used. The butadiene-based graft copolymer (C) used in the present invention is selected from the group consisting of a butadiene-based graft polymer (a), methacrylic acid (b), an aromatic monovinyl compound (c), and a vinyl cyanide compound (d). It is obtained by graft copolymerizing one or more vinyl monomers. In the graft copolymer (C), the amount of the butadiene polymer (A) is 10 to 85% by weight, especially
It is preferably 30 to 70% by weight. When it is less than 10% by weight, the impact strength of the resulting resin composition is low, while when it is more than 85% by weight, the moldability of the resulting resin composition is undesirably reduced. As the butadiene polymer (a), a copolymer of a butadiene monomer and a vinyl monomer, such as styrene, can also be used, but in terms of impact resistance, the butadiene component is It is preferably 50% by weight or more. Vinyl monomers graft copolymerized to the butadiene polymer (a) include methacrylic acid ester (b), aromatic monovinyl compound (c), and vinyl cyanide compound.
Although one or more of (d) is used, the ratio of the vinyl monomers to each other is arbitrary, and a small proportion thereof may be replaced with another vinyl monomer. Further, the order in which the vinyl monomers are used in graft copolymerization is arbitrary, and two or more types may be used simultaneously, or they may be used separately in graft copolymerization without any problem. Methacrylic acid ester has 1 to 4 carbon atoms
Alkyl esters are preferred, and methyl esters are particularly preferred. As aromatic monovinyl compounds,
Examples include styrene, vinyltoluene, α-methylstyrene, nuclear halogenated styrene, and vinylnaphthalene, with styrene being particularly preferred. Examples of vinyl cyanide compounds include acrylonitrile, methacrylonitrile, and α-halogenated acrylonitrile, with acrylonitrile being particularly preferred. As the butadiene-based graft copolymer, ABS and MBS are preferably used. In addition, butadiene-based graft copolymers have a graft ratio of 15 to 15% from the viewpoint of impact resistance and surface appearance.
Preferably it is 200%. Here, the graft ratio is a value calculated from the following formula. "Graft ratio = (weight of acetone soluble component / weight of rubber component [component (a)] - 1) x 100" However, in the formula, the acetone insoluble component is calculated by thoroughly immersing the graft copolymer in acetone and then centrifuging it. It is determined by strictly collecting the insoluble precipitate by separation. The butadiene-based kraft copolymer (C) used in the present invention can be subjected to bulk polymerization, suspension polymerization, bulk suspension polymerization,
It can be produced by either solution polymerization or emulsion polymerization. In particular, when producing components with a high rubber content, it is desirable to produce them by emulsion graft polymerization. The butadiene-based graft copolymer (C) of the present invention may be used in combination with a hard thermoplastic resin, but if the butadiene-based polymer component (a) is
It is necessary for the amount to be 10% or more based on the total amount of the hard thermoplastic resin and the hard thermoplastic resin. The hard thermoplastic resin may be one obtained by polymerizing the same vinyl monomer as the vinyl monomer used in the graft copolymer (C), or a thermoplastic resin obtained from a different monomer. However, from the viewpoint of compatibility, those obtained from the same monomer are preferred. The ethylene copolymer (D) used in the present invention includes ethylene and propylene, 1-butene, 1-hexene, 1-decene, 1-4-methylbutene,
alpha-olefins or styrenes such as 4-methylpentene-1, acrylonitrile, vinyl acetate, vinyl propionate, acrylic esters,
Mainly composed of ethylenically unsaturated monomers such as methacrylic acid esters, diene monomers such as dicyclopentadiene, 1,4-hexadiene, ethylidenenorbornene, methylnorbornene, and 1,5-dicyclooctadiene. A copolymer may be mentioned, and the glass transition temperature of the copolymer is preferably 0°C or lower, particularly preferably -20°C or lower. α-olefin and α,β- used in the present invention
The α-olefin in the olefin copolymer (E) comprising glycidyl ester of an unsaturated acid is ethylene, propylene, butene-1, etc., and ethylene is particularly preferred. In addition, glycidyl ester of α,β-unsaturated acid has the general formula (In the formula, R is a hydrogen atom, a lower alkyl group, or a lower alkyl group substituted with a glycidyl ester group.) Specifically, glycidyl acrylate, glycidyl methacrylate,
These include glycidyl ethacrylate and glycidyl itaconate, and among them, glycidyl methacrylate is preferred. α in glycidyl group-containing polymers,
The copolymerization ratio of glycidyl ester of β-unsaturated acid is preferably 0.5 to 40% by weight, more preferably 1 to 30% by weight, more preferably 2 to 20% by weight. If the copolymerization amount is less than 0.5% by weight, the impact improvement effect will not be sufficient, and if it is more than 40% by weight, the fluidity during molding will decrease, which is undesirable. Alpha-olefins and glycidyl esters of alpha, beta-unsaturated acids can be copolymerized by standard copolymerization or grafting reactions. In addition, if the amount is 40% by weight or less, unsaturated monomers copolymerizable with the above copolymers, such as vinyl ethers, vinyl acetate,
One or more types of vinyl esters such as vinyl propionate, acrylic and methacrylic esters such as methyl, ethyl, propyl, and butyl, acrylonitrile, styrene, carbon monoxide, etc. may be copolymerized. Examples of preferred olefin copolymers include ethylene/glycidyl methacrylate copolymer, ethylene/vinyl acetate/glycidyl methacrylate copolymer, ethylene/carbon monoxide/glycidyl methacrylate copolymer, and ethylene/glycidyl acrylate copolymer. /vinyl acetate copolymer, among others, ethylene/glycidyl methacrylate copolymer is most preferred. Even if components (D) and (E) are blended into a resin composition consisting of aromatic polyester (A) and aromatic polycarbonate (B), the resulting molded product will have delamination, resulting in poor surface appearance and poor impact resistance. However, by adding component (C), it is possible to obtain a molded article that does not show stripes, has excellent gloss, and has excellent low-temperature impact resistance. The reason for this is not clear, but it is presumed that polyolefin, polyester, and polycarbonate are originally incompatible due to large differences in compatibility parameters, but the glycidyl group of component (E) and the terminal carboxyl group of polyester are chemically The olefin component of component (E) and the component (D), which is an ethylene copolymer, become compatible.
Component (D) and butadiene (C) component become compatible, and
It is thought that by making the styrene of component (C) compatible with the polycarbonate, the uniformity increases and a molded article with excellent surface properties without layer peeling is obtained. The mixing ratio of such a thermoplastic resin composition is preferably 4 to 95% by weight of component (A), 4 to 95% by weight of component (B), and 1 to 10% by weight of component (C), based on the resin composition. is 5 to 15% by weight, component (D) is 1 to 20% by weight, preferably 5 to 15% by weight, and component (E) is 0.5 to 10% by weight,
It should preferably be mixed to contain 1 to 5% by weight. If the content of component (A) is less than 4% by weight, the resulting composition will have insufficient solvent resistance, while if the content of component (A) is more than 95% by weight, the resulting composition will have insufficient dimensional stability. Inadequate sex. If the content of component (B) is less than 4% by weight,
The dimensional stability of the resulting composition is poor and the heat distortion temperature is not improved, which is insufficient. On the other hand, when the content of component (B) is more than 95% by weight, the moldability of the resulting composition is poor. Furthermore, if the content of component (C) is less than 1% by weight, the impact strength and surface appearance of the resulting composition will not be improved, while if it is more than 20% by weight, the heat distortion temperature of the composition will decrease, which is undesirable. .
If the content of component (D) is less than 1% by weight, the impact strength of the resulting composition will not be improved;
On the other hand, if the amount is more than 20% by weight, it is not preferable because not only the heat distortion temperature of the composition is lowered, but also the surface appearance is impaired even in the presence of component (C). Furthermore, if the content of component (E) is less than 0.5% by weight, the impact strength of the resulting composition will not be improved, while if it is more than 10% by weight, it will become a gel state and the surface properties will deteriorate, which is not preferable. The composition of the present invention may contain various additives (e.g., various stabilizers, pigments, flame retardants, mold release agents, inorganic fillers) as long as they do not impair the purpose of the present invention. good. The thermoplastic resin composition of the present invention can be prepared by any method of mixing solid substances (for example,
Methods using a Banbury mixer, heated rolls, or a single or multi-screw extruder can be applied. [Example] The effects of the present invention will be explained in further detail with reference to Examples below. In the Examples, "parts" and "%" are all based on weight, and impact strength was measured by the method of ASTM-256, and molding shrinkage rate was measured by the method of ASTM-955. The surface appearance was evaluated based on the striped pattern and gloss of the surface. Further, the reduced specific viscosity is a value measured at 35° C. by dissolving 1.2 g of the polymer in 100 ml of orthochlorophenol. Examples 1 to 5 and Comparative Examples 1 to 5 Polyethylene terephthalate (reduced specific viscosity
0.71), "Panlite L-1250" (product name; manufactured by Teijin Kasei KK) dried at 130°C for 5 hours as an aromatic polycarbonate, butadiene-styrene copolymer rubber as a butadiene-based graft copolymer
Butadiene-based graft copolymer obtained by emulsion graft copolymerization of 24 parts of methyl methacrylate and 16 parts of styrene in the presence of 60 parts (grafting rate 57.3%),
Ethylene copolymer and α-olefin and α,
Olefinic copolymers consisting of glycidyl esters of β-unsaturated acids were uniformly mixed in various proportions shown in Table 1 in a V-type blender. The resulting mixture was heated to a barrel temperature using a 65mmφ extruder.
The mixture was melt-kneaded at 270°C, and the thread discharged from the die was cooled and cut to obtain pellets for molding. Next, the pellets were dried with hot air at 130°C for 5 hours, and a test piece mold for measuring physical properties was attached to a 5-ounce injection molding machine, and the cylinder temperature was 270°C.
Mold temperature 90℃, injection pressure 700Kg/cm 2 , cooling time 20
The test pieces were molded under molding conditions of 35 seconds and a total cycle of 35 seconds. The impact strength and surface appearance of the obtained test pieces were evaluated. The results are shown in Table 1.

【表】 第1表からわかるように(C),(D),(E)成分を組み
合わせて使用することにより表面外観性が優れ且
つ耐衝撃性の良好な成形品が得られることがわか
る。なおポリエチレンテレフタレートの成形収縮
率が0.019cm/cmであるのに対し実施例のものは、
0.006〜0.007cm/cmであつた。 実施例6〜10,及び比較例6〜10 芳香族ポリエステルとしてポリテトラメチレン
テレフタレート(還元比粘度1.10)、芳香族ポリ
カーボネートとして“パンライトL−1225”(商
品名;帝人化成KK製)、ブタジエン系グラフト
共重合体として、ポリブタジエン30部の存在下に
スチレン50部とアクリロニトリル20部とを乳化グ
ラフト共重合させて得たグラフト共重合体(グラ
フト率82.5%)、エチレン系共重合体、およびα
オレフインとα,β−不飽和酸のグリシジルエス
テルから成るオレフイン系共重合体を第2表に示
す種々の割合で、実施例1と同じ方法により評価
した。 結果を第2表に示す。
[Table] As can be seen from Table 1, by using components (C), (D), and (E) in combination, molded products with excellent surface appearance and good impact resistance can be obtained. In addition, the molding shrinkage rate of polyethylene terephthalate is 0.019 cm/cm, whereas the molding shrinkage rate of the example is
It was 0.006-0.007cm/cm. Examples 6 to 10 and Comparative Examples 6 to 10 Polytetramethylene terephthalate (reduced specific viscosity 1.10) as aromatic polyester, "Panlite L-1225" (trade name; manufactured by Teijin Kasei KK) as aromatic polycarbonate, butadiene-based As a graft copolymer, a graft copolymer obtained by emulsion graft copolymerization of 50 parts of styrene and 20 parts of acrylonitrile in the presence of 30 parts of polybutadiene (grafting rate 82.5%), an ethylene copolymer, and α
Olefin copolymers consisting of olefins and glycidyl esters of α,β-unsaturated acids were evaluated in the same manner as in Example 1 at various ratios shown in Table 2. The results are shown in Table 2.

【表】【table】

【表】 なお、ポリテトラメチレンテトフタレートの成
形収縮率が0.021cm/cmであるのに対し本発明の
それは0.008〜0.009cm/cmであつた。 比較例 11 芳香族ポリエステルとして130℃にて5時間乾
燥したポリエチレンテレフタレート(還元比粘度
0.71)、芳香族ポリカーボネートとして“パンラ
イトL−1225”(帝人化成(株)製造の商品名)、ブタ
ジエン系グラフト共重合体としてポリブタジエン
30重量部の存在下に、スチレン50重量部とアクリ
ロニトリル20重量部とを乳化グラフト共重合させ
て得たもの及びエチレン系共重合体の4種の構成
成分からなる組成物を作つた。 実施例3とともにこの比較例11の組成と物性と
を第3表に示した。
[Table] Note that the molding shrinkage rate of polytetramethylene tetophthalate was 0.021 cm/cm, whereas that of the present invention was 0.008 to 0.009 cm/cm. Comparative Example 11 Polyethylene terephthalate (reduced specific viscosity
0.71), "Panlite L-1225" (trade name manufactured by Teijin Kasei Ltd.) as an aromatic polycarbonate, and polybutadiene as a butadiene-based graft copolymer.
A composition was prepared by emulsion graft copolymerization of 50 parts by weight of styrene and 20 parts by weight of acrylonitrile in the presence of 30 parts by weight, and four components: an ethylene copolymer. The composition and physical properties of Comparative Example 11 as well as Example 3 are shown in Table 3.

【表】【table】

【表】 第3表に示したように(E)成分を配合しないと衝
撃強度のレベルが低くなる。これは本来(D)成分の
みでは耐衝撃性の改良効果が少なく、(E)成分と併
用することにより相乗的に改良効果が改善される
るものである。
[Table] As shown in Table 3, if component (E) is not added, the impact strength level will be low. This is because component (D) alone has little impact resistance improvement effect, but when used in combination with component (E), the improvement effect is synergistically improved.

Claims (1)

【特許請求の範囲】 1 (A) 芳香族ポリエステル 4〜95重量%, (B) 芳香族ポリカーボネート(B)4〜95重量%, (C) ブタジエン系重合体(イ)にメタクリル酸エステ
ル(ロ),芳香族モノビニル化合物(ハ)及びシアン化
ビニル化合物(ニ)よりなる群から選ばれたビニル
系単量体の1種以上をグラフト共重合せしめた
ブタジエン系グラフト共重合体 1〜20重量%, (D) エチレン系共重合体1〜20重量%,および (E) α−オレフインとα,β−不飽和酸のグリシ
ジルエステルからなるオレフイン系共重合体
0.5〜10重量% より成る熱可塑性樹脂組成物。
[Scope of Claims] 1 (A) 4 to 95% by weight of aromatic polyester, (B) 4 to 95% by weight of aromatic polycarbonate (B), (C) methacrylic acid ester (Ro) in butadiene polymer (A). ), a butadiene-based graft copolymer obtained by graft copolymerizing one or more vinyl monomers selected from the group consisting of aromatic monovinyl compounds (c), and vinyl cyanide compounds (d) 1 to 20% by weight , (D) 1 to 20% by weight of an ethylene copolymer, and (E) an olefin copolymer consisting of an α-olefin and a glycidyl ester of an α,β-unsaturated acid.
A thermoplastic resin composition consisting of 0.5 to 10% by weight.
JP2415286A 1986-02-07 1986-02-07 Resin composition Granted JPS62184051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2415286A JPS62184051A (en) 1986-02-07 1986-02-07 Resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2415286A JPS62184051A (en) 1986-02-07 1986-02-07 Resin composition

Publications (2)

Publication Number Publication Date
JPS62184051A JPS62184051A (en) 1987-08-12
JPH0412901B2 true JPH0412901B2 (en) 1992-03-06

Family

ID=12130366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2415286A Granted JPS62184051A (en) 1986-02-07 1986-02-07 Resin composition

Country Status (1)

Country Link
JP (1) JPS62184051A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6383158A (en) * 1986-09-29 1988-04-13 Teijin Chem Ltd Resin composition
JP2893185B2 (en) * 1989-01-31 1999-05-17 日本ジーイープラスチックス株式会社 Polycarbonate / polyester resin composition
US5369154A (en) * 1990-04-12 1994-11-29 The Dow Chemical Company Polycarbonate/aromatic polyester blends containing an olefinic modifier
US5308894A (en) * 1990-04-12 1994-05-03 The Dow Chemical Company Polycarbonate/aromatic polyester blends containing an olefinic modifier
CA2265967A1 (en) * 1996-11-27 1998-06-04 The Dow Chemical Company Polycarbonate blend compositions

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817148A (en) * 1981-07-24 1983-02-01 Toray Ind Inc Polyester composition
JPS59131646A (en) * 1982-11-24 1984-07-28 ゼネラル・エレクトリツク・カンパニイ Thermoplastic polyester-linear low density polyethylene molding compositions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817148A (en) * 1981-07-24 1983-02-01 Toray Ind Inc Polyester composition
JPS59131646A (en) * 1982-11-24 1984-07-28 ゼネラル・エレクトリツク・カンパニイ Thermoplastic polyester-linear low density polyethylene molding compositions

Also Published As

Publication number Publication date
JPS62184051A (en) 1987-08-12

Similar Documents

Publication Publication Date Title
US5300572A (en) Moldable polyester resin compositions and molded articles formed of the same
US5424361A (en) Low temperature impact resistant polycarbonate/poly(cyclohexanedimethylene terephthalate)/core shell acryalte copolymer compositions
JPH05194829A (en) Solvent-resistant polycarbonate/polyester blend having improved impact resistance
JPH01163243A (en) Thermoplastic resin composition
JPH01144447A (en) Glass fiber reinforced thermoplastic molding material based on polyester and graft polymer
JPS6160753A (en) Polycarbonate blend
JPH0412901B2 (en)
JPH01123854A (en) Thermoplastic resin composition
JPH075814B2 (en) Fiber-reinforced thermoplastic resin composition
JPS6160752A (en) Acrylonitrile-free polycarbonate blends
JPS59166556A (en) Resin composition having improved low-temperature impact resistance
JPH02105848A (en) Impact-resistant thermoplastic molding compound made of aromatic polyester-carbonate and polyalkylene terephthalate
JPH05230349A (en) Thermoplastic resin composition
EP0386674A2 (en) Thermoplastic polyester resin composition having improved impact resistance
JPH075815B2 (en) Fiber-reinforced thermoplastic resin composition
JPH041260A (en) Polyester resin composition
JPS60130645A (en) Thermoplastic resin composition
JPH0485360A (en) Reinforced resin composition
JP2893185B2 (en) Polycarbonate / polyester resin composition
JPS607659B2 (en) Manufacturing method of resin composition
JPH01165658A (en) Thermoplastic resin composition
KR930010235B1 (en) Polyester/polycarbonate alloy resin composition
JPS61127754A (en) Thermoplastic resin composition
JP2583231B2 (en) Impact resistant polyester resin composition
JPH09216979A (en) Molding having embossed surface

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term