JPH04128378A - Coated cemented carbide - Google Patents

Coated cemented carbide

Info

Publication number
JPH04128378A
JPH04128378A JP2251250A JP25125090A JPH04128378A JP H04128378 A JPH04128378 A JP H04128378A JP 2251250 A JP2251250 A JP 2251250A JP 25125090 A JP25125090 A JP 25125090A JP H04128378 A JPH04128378 A JP H04128378A
Authority
JP
Japan
Prior art keywords
cemented carbide
phase
base material
coating
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2251250A
Other languages
Japanese (ja)
Inventor
Tsutomu Yamamoto
勉 山本
Hiroshi Takeda
宏 武田
Katsumi Miyatake
宮武 克巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dijet Industrial Co Ltd
Original Assignee
Dijet Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dijet Industrial Co Ltd filed Critical Dijet Industrial Co Ltd
Priority to JP2251250A priority Critical patent/JPH04128378A/en
Publication of JPH04128378A publication Critical patent/JPH04128378A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Chemical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To improve the adhesiveness of the film of the coated cemented carbide and to greatly prolong the tool life by forming the boundary face of the hard phase of the cemented carbide base material to constitute the film of the 1st layer and the forming phase of an NaCl type crystal. CONSTITUTION:The part from 0.5mum to 8mum of the surface part of the base material consisting of the cemented carbide is formed of the boundary layer constituted of the hard phase of the cemented carbide and the forming phase consisting of the NaCl type crystal. The film of the above-mentioned forming phase is formed at <=15mum thickness on the front surface thereof to form the coated cemented carbide. The hard phase of the cemented carbide base material is formed of a WC phase or the WC phase and the double carbide phase or double carbonitride phase of W, Ti, Ta, and Nb. The coating with which the forming phase of the NaCl type crystal consists of one kind of TiC, Ti(C, N), TiN is preferably formed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、工具材料として用いる被覆超硬合金に係り、
さらに詳細には超硬合金母材に対する被膜の付着強度が
高く、耐摩耗性や耐欠損を向上させた被覆超硬合金に関
するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a coated cemented carbide used as a tool material,
More specifically, the present invention relates to a coated cemented carbide that has a high adhesion strength to the cemented carbide base material and has improved wear resistance and chipping resistance.

[従来技術] 従来、被覆超硬合金は、焼結面または研削面を有する超
硬合金母材の表面に気相蒸着法によってTic、Ti 
(C,N) 、TiN、Al2O3などのセラミックス
を1種あるいは2種以上被覆させたものが耐摩耗用工具
または切削工具として広く用いられている。
[Prior Art] Conventionally, coated cemented carbide is produced by depositing Tic, Ti on the surface of a cemented carbide base material having a sintered surface or a ground surface by a vapor phase deposition method.
Tools coated with one or more types of ceramics such as (C,N), TiN, and Al2O3 are widely used as wear-resistant tools or cutting tools.

[発明が解決しようとする課題] しかしながら、被覆超硬合金は比較的靭性値の高い超硬
合金母材の表面に特性の異なる硬質セラミックスを被覆
するために、超硬合金母材に対する前記被膜の付着強度
を高めることができない。
[Problems to be Solved by the Invention] However, in coated cemented carbide, in order to coat hard ceramics with different characteristics on the surface of a cemented carbide base material with a relatively high toughness value, the coating is applied to the cemented carbide base material. It is not possible to increase the adhesion strength.

したがって、付着強度の低い被覆超硬合金を過酷な条件
下で使用した場合、超硬合金母材の表面にある被膜は剥
離して所期の工具寿命が得られない。
Therefore, when a coated cemented carbide with low adhesion strength is used under severe conditions, the coating on the surface of the cemented carbide base material peels off, making it impossible to obtain the desired tool life.

[発明の目的] 本発明は、前記した課題に鑑みなしたもので、被覆超硬
合金の被膜の付着性を向上させて工具寿命を大きく延命
できる被覆超硬合金を提供することを目的とするもので
ある。
[Object of the Invention] The present invention was made in view of the above-mentioned problems, and an object of the present invention is to provide a coated cemented carbide that can improve the adhesion of the coating of the coated cemented carbide and greatly extend the tool life. It is something.

[課題を解決するための手段」 本発明は、前々記した課題を下記する手段によって解決
したものである。
[Means for Solving the Problems] The present invention solves the aforementioned problems by the means described below.

すなわち、超硬合金からなる母材の表面部の0.5μm
から8μmまでの間が、超硬合金の硬質相とNaCl型
結晶からなる生成相とから構成された界面層とし、その
上表面に前記生成相の被膜を15μm以下のものを形成
させた被覆超合金を第1の要旨とし、超硬合金母材の硬
質相をWC相またはWC相とW、Ti、Ta、Nbの複
炭化物相ないしは複炭窒化物相からなり、Nacl型結
晶からなる生成相がTiC,Ti (C,N)、Ti 
Nの1種からなる被覆超硬合金を第2の要旨とし、第3
の要旨を前記した被覆超硬合金の上表面にT i C1
Ti (C,N)、TiN、A1203からなる群より
選ばれた1種または2種以上の被膜を形成させ、これら
の全被膜厚みを1μmから15μmとさせたものである
That is, 0.5 μm of the surface of the base material made of cemented carbide.
to 8 μm is an interfacial layer composed of a hard phase of cemented carbide and a generated phase consisting of NaCl type crystals, and a coating of the generated phase with a thickness of 15 μm or less is formed on the upper surface of the interface layer. The first aspect is the alloy, and the hard phase of the cemented carbide base material is composed of a WC phase or a WC phase and a double carbide phase or a double carbonitride phase of W, Ti, Ta, and Nb, and a generated phase consisting of NaCl type crystals. is TiC, Ti (C,N), Ti
The second gist is a coated cemented carbide made of one type of N, and the third gist is
T i C1 on the upper surface of the coated cemented carbide described above.
One or more types of coatings selected from the group consisting of Ti (C,N), TiN, and A1203 are formed, and the total thickness of these coatings is 1 μm to 15 μm.

[発明の作用] 従来の被覆超硬合金は、超硬合金母材と被膜との付着強
度は必ずしも満足するものではない理由の一つとして、
該母材と被膜の接触界面部が平滑であるために切削作用
中に受ける応力に対して抗しきれず超硬合金母材から被
膜の剥離がおこり易い。
[Operation of the invention] One of the reasons why conventional coated cemented carbide does not always have satisfactory adhesion strength between the cemented carbide base material and the coating is as follows.
Since the contact interface between the base material and the coating is smooth, it cannot withstand the stress received during cutting, and the coating is likely to peel off from the cemented carbide base material.

以上の従来技術の有する課題を解決するためには、超硬
合金母材と被膜の接触面積を大きくし、かつ該母材と該
被膜の接触面に幾可学的な凹凸を有する界面部を形成す
ることによって前記母材に対する被膜の付着強度が大き
く向上するのと知見を得た。
In order to solve the above-mentioned problems of the conventional technology, it is necessary to increase the contact area between the cemented carbide base material and the coating, and to create an interface area with geometric irregularities on the contact surface between the base material and the coating. It has been found that the adhesion strength of the coating to the base material is greatly improved by forming the coating.

すなわち、超硬合金母材の第1層目の被膜となる該母材
の硬質相とNaCl型結晶との生成相の界面相を形成さ
せることによって、この第1層目の被膜は該母材の表面
部に根をおろした形で存在して切削作用中に受ける大き
な応力に対しても充分に抗するようになり、該母材から
該被膜は容易に剥離しない構造となる。
That is, by forming an interfacial phase between the hard phase of the cemented carbide base material and the NaCl type crystal, which becomes the first layer coating of the base material, this first layer coating is formed on the base material. The coating exists in a rooted form on the surface of the base material and has a structure that sufficiently resists large stresses received during cutting, and the coating does not easily peel off from the base material.

つまり、超硬合金母材の表面部に前記のような被膜の形
成は、超硬合金表面の結合金属相を電解処理によって溶
解除去して凹み、または空洞部を形成させ、しかる後に
気相蒸着法によってNaCl結晶構造を有するTiC,
Ti (C,N)、TiNのいずれかを該母材表面の凹
部または空洞部に堆積生成させ、しかもこれを連続して
母材表面に被覆させることによって、第1図に示すよう
に超硬合金母材表面部に超硬合金の硬質相とNaCl結
晶の生成相からなる界面層と、その表面上に連続的に被
覆された生成相からなる被膜を有する母材に対して被膜
の付着強度がきわめて高い被覆超硬合金が得られる。
In other words, the formation of the above-mentioned film on the surface of the cemented carbide base material involves dissolving and removing the bonded metal phase on the surface of the cemented carbide to form a depression or cavity, and then vapor-phase deposition. TiC with NaCl crystal structure by method,
By depositing either Ti (C, N) or TiN in the recesses or cavities on the surface of the base material and continuously coating the surface of the base material, a superhard material can be formed as shown in Figure 1. The adhesion strength of the coating to the alloy base material, which has an interfacial layer consisting of the hard phase of the cemented carbide and the generated phase of NaCl crystals on the surface of the alloy base material, and a coating consisting of the generated phase continuously coated on the surface. A coated cemented carbide with extremely high hardness can be obtained.

なお、界面相となる超硬合金母材の表面部を0.5から
8μmとしたのは、0.5μm未満では被膜の付着強度
の高いものが得られず、8μmを越えるとNaCl型結
晶構造からなる生成相が凹部跋たは空洞部に完全に進入
し難く、ボアとして残ることや表面粗さを著しく息下さ
せて表面強度を低下させるためである。
The reason why the surface area of the cemented carbide base material, which becomes the interfacial phase, is set to 0.5 to 8 μm is because if it is less than 0.5 μm, a film with high adhesion strength cannot be obtained, and if it exceeds 8 μm, it will have a NaCl type crystal structure. This is because it is difficult for the generated phase consisting of the above to completely enter the recess or cavity, leaving it as a bore or significantly reducing the surface roughness and lowering the surface strength.

また、上記した界面層に続いて被覆する生成相の被覆厚
みを15μm以下(0を含まず)としたのは15μmを
越えると表面強度の低下を招くからである。
Further, the coating thickness of the generated phase that is coated subsequent to the above-mentioned interface layer is set to be 15 μm or less (not including 0) because if it exceeds 15 μm, the surface strength will decrease.

そして、界面層中の生成相と同一生成相からなる被膜の
第1層をNaCl結晶からなるTic、Ti (C,N
)、TiNのうちの1種したのは、これがセラミックス
コテイングの中でも最適な硬度、すなわち耐摩耗性を有
し、しかも超硬合金母材との親和性が良好なためである
Then, the first layer of the coating consisting of the same generated phase as the generated phase in the interface layer is replaced with Tic, Ti (C,N
), TiN was used because it has the best hardness, that is, wear resistance, among ceramic coatings, and also has good affinity with the cemented carbide base material.

第2層目以上の被膜をTiC,Ti (C1N)、Ti
N、Al10Bからなる群から選んだ1種または2種以
上としたのは、これらのセラミックス被膜が耐摩耗性、
耐熱性、耐酸化性および耐摩擦抵抗性などに優れるため
であるのと同時に、気相蒸着法によって安定して生成で
き、かつ前記した第1層の被膜との親和性が良好である
ためである。
TiC, Ti (C1N), Ti
The reason for using one or more selected from the group consisting of N, Al10B is that these ceramic coatings have wear resistance,
This is because it has excellent heat resistance, oxidation resistance, and friction resistance, and at the same time, it can be stably produced by vapor phase deposition and has good affinity with the first layer coating described above. be.

[実施例] 実施例1 超硬合金からなる切削用チップ(チップ形状、ISO5
NGN120412)を形成し、これの表面部のCo相
をPH3〜4の酸性浴の電解処理により除去した後、化
学蒸着法によってTiCコーティングをおこなうことに
よって、界面層を有する本発明になる被覆超硬合金をつ
くった。これらの詳細を表1に示す、また従来の化学蒸
着法によってTiCコーティングした比較のための切削
用チップもつくり、これも表1に示した。
[Example] Example 1 Cutting tip made of cemented carbide (tip shape, ISO5
NGN120412) is formed, the Co phase on the surface is removed by electrolytic treatment in an acidic bath of pH 3 to 4, and then a TiC coating is applied by chemical vapor deposition to form the coated carbide of the present invention having an interface layer. Made an alloy. Details of these are shown in Table 1. Comparative cutting tips coated with TiC by conventional chemical vapor deposition were also made and shown in Table 1.

なお、上記した各試料の超硬合金母材の組成は、WC:
94%、Co:6%である以上の各試料を用いて表2の
(1)に示す切削条件によって切削テストをおこない、
逃げ面摩耗が最大で0.3mmに達するまでの工具寿命
を求めた。
The composition of the cemented carbide base material of each sample described above is WC:
A cutting test was conducted using the above samples with 94% Co and 6% under the cutting conditions shown in (1) of Table 2.
The tool life until flank wear reached a maximum of 0.3 mm was determined.

表1 表2 表2に示す切削方法(1)にてテストした結果、本発明
になる被覆超硬合金の11は、25分間で逃げ面摩耗が
0.3mmに達し、同じくI−2は、28分間で寿命と
なったのに対し、比較品のI−3は、5分間のテストで
切刃が欠損し、同じ<r−4は、1分間の切削テストで
切刃が欠損してテストを中止した。
Table 1 Table 2 As a result of testing using the cutting method (1) shown in Table 2, coated cemented carbide No. 11 of the present invention reached flank wear of 0.3 mm in 25 minutes, and similarly I-2: The life span was reached in 28 minutes, whereas the comparison product I-3 lost its cutting edge after a 5-minute test, and the same <r-4 lost its cutting edge after a 1-minute cutting test. has been discontinued.

実施例2 超硬合金の組成が、WC:90%、(W、Ti)C:3
%、TiN:1%、co=6%からなる切削用チップ(
チップ形状工So  5NGN120412)を用い、
このチップの表面部のCo相を電解除去した後、化学蒸
着法でTi (C,N)をコーティングして本発明にな
る被覆超硬合金を得た。
Example 2 The composition of cemented carbide is WC: 90%, (W, Ti)C: 3
%, TiN: 1%, cutting tip consisting of co=6% (
Using chip shaper So 5NGN120412),
After electrolytically removing the Co phase on the surface of this chip, Ti (C,N) was coated by chemical vapor deposition to obtain a coated cemented carbide according to the present invention.

また、比較のために化学蒸着法によっ てTiC被膜を直接超硬合金母材にコーティングした従
来の被覆超硬合金も用意した以上の詳細は、本発明にな
る被覆超硬合金が、界面層である硬質相をWCl(W、
Ti)(C,N)、生成相をTi (C,N)とし、こ
れらの厚みを2μmとし、この上表面にTi (C,N
)を8ttmコーティングした。
In addition, for comparison, a conventional coated cemented carbide in which a TiC film was directly coated on a cemented carbide base material by a chemical vapor deposition method was also prepared. The hard phase was converted to WCl (W,
Ti) (C, N), the generated phase is Ti (C, N), the thickness of these is 2 μm, and Ti (C, N) is formed on the upper surface.
) was coated with 8ttm.

また、比較品は、界面層を有せず前記超硬合金母材の表
面にTi(C,N)を10μmコーティングしたもので
ある・ 以上の試料を用いて、まず被覆超硬合金の超硬合金母材
と被膜の付着力の目安とる被膜の剥離荷重をダイヤモン
ド圧子によるスクラッチテスト法で求め、次に表2(2
)に示す切削条件によって切削テストをおこない実施例
1と同様の工具寿命を求めたその結果、本発明になる被
覆超硬合金が、剥離荷重は85 (N)を示し、12分
間のテストで寿命に達したのに対し、比較品は剥離荷重
が53(N)で5分間のテストで寿命となった。
In addition, the comparative product does not have an interface layer and has a 10 μm coating of Ti (C, N) on the surface of the cemented carbide base material. The peeling load of the coating, which is a measure of the adhesion force between the alloy base material and the coating, was determined by a scratch test method using a diamond indenter, and then Table 2 (2
) A cutting test was carried out under the cutting conditions shown in Example 1 to find the same tool life as in Example 1. As a result, the coated cemented carbide of the present invention showed a peeling load of 85 (N), and the tool life was shortened in the 12 minute test. In contrast, the comparative product reached the end of its life after a 5-minute test with a peeling load of 53 (N).

実施例3 超硬合金の組成が、WC:86%、(W、Ti)C:2
%、(Ta、Nb)C: 5%、Coニア%からなる切
削用チップ(チップ形状、ISOSNMG120412
)を用い、このチップの表面部のCO相を電解除去した
後、化学蒸着法によりTiC−Al2O,のコーティン
グをおこない本発明になる被覆超硬合金を得た。
Example 3 Composition of cemented carbide: WC: 86%, (W, Ti)C: 2
%, (Ta, Nb)C: 5%, cutting tip (chip shape, ISOSNMG120412
) to electrolytically remove the CO phase on the surface of this chip, and then coated with TiC-Al2O by chemical vapor deposition to obtain a coated cemented carbide according to the present invention.

tた比較のために熱化学蒸着法によってTiC−Al2
O3の被膜を上記組成の超硬合金母材に直接コーティン
グした被覆超硬合金を用意した。
TiC-Al2 was prepared by thermal chemical vapor deposition for comparison.
A coated cemented carbide was prepared by directly coating a cemented carbide base material of the above composition with an O3 film.

以上の試料の詳細は、本発明になる被覆超硬合金が、界
面層とする硬質相をWc、(W、Ti、Ta、Nb)C
で生成相はTiCで、これらの層厚を1μmとした上に
TiC(4μm)−Al103  (2μm)をコーテ
ィングした。
The details of the above samples are that the coated cemented carbide of the present invention has a hard phase as an interface layer of Wc, (W, Ti, Ta, Nb)C
The generated phase was TiC, and these layers were coated with TiC (4 μm)-Al103 (2 μm) to a thickness of 1 μm.

なお、比較品は界面相を形成させず該母材にTic (
5μm)−A1203  (2μm)をコーティングし
たものである。
In addition, the comparative product does not form an interfacial phase and has Tic (
5 μm)-A1203 (2 μm).

上記の試料を表2の(3)に示す切削条件によって切削
テストをおこない実施例1と同様の工具寿命を求めた。
A cutting test was performed on the above sample under the cutting conditions shown in Table 2 (3), and the tool life similar to that in Example 1 was determined.

その結果、本発明になる被覆超硬合金が、剥離荷重は8
1(N)を示し、25分間のテストが可能であったのに
対し、比較品は、剥離荷重は45(N)で、15分間の
テストで寿命となった。
As a result, the coated cemented carbide of the present invention has a peeling load of 8
1 (N) and a 25-minute test was possible, whereas the comparative product had a peeling load of 45 (N) and reached the end of its life after a 15-minute test.

実施例4 超硬合金の組成が、WC:85%、(W、Ti)C:5
%、TiN:2%、CO:8%からなる切削用チップ(
チップ形状、2SOSNMG120412)を用い、こ
のチップの表面部のCO相を電解除去した後、化学蒸着
法によりTiN−Al2O3−TiNのコーティングを
おこなって本発明になる被覆超硬合金を得た。
Example 4 Composition of cemented carbide: WC: 85%, (W, Ti)C: 5
%, TiN: 2%, CO: 8% (
After electrolytically removing the CO phase on the surface of the chip, a coated cemented carbide according to the present invention was obtained by coating TiN-Al2O3-TiN by chemical vapor deposition.

また、比較のために化学蒸着法によってTiNAIz○
3−TiNの被膜を上記組成の超硬合金母材に直接コー
ティングした被覆超硬合金も用意した。
For comparison, TiNAIz○ was also produced by chemical vapor deposition.
A coated cemented carbide was also prepared in which a 3-TiN film was directly coated on a cemented carbide base material having the above composition.

以上の試料の詳細は、本発明になる被覆超硬合金が、界
面相とする硬質相をWCで生成相をTiNとし、これら
の層厚を2μmとした。■た上記の上表面にはTiN(
4μm)、Al103 (3μm)、TiN(1μm)
をコーティングした。
The details of the above sample are such that the coated cemented carbide according to the present invention has WC as a hard phase serving as an interfacial phase, TiN as a generated phase, and has a layer thickness of 2 μm. ■TiN (
4μm), Al103 (3μm), TiN (1μm)
coated.

なお、比較品の表面層は、TiN(5μm) 、A12
03 (3μm) 、TiN (1μm)である。
The surface layer of the comparative product is TiN (5 μm), A12
03 (3 μm) and TiN (1 μm).

上記した試料を表2の(3)に示す切削条件によってテ
ストをおこない実施例1と同様の工具寿命を求めた。
The above-mentioned samples were tested under the cutting conditions shown in Table 2 (3), and tool life similar to that in Example 1 was determined.

以上の結果、本発明になる被覆超硬合金は、剥離荷重は
85 (N)を示し、30分間の切削が可能であったの
に対し、比較品は剥離荷重は43(N)で、切削時間は
18分間であった。
As a result, the coated cemented carbide of the present invention exhibited a peeling load of 85 (N) and was capable of cutting for 30 minutes, whereas the comparative product had a peeling load of 43 (N) and could be cut for 30 minutes. The time was 18 minutes.

実施例5 超硬合金母材の組成が、WC:87%、(W 、 Ti
)C二 2 %、  (Ta、  Nb)  C;2%
、TiN:1%、CO:8%からなる切削用チップ(チ
ップ形状、ISO5NGNI 20412>を用い、こ
れらの表面部のCO相を実施f!41と同方法にて除去
した後、その表面部にコーティングして本発明になる被
覆超硬合金および比較のための被覆超硬合金をつくった
。これらの詳細は表3に示す。
Example 5 The composition of the cemented carbide base material was WC: 87%, (W, Ti
) C2 2%, (Ta, Nb) C; 2%
Using a cutting tip (chip shape, ISO5NGNI 20412) consisting of , TiN: 1%, and CO: 8%, the CO phase on the surface of these was removed in the same manner as in implementation f!41, and then the surface was A coated cemented carbide of the present invention and a comparative coated cemented carbide were prepared by coating, the details of which are shown in Table 3.

以上の各試料を用いて表2の(3)に示す切削条件によ
ってテストした。寿命測定は実施例1と同様である。
Tests were conducted using each of the above samples under the cutting conditions shown in (3) of Table 2. The life measurement was the same as in Example 1.

上記のテスト結課は、本発明になる被覆超硬合金の試料
V−1は、剥離荷重は90(N)で、35分間の切削が
でき、同■−2は剥離荷重は85 (N)で、28分間
の切削が可能であったのに対し、比較品のV3は6分間
の切削で切刃が欠損し、同V−4は剥離荷重は55(N
)で、17分間の切削で切刃の逃げ面摩耗が0.3mm
達した。
The result of the above test is that sample V-1 of the coated cemented carbide according to the present invention can be cut for 35 minutes with a peeling load of 90 (N), and Sample V-2 can be cut for 35 minutes with a peeling load of 85 (N). However, the comparison product V3 lost its cutting edge after 6 minutes of cutting, and the V-4 had a peeling load of 55 (N).
), the flank wear of the cutting edge was 0.3 mm after 17 minutes of cutting.
Reached.

実施例6 WC:94%、CO:6%の組成からなる超硬合金を用
いて絞りダイス(内径130mm、外径180mm、高
さ15mm)を2ケ用意し、そのうち1ケは化学蒸着法
で15μmのTi (C,N)の被覆をおこない、ケー
シング後、被膜の厚みが8〜10μmになるように研削
して従来の絞りダイスをつくった。
Example 6 Two drawing dies (inner diameter 130 mm, outer diameter 180 mm, height 15 mm) were prepared using cemented carbide with a composition of WC: 94% and CO: 6%, and one of them was made by chemical vapor deposition. A conventional drawing die was made by coating with Ti (C,N) to a thickness of 15 μm and, after casing, grinding the film to a thickness of 8 to 10 μm.

他の1ケは、前記超硬合金の表面部のCO相をPH3〜
4の酸性浴の電解処理により除去した後、化学蒸着法に
よりTi (C5N)をコーティングしてWC相とTi
(C,N)相からなる界面層を2μmと、Tic、N)
被膜を13μm形成させ、これをゲージング後、被膜厚
みを8〜10μmになるように研削して本発明になる絞
りダイスを得た。
Another method is to adjust the CO phase on the surface of the cemented carbide to a pH of 3 to
After removal by electrolytic treatment in an acidic bath in step 4, Ti (C5N) was coated by chemical vapor deposition to separate the WC phase and Ti.
The interfacial layer consisting of (C,N) phase is 2μm, Tic,N)
A coating of 13 μm was formed, and after gauging, the coating was ground to a thickness of 8 to 10 μm to obtain a drawing die according to the present invention.

上記した絞りダイスを用いて、冷間圧延鋼板5pcc材
を無潤滑で加工速度100mm/sec、1分間30ケ
の割合でテストした結果、本発明になる絞りダイスは約
90万ケの加工ができたのに対し、上記した従来の絞り
ダイスは約50万ケで寿命となった。
Using the above-mentioned drawing die, we tested a cold rolled steel plate of 5pc without lubrication at a machining speed of 100 mm/sec and a rate of 30 pieces per minute. On the other hand, the conventional drawing die mentioned above reached the end of its life after about 500,000 dies.

[発明の効果コ 以上に述べたように、本発明になる被覆超硬合金は従来
の被覆超硬合金に比べて、超硬合金母材と被膜との付着
性が大きく改善され、過酷な使用条件下での被膜の剥離
に伴う工具寿命の低下を防ぎ、安定した工具寿命の被覆
超硬合金を提供できるものである。
[Effects of the Invention] As described above, the coated cemented carbide of the present invention has greatly improved adhesion between the cemented carbide base material and the coating compared to conventional coated cemented carbide, and is resistant to harsh use. It is possible to prevent a decrease in tool life due to peeling of the coating under certain conditions, and provide a coated cemented carbide with a stable tool life.

4、4,

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明になる被覆超硬合金の謬微鏡写真 (倍率1000倍) ゛超硬6・1官:母(ニジ 手続補正書 方式 %式% 事件の表示 平成2年特許願第25 50号 補正をする者 事件との関係 Figure 1 is a microscopic photograph of the coated cemented carbide according to the present invention. (1000x magnification) ゛Super hard 6/1 official: Mother (Niji) Procedural amendment method %formula% Display of incidents 1990 Patent Application No. 25 No. 50 person who makes corrections Relationship with the incident

Claims (3)

【特許請求の範囲】[Claims] (1)超硬合金からなる母材表面部の0.5μmから8
μmまでの間が、超硬合金の硬質 相とNaCl型結晶からなる生成相とから 構成された界面層で、その上表面に前記生 成相の被膜を15μm以下のものを形成さ せたことを特徴とする被覆超硬合金。
(1) From 0.5 μm to 8 on the surface of the base material made of cemented carbide
μm is an interface layer composed of a hard phase of cemented carbide and a generated phase consisting of NaCl type crystals, and a coating of the generated phase of 15 μm or less is formed on the upper surface of the interface layer. coated cemented carbide.
(2)超硬合金からなる母材の硬質相がWC相またはW
C相とW、Ti、Ta、Nbの複 炭化物相ないしは複炭窒化物相からなり、 NaCl型結晶からなる生成相がTiC、 Ti(C、N)、TiNの1種からなるこ とを特徴とする被覆超硬合金。
(2) The hard phase of the base material made of cemented carbide is WC phase or W
It is characterized by consisting of a C phase and a double carbide phase or a double carbonitride phase of W, Ti, Ta, and Nb, and the generated phase consisting of NaCl type crystals is composed of one type of TiC, Ti (C, N), and TiN. coated cemented carbide.
(3)請求項1および請求項2に記載の被覆超硬合金で
あつて、さらに第2層目以上の被 膜がTiC、Ti(C、N)、TiN、A l_2O_3からなる群より選ばれた1種または2種以
上で、該被膜の全層厚が1μmか ら15μmであることを特徴とする被覆超 硬合金。
(3) The coated cemented carbide according to claims 1 and 2, wherein the second or higher coating is selected from the group consisting of TiC, Ti(C,N), TiN, and Al_2O_3. A coated cemented carbide, characterized in that the total layer thickness of the coating is from 1 μm to 15 μm using one or more types.
JP2251250A 1990-09-19 1990-09-19 Coated cemented carbide Pending JPH04128378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2251250A JPH04128378A (en) 1990-09-19 1990-09-19 Coated cemented carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2251250A JPH04128378A (en) 1990-09-19 1990-09-19 Coated cemented carbide

Publications (1)

Publication Number Publication Date
JPH04128378A true JPH04128378A (en) 1992-04-28

Family

ID=17219973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2251250A Pending JPH04128378A (en) 1990-09-19 1990-09-19 Coated cemented carbide

Country Status (1)

Country Link
JP (1) JPH04128378A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015086464A (en) * 2013-11-01 2015-05-07 住友電気工業株式会社 Cermet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015086464A (en) * 2013-11-01 2015-05-07 住友電気工業株式会社 Cermet

Similar Documents

Publication Publication Date Title
KR100348543B1 (en) Coated Cutting Tools
Buhl et al. TiN coatings on steel
JP3512197B2 (en) Cutting tools
JP5363445B2 (en) Cutting tools
EP1094132B1 (en) Multi-layer coated material for cutting tool
JPS61167548A (en) Multilayer film
JP2001001203A (en) Cutting insert, and its manufacture
IL130351A (en) Cubic boron nitride cutting tool and a method of manufacturing the same
JP2000144427A (en) Aluminum oxide coated tool
JPH09234606A (en) Tool of multi-layer coat of high hardness and high compressive pressure
KR101529726B1 (en) Coated cutting insert for milling applications
JP5383259B2 (en) Cutting tools
JPH06173009A (en) Coated cemented carbide excellent in wear resistance and its production
JP5839289B2 (en) Surface coated cutting tool
JP2002371352A (en) Method for forming vanadium-based film
JP3901477B2 (en) Aluminum oxide coated tool
JPH04128378A (en) Coated cemented carbide
JP4351521B2 (en) Surface coated cutting tool
JP2004291162A (en) Surface coated cutting tool
JP2020520819A (en) Method of manufacturing coated cutting tool and coated cutting tool
JPH11335870A (en) Titanium carbonitride-aluminum oxide-coated tool
JP4284144B2 (en) Surface coated cutting tool
JP4936742B2 (en) Surface coating tools and cutting tools
JP2660180B2 (en) Coated carbide tool
JPS59159981A (en) Surface-coated wear-resistant member for cutting tool and wear resistant tool