JPH04127866A - Combined cycle power plant - Google Patents

Combined cycle power plant

Info

Publication number
JPH04127866A
JPH04127866A JP24703990A JP24703990A JPH04127866A JP H04127866 A JPH04127866 A JP H04127866A JP 24703990 A JP24703990 A JP 24703990A JP 24703990 A JP24703990 A JP 24703990A JP H04127866 A JPH04127866 A JP H04127866A
Authority
JP
Japan
Prior art keywords
power generation
gas
generation system
oxygen
mhd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24703990A
Other languages
Japanese (ja)
Inventor
Naokazu Kimura
木村 直和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Original Assignee
Electric Power Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd filed Critical Electric Power Development Co Ltd
Priority to JP24703990A priority Critical patent/JPH04127866A/en
Publication of JPH04127866A publication Critical patent/JPH04127866A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To install a combined cycle power plant requiring no smokestack by feeding high temperature waste gas containing CO2 produced through blowing of combustion oxygen into a combustor to a heat accumulator thereby collecting waste gas from a combined cycle power plant incorporating an MHD generating system entirely in the form of liquefied CO2. CONSTITUTION:A separator 20 separates the air into oxygen and nitrogen by means of an molecular adsorbent and thus separated oxygen is then blown into a combustor 21 where it is burnt together with fuel to produce high temperature waste gas containing CO2. The high temperature waste gas is then fed to a heat accumulator 23 where it is heated and then fed to an MHD generator 24 in order to generate power. The waste gas is heat exchanged with rare gas in the heat accumulator 23 and then fed to a gas turbine 29 which is thereby driven to drive a generator G2 and generate power. The waste gas is then fed from a heat recovery boiler 28 to a CO2 pressurizing unit 31 coupled through a gas compressor 30 with the gas turbine 29 and the CO2 pressurizing unit 31 pressurize the waste gas to produce liquefied CO2 which is then collected and discarded to the ocean or the like.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電磁流体(Magneto Hydro D
ynalcs)発電をひ組み込んだ複合火力発電装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a magnetic fluid (Magneto Hydro D).
The present invention relates to a combined thermal power generation device incorporating power generation (ynalcs).

〔従来の技術〕[Conventional technology]

MHD発電を加圧流動床燃焼ボイラ(P F B C)
に組み込んだ複合火力発電装置の従来例を第2図のフロ
ーシートにより、その概要について説明する。
Pressurized fluidized bed combustion boiler (P F B C) for MHD power generation
An overview of a conventional example of a combined cycle thermal power generation device incorporated in a conventional power generating system will be explained with reference to the flow sheet shown in FIG.

第2図に示すように、複合火力発電装置は、燃焼器によ
る燃料の燃焼系、ヘリウム、アルゴン等の希ガスによる
MHD発電系、蒸気タービン発電系およびPFBCのガ
スタービン発電系とからなる。
As shown in FIG. 2, the combined thermal power generation system includes a fuel combustion system using a combustor, an MHD power generation system using a rare gas such as helium or argon, a steam turbine power generation system, and a PFBC gas turbine power generation system.

そして、 燃焼系は、 高負荷スラグタップ形の燃焼器1内で、後述するガスタ
ービン発電系のガスタービン13に連動した空気圧縮機
14からの空気の供給により燃料(石炭、石炭ガス、天
然ガス等)を燃焼し、高温(約2000℃)の排ガスを
作る。
The combustion system uses a high-load slag tap type combustor 1 to generate fuel (coal, coal gas, natural gas, etc.) to produce high-temperature (approximately 2000℃) exhaust gas.

この際、排ガス中に含まれるNOx制御のために、燃料
過多条件でガスタービン発電系のPFBCIIの中で二
段燃焼方式がとられている。
At this time, in order to control NOx contained in the exhaust gas, a two-stage combustion method is used in the PFBC II of the gas turbine power generation system under fuel excess conditions.

希ガスによるMHD発電系(クローズドサイクルMID
発電系)は、 (a)上記の排ガスを蓄熱器2に入れ、MHD発電の作
動気体である希ガスを約 2000℃に加熱する。
MHD power generation system using rare gas (closed cycle MID)
Power generation system): (a) The above exhaust gas is put into the heat storage device 2 and the rare gas, which is the working gas for MHD power generation, is heated to about 2000°C.

(b)加熱された希ガスはMHD発電機3に入り、発電
を行う。
(b) The heated rare gas enters the MHD generator 3 and generates electricity.

(c)MHD発電機3を出た希ガスは、高温希ガスボイ
ラ4、再生熱交換器5、低温 希ガスボイラ6を経て希ガスタービン7(蒸気タービン
8と連動)に入る。
(c) The rare gas leaving the MHD generator 3 passes through the high temperature rare gas boiler 4, the regenerative heat exchanger 5, and the low temperature rare gas boiler 6, and then enters the rare gas turbine 7 (in conjunction with the steam turbine 8).

なお、上記高温および低温の各希ガスボイラ4.6は希
ガスによるMHD発電に直接には関与せず、後述する蒸
気タービン発電系の熱交換に利用される。
The high-temperature and low-temperature rare gas boilers 4.6 are not directly involved in MHD power generation using rare gas, but are used for heat exchange in a steam turbine power generation system, which will be described later.

(d)希ガスタービン7を出た希ガスは再生熱交換器5
に入り、予熱されて蓄熱器2に戻る。
(d) The rare gas leaving the rare gas turbine 7 is transferred to the regenerative heat exchanger 5.
The heat is then preheated and returned to the heat storage device 2.

蒸気タービン発電系は、 蒸気タービン8には上記希ガスタービアおよび発電機G
1が連結されており、蒸気タービン8は、 (a)蒸気タービン8−復水器9−低温希ガスボイラ6
(ボイラ6内の希ガス温度は常温に近い)−高温希ガス
ボイラ4 (MHD発電作用後の希ガス温度を利用)−蒸気タービ
ン8の循環路と、 (b)蒸気タービン8−復水器9−熱回収ボイラ16(
後述するガスタービン発電系のガスタービン作用後の排
ガスの回収熱を利用)−蒸気タービン8の循環路と、 の2つの循環路により作動し、発電機G1を駆動し発電
を行う。
The steam turbine power generation system includes the rare gas turbine via and the generator G in the steam turbine 8.
(a) Steam turbine 8 - Condenser 9 - Low temperature rare gas boiler 6
(The rare gas temperature in the boiler 6 is close to room temperature) - High temperature rare gas boiler 4 (Uses the rare gas temperature after MHD power generation action) - Circulation path of the steam turbine 8, (b) Steam turbine 8 - Condenser 9 -Heat recovery boiler 16 (
Utilizing the recovered heat of the exhaust gas after the gas turbine action of the gas turbine power generation system described later) - the circulation path of the steam turbine 8, and the circulation path of the steam turbine 8, it operates by two circulation paths to drive the generator G1 and generate electricity.

(4)PFBCのガスタービン発電系は、(a)圧力容
器10内に設置のPFBCll内で、燃料(石炭)と共
に石灰石 (CaCO3)の脱硫剤を流動燃焼し、高温高圧(75
0〜900℃、10〜 16気圧)の排ガスを作る。
(4) The PFBC gas turbine power generation system consists of (a) fluidized combustion of limestone (CaCO3) desulfurization agent together with fuel (coal) in the PFBCll installed in the pressure vessel 10;
Generate exhaust gas at a temperature of 0 to 900°C and 10 to 16 atm.

(b)排ガスは脱しん装置12に入り精密脱しんされた
後、ガスタービン13に入り、該タービン13を駆動す
る。
(b) After the exhaust gas enters the desulfurization device 12 and undergoes precise desulfurization, it enters the gas turbine 13 and drives the turbine 13.

(C)ガスタービン13の駆動により、該タービン13
に連結した発電機G2を駆動して発電を行うと共に、空
気圧縮機14が作動してPFBCllおよび前記燃焼器
1へ加圧空気を供給する。
(C) By driving the gas turbine 13, the turbine 13
The generator G2 connected to the combustor 1 is driven to generate electricity, and the air compressor 14 is operated to supply pressurized air to the PFBCll and the combustor 1.

(d)ガスタービン13を出た排ガスは排熱回収ボイラ
16に入り、熱回収された(この熱を前記蒸気タービン
8の駆動に利用)排ガスの一部はガスタービン13に空
気圧縮機14を介して連結されたガス圧縮機15を経て
高温燃焼用空気として燃焼器1に供給されると共に、他
の一部は CO2を含んだ排ガスとなって煙突17から大気中に放
出される。
(d) The exhaust gas that exits the gas turbine 13 enters the exhaust heat recovery boiler 16, and a part of the exhaust gas whose heat is recovered (this heat is used to drive the steam turbine 8) is sent to the gas turbine 13 by the air compressor 14. The air is supplied to the combustor 1 as high-temperature combustion air through the gas compressor 15 connected thereto, and the other part is released into the atmosphere from the chimney 17 as exhaust gas containing CO2.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記従来の複合火力発電装置は、総合発電効率が良く(
送電端効率50%以上)、また環境特性も良好であり(
S O,濃度50ppm以下、N Ox濃度40ppm
以下、ばいじん濃度10mg/ N m 、以下)、1
ユニット200〜500MW程度のベース火力およびミ
ドル火力および老朽火力のリプレース適用が可能である
The conventional combined cycle power generation device has good overall power generation efficiency (
It has a net transmission efficiency of 50% or more) and has good environmental characteristics (
SO, concentration 50ppm or less, NOx concentration 40ppm
(hereinafter, dust concentration 10mg/Nm, below), 1
It is possible to replace base firepower, middle firepower, and aging firepower with units of about 200 to 500 MW.

しかし、化石燃焼において生成するC O2については
何んらの処理もすることなく大気中に放出していた。
However, the CO2 generated during fossil combustion was released into the atmosphere without any treatment.

そして、CO2が地球温暖化原因物質の一つであること
から、CO2の排出量を規制しようとする地球環境保全
の問題意識が向上している現在、このCO2の処理が要
望されている。
Since CO2 is one of the substances that cause global warming, there is a growing demand for the treatment of CO2, as awareness of the issue of global environmental conservation is increasing and efforts are being made to regulate CO2 emissions.

本発明はかかる事情に鑑みなされたもので、MHD発電
を組み込んだ複合火力発電装置の燃料燃焼の排ガスを全
て液化炭酸ガスとして回収し、無排煙の複合火力発電装
置を提供することを目的とするものである。
The present invention was made in view of the above circumstances, and an object of the present invention is to recover all the exhaust gas from fuel combustion of a combined cycle power generation system incorporating MHD power generation as liquefied carbon dioxide gas, and to provide a smokeless combined cycle power generation system. It is something to do.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の複合火力発電装置は、前記の目的を達成するた
めに、酸素分離装置と燃焼器とを有し、燃料を燃焼用酸
素と共に燃焼させる高酸素燃焼系と、上記燃焼器から出
るCO2を含む高温排ガスを導入する蓄熱器と、該蓄熱
器内で熱交換する希ガス循環路に介在したMHD発電機
とを有するMHD発電系と、上記蓄熱器からガスタービ
ンを経て上記燃焼器へ戻る排ガス循環路を有するガスタ
ービン発電系と、該ガスタービン発電系の排ガス循環路
に介在した熱回収ボイラと、上記MHD発電系の希ガス
循環路に介在した高温希ガスボイラと、蒸気タービンと
の循環路を有する蒸気タービン発電系と、上記ガスター
ビン発電系の熱回収ボイラを出る排ガスを導入して液化
炭素ガスに変換するCO2加圧器を有するCO2液化系
とからなるものである。
In order to achieve the above object, the combined thermal power generation device of the present invention includes an oxygen separation device and a combustor, a high oxygen combustion system that burns fuel together with combustion oxygen, and a high-oxygen combustion system that burns the fuel together with combustion oxygen, and a high-oxygen combustion system that burns CO2 from the combustor. an MHD power generation system that includes a heat storage device into which high-temperature exhaust gas containing gas is introduced, an MHD generator interposed in a rare gas circulation path that exchanges heat within the heat storage device, and exhaust gas that returns from the heat storage device to the combustor via a gas turbine. A circulation path between a gas turbine power generation system having a circulation path, a heat recovery boiler interposed in the exhaust gas circulation path of the gas turbine power generation system, a high temperature rare gas boiler interposed in the rare gas circulation path of the MHD power generation system, and a steam turbine. and a CO2 liquefaction system including a CO2 pressurizer that introduces exhaust gas exiting the heat recovery boiler of the gas turbine power generation system and converts it into liquefied carbon gas.

そして、燃焼用酸素は、PSAのような分子吸着剤によ
り空気を酸素と窒素に分離する装置により生成されるも
のである。
Oxygen for combustion is produced by a device that separates air into oxygen and nitrogen using a molecular adsorbent such as PSA.

〔作 用〕[For production]

燃焼器への燃焼用酸素の吹き込みにより高温燃焼したC
O2を含む高温の排ガスは蓄熱器へ送られ、この蓄熱器
内で熱交換される希ガスの循環路によりMHD発電が行
われる。
C burned at high temperature by blowing combustion oxygen into the combustor
High-temperature exhaust gas containing O2 is sent to a heat storage device, and MHD power generation is performed through a rare gas circulation path in which heat is exchanged within the heat storage device.

蓄熱器を出た排ガスによりガスタービン発電が行われる
Gas turbine power generation is performed using the exhaust gas that exits the heat storage device.

ガスタービン発電系の熱回収ボイラとMHD発電系の高
温希ガスボイラとの間を循環する蒸気の循環路により蒸
気タービン発電が行われる。
Steam turbine power generation is performed through a steam circulation path that circulates between the heat recovery boiler of the gas turbine power generation system and the high temperature rare gas boiler of the MHD power generation system.

そして、熱回収ボイラを出た排ガスを002加圧器に導
き、液化炭酸ガスに変換回収する。
Then, the exhaust gas exiting the heat recovery boiler is led to the 002 pressurizer, where it is converted and recovered into liquefied carbon dioxide gas.

〔実施例〕〔Example〕

本発明の実施例を図面を参照して説明する。 Embodiments of the present invention will be described with reference to the drawings.

第1図に示すように、複合火力発電装置は、燃焼器によ
る燃料の高酸素燃焼系、ヘリウム、アルゴン等の希ガス
によるMHD発電系、蒸気タービン発電系、排ガスによ
るガスタービン発電系およびCO2液化系からなってい
る。
As shown in Figure 1, a combined cycle power generation system consists of a high-oxygen combustion system using a combustor, an MHD power generation system using rare gases such as helium and argon, a steam turbine power generation system, a gas turbine power generation system using exhaust gas, and a CO2 liquefaction system. It consists of a system.

(1)高酸素燃焼系は、 分子吸着剤等により空気を酸素と窒素に分離する装置2
0(例えば、P S A −PressureSwin
g Absorber )により分離した酸素を、燃焼
用酸素として燃焼器21に吹込み、燃料(石炭、LNG
、重油等)と共に燃焼させて、CO□を含む高温の排ガ
スを作る。
(1) The high oxygen combustion system is a device that separates air into oxygen and nitrogen using molecular adsorbents, etc.2
0 (e.g., P S A -PressureSwin
The oxygen separated by G Absorber is blown into the combustor 21 as combustion oxygen, and the oxygen separated by the fuel (coal, LNG
, heavy oil, etc.) to produce high-temperature exhaust gas containing CO□.

この場合、高酸素燃焼となるため、燃焼温度は通常の微
粉炭燃焼よりも高い約2000℃が得られる。
In this case, since high oxygen combustion occurs, a combustion temperature of approximately 2000° C., which is higher than that of normal pulverized coal combustion, is obtained.

而して、燃料が石炭などの灰分を含む場合には、燃焼器
21の後段に脱灰装置F22を設置して排ガス中のばい
じん濃度を低減する。
When the fuel contains ash such as coal, a deashing device F22 is installed downstream of the combustor 21 to reduce the soot and dust concentration in the exhaust gas.

(2)希ガスによるMHD発電系(クローズドサイクル
MHD発電系)は、 (a)燃焼器21から出る高温の排ガスを蓄熱器23に
入れ(必要により脱灰装置22を通してから) 、MH
D発電の作動気体である希ガスを約2000”Cに加熱
する。
(2) MHD power generation system using rare gas (closed cycle MHD power generation system): (a) High-temperature exhaust gas emitted from the combustor 21 is put into the heat storage device 23 (after passing through the deashing device 22 if necessary), and the MH
The rare gas that is the working gas for D power generation is heated to about 2000''C.

(b)加熱された希ガスはMHD発電機24に入り、発
電を行う。
(b) The heated rare gas enters the MHD generator 24 and generates electricity.

(e)MHD発電機24を出た希ガスは高温希ガスボイ
ラ25を経て希ガスタービン26に入り、該タービン2
6を駆動し、蓄熱器23に戻る。
(e) The rare gas exiting the MHD generator 24 passes through the high temperature rare gas boiler 25 and enters the rare gas turbine 26.
6 and returns to the heat storage device 23.

なお、高温希ガスボイラ25はMHD発電に直接には関
与せず、蒸気タービン発電系の熱交換用に利用される。
Note that the high-temperature rare gas boiler 25 is not directly involved in MHD power generation, but is used for heat exchange in the steam turbine power generation system.

(8)蒸気タービン発電系は、 蒸気タービン27には希ガスタービン26および発電機
G1が連結されており、蒸気タービン27は、蒸気ター
ビン27−熱回収ボイラ28(ガスタービン発電系のガ
スタービン作動後の排ガスの回収熱を利用)−高温希ガ
スボイラ25 (MHD発電作動後の希ガス温度を利用
)−蒸気タービン27の循環路により作動し、希ガスタ
ービン26と連動して発電機G1を駆動し発電を行う。
(8) In the steam turbine power generation system, the steam turbine 27 is connected to the rare gas turbine 26 and the generator G1, and the steam turbine 27 is connected to the steam turbine 27 - heat recovery boiler 28 (gas turbine operation - High temperature rare gas boiler 25 (uses rare gas temperature after MHD power generation operation) - Operates by the circulation path of the steam turbine 27 and works in conjunction with the rare gas turbine 26 to drive the generator G1 and generate electricity.

(4)排ガスによるガスタービン発電系は、(a)蓄熱
器23内で希ガスと熱交換した排ガスをガスタービン2
9に入れ、該タービン29を駆動すると共に、タービン
29に連結された発電機G2を駆動し発電を行う。
(4) In the gas turbine power generation system using exhaust gas, (a) exhaust gas that has exchanged heat with rare gas in the heat storage device 23 is transferred to the gas turbine
9 to drive the turbine 29 and also drive the generator G2 connected to the turbine 29 to generate electricity.

(b)ガスタービン29を出た排ガスは熱回収ボイラ2
8に入り(回収熱は蒸気タービン系の熱交換に利用)、
熱回収された排ガスの一部は燃焼器21に入り、燃焼温
度の制御に供される。
(b) The exhaust gas leaving the gas turbine 29 is sent to the heat recovery boiler 2
8 (recovered heat is used for heat exchange in the steam turbine system),
A portion of the heat-recovered exhaust gas enters the combustor 21 and is used to control combustion temperature.

(5)Co2液化系は、 熱回収ボイラ28を出て、上記燃焼器21の燃焼温度制
御に供される以外の排ガスを、ガスタービン29にガス
圧縮機30を介して連結されたCO□加圧器31に入れ
て加圧し、液化炭酸ガスとして回収し、海洋等に投棄す
る。
(5) The CO2 liquefaction system converts the exhaust gas other than the one that exits the heat recovery boiler 28 and is used for the combustion temperature control of the combustor 21 into a CO□ addition system connected to the gas turbine 29 via the gas compressor 30. It is put into a pressure vessel 31 and pressurized, recovered as liquefied carbon dioxide, and disposed of in the ocean or the like.

以上の各県よりなる複合火力発電装置は、酸素/窒素分
離装置およびCO2加圧器に必要な動力費が全体の約2
0%程度であるので、その総合発電効率は送電端効率で
約40%が期待てき、がっCO2の大気中への放出もな
い無排煙のもので、煙突も必要としない。
The power costs required for the oxygen/nitrogen separator and CO2 pressurizer for the combined thermal power generation system made up of the above prefectures are about 20% of the total.
Since it is about 0%, the total power generation efficiency is expected to be about 40% in transmission net efficiency, and it is smokeless with no CO2 released into the atmosphere and does not require a chimney.

〔効 果〕〔effect〕

本発明は次の効果を有する。 The present invention has the following effects.

(a)複合火力発電装置の燃焼器からの排ガスを全て液
化炭酸ガスとして回収するので、地球温暖化等の地球環
境保全問題の解決に有効に機能する。
(a) Since all the exhaust gas from the combustor of the combined cycle power generation device is recovered as liquefied carbon dioxide, it effectively functions to solve global environmental conservation problems such as global warming.

(b)高効率発電技術のMHD発電を組み込んでいるの
で、総合発電効率は送電端で約40%が期待できる。
(b) Since it incorporates MHD power generation, a highly efficient power generation technology, the overall power generation efficiency can be expected to be approximately 40% at the transmission end.

(C)高酵素燃焼の燃焼系であるので、ガスタービン発
電系が従来のPFBCのような他の燃焼系を不要とし、
設備費が低減する。
(C) Since it is a combustion system with high enzyme combustion, the gas turbine power generation system eliminates the need for other combustion systems such as conventional PFBC.
Equipment costs are reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る複合火力発電装置の実施例のフロ
ーシート、 第2図は従来例のフローシートである。 20・・・酸素/窒素分離装置、21・・・燃焼器、2
3・・・蓄熱器、24・・・MHD発電機、25・・・
高温希ガスボイラ、26・・・希ガスタービン、27・
・・蒸気タービン、28・・・熱回収ボイラ、29・・
・ガスタービン、30・・・ガス圧縮機、31・・・C
O2加圧器、G1、G2・・・発電機。
FIG. 1 is a flow sheet of an embodiment of the combined thermal power generation device according to the present invention, and FIG. 2 is a flow sheet of a conventional example. 20...Oxygen/nitrogen separation device, 21...Combustor, 2
3... Heat storage device, 24... MHD generator, 25...
High temperature rare gas boiler, 26... rare gas turbine, 27...
...Steam turbine, 28...Heat recovery boiler, 29...
・Gas turbine, 30...Gas compressor, 31...C
O2 pressurizer, G1, G2... generator.

Claims (2)

【特許請求の範囲】[Claims] (1)酸素分離装置と燃焼器とを有し、燃料を燃焼用酸
素と共に燃焼させる高酸素燃焼系と、上記燃焼器から出
るCO_2を含む高温排ガスを導入する蓄熱器と、該蓄
熱器内で熱交換する希ガス循環路に介在したMHD発電
機とを有するMHD発電系と、 上記蓄熱器からガスタービンを経て上記燃焼器へ戻る排
ガス循環路を有するガスタービン発電系と、 該ガスタービン発電系の排ガス循環路に介在した熱回収
ボイラと、上記MHD発電系の希ガス循環路に介在した
高温希ガスボイラと、蒸気タービンとの循環路を有する
蒸気タービン発電系と、上記ガスタービン発電系の熱回
収ボイラを出る排ガスを導入して液化炭酸ガスに変換す
るCO_2加圧器を有するCO_2液化系と、 からなることを特徴とする複合火力発電装置。
(1) A high-oxygen combustion system that has an oxygen separation device and a combustor, and burns fuel together with combustion oxygen; a heat storage device that introduces high-temperature exhaust gas containing CO_2 emitted from the combustor; an MHD power generation system having an MHD generator interposed in a rare gas circulation path for heat exchange; a gas turbine power generation system having an exhaust gas circulation path from the heat storage device to the gas turbine and returning to the combustor; and the gas turbine power generation system. A heat recovery boiler interposed in the exhaust gas circulation path of the MHD power generation system, a high temperature rare gas boiler interposed in the rare gas circulation path of the MHD power generation system, a steam turbine power generation system having a circulation path with the steam turbine, and a heat recovery boiler of the gas turbine power generation system. A combined thermal power generation device comprising: a CO_2 liquefaction system having a CO_2 pressurizer that introduces exhaust gas exiting a recovery boiler and converts it into liquefied carbon dioxide gas.
(2)酸素分離装置は、分子吸着剤等により空気を酸素
と窒素とに分離する請求項(1)記載の複合火力発電装
置。
(2) The combined thermal power generation device according to claim (1), wherein the oxygen separation device separates air into oxygen and nitrogen using a molecular adsorbent or the like.
JP24703990A 1990-09-19 1990-09-19 Combined cycle power plant Pending JPH04127866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24703990A JPH04127866A (en) 1990-09-19 1990-09-19 Combined cycle power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24703990A JPH04127866A (en) 1990-09-19 1990-09-19 Combined cycle power plant

Publications (1)

Publication Number Publication Date
JPH04127866A true JPH04127866A (en) 1992-04-28

Family

ID=17157508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24703990A Pending JPH04127866A (en) 1990-09-19 1990-09-19 Combined cycle power plant

Country Status (1)

Country Link
JP (1) JPH04127866A (en)

Similar Documents

Publication Publication Date Title
Li et al. Clean coal conversion processes–progress and challenges
JPH041428A (en) Power generation facilities
US4212160A (en) Combined cycle power plant using low Btu gas
CN109441574A (en) Nearly zero carbon emission integral coal gasification cogeneration technique for peak regulation
EP1540144A1 (en) Advanced hybrid coal gasification cycle utilizing a recycled working fluid
ATE133488T1 (en) INTEGRATED METHA COAL COMBINED POWER PLANTS
US20120222426A1 (en) Integrated gas turbine, sagd boiler and carbon capture
JPH04244504A (en) Carbon dioxide recovery type coal thermal power system
CN113294770B (en) Oxygen-enriched combustion coupled supercritical CO2Cyclic cogeneration system
Jansen et al. CO2 reduction potential of future coal gasification based power generation technologies
De Ruyck Efficient CO2 capture through a combined steam and CO2 gas turbine cycle
US5067317A (en) Process for generating electricity in a pressurized fluidized-bed combustor system
Zachary et al. CO2 capture and sequestration options: Impact on turbo-machinery design
JPH04127866A (en) Combined cycle power plant
CN113623033A (en) IGCC system adopting air gasification and working method thereof
Luo et al. Capture of CO 2 from coal using chemical-looping combustion: Process simulation
JP2617089B2 (en) Integrated coal gasification combined cycle power plant
JPH0635840B2 (en) CO reheat gas turbine combined cycle power generation method
CN215860364U (en) IGCC system adopting air gasification
JP3074448B2 (en) Combined power generation system
Beér CO 2 Reduction and Coal-Based Electricity Generation
JP2018096359A (en) Power generating facility
Minchener Coal comes clean (thermal power stations)
Pak et al. Coal‐gas‐burning high‐efficiency power plant which recovers generated carbon dioxide
Maxson et al. The Future of Coal: Confronting Environmental Challenges That Threaten Its Use