JP2617089B2 - Integrated coal gasification combined cycle power plant - Google Patents

Integrated coal gasification combined cycle power plant

Info

Publication number
JP2617089B2
JP2617089B2 JP8073494A JP8073494A JP2617089B2 JP 2617089 B2 JP2617089 B2 JP 2617089B2 JP 8073494 A JP8073494 A JP 8073494A JP 8073494 A JP8073494 A JP 8073494A JP 2617089 B2 JP2617089 B2 JP 2617089B2
Authority
JP
Japan
Prior art keywords
gas
turbine
combined cycle
steam
power plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8073494A
Other languages
Japanese (ja)
Other versions
JPH07286505A (en
Inventor
浚平 野添
辰夫 井野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP8073494A priority Critical patent/JP2617089B2/en
Publication of JPH07286505A publication Critical patent/JPH07286505A/en
Application granted granted Critical
Publication of JP2617089B2 publication Critical patent/JP2617089B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To reduce heat bypass rate and improve plant efficiency by introducing inert gas having high pressure as cooling medium into a gas cooler for heat exchange and introducing inert gas having high temperature into a gas turbine through a combuster. CONSTITUTION:Coal is gasified in a gasifying furnace 1, gas formed therein is supplied to a combuster 4 via a gas cooler 2 and a gas purification device 3 to mix it with air compressed by a compressor 8 for combustion. A gas turbine 5 is rotated by high pressure and temperature gas which is obtained thus to drive a generator 9, and steam turbines 6, 6' are rotated by steam which is generated in an exhaust gas boiler 7 due to heat exchange with exhaust gas in the gas turbine 5. In this case, a part of nitorgen 14 which is separated from oxygen in an air separation equipment 11 and whose pressure is increased by a nitrogen compressor 12 is fed as cooling medium of the gas cooler 2, and nitorgen 14 whose temperature is raised in the gas cooler 2 is introduced into the gas turbine 5 via the combuster 4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本願発明は、石炭ガス化複合発電
プラントにおいて、ヒートバイパス(ガスタービンのバ
イパス)率を低減してプラント効率を上昇させるシステ
ムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a system for reducing heat bypass (bypass of gas turbine) and increasing plant efficiency in an integrated coal gasification combined cycle power plant.

【0002】[0002]

【従来の技術】図3は実開昭57−168735号公報
に記載された石炭ガス化複合発電プラントの系統図であ
る。該従来の技術はガスタービン51と、その排ガス5
2と熱交換して蒸気54を発生する排熱ボイラ53と、
前記蒸気54によって駆動される蒸気タービン55とに
よって構成される複合発電プラントにおいて、空気分離
機58において酸素61と窒素59とに分離し、酸素6
1は酸素圧縮機60によって加圧して石炭62をガス化
するガス化炉63においてガス化剤として使用し、窒素
59は窒素圧縮機65によって加圧してガスタービン5
1のコンバスタ66内に注入するというものである。
2. Description of the Related Art FIG. 3 is a system diagram of an integrated coal gasification combined cycle power plant described in Japanese Utility Model Laid-Open No. 57-168735. The conventional technology includes a gas turbine 51 and its exhaust gas 5.
An exhaust heat boiler 53 which generates steam 54 by heat exchange with
In the combined cycle power plant constituted by the steam turbine 55 driven by the steam 54, the oxygen is separated into oxygen 61 and nitrogen 59 by an air separator 58,
1 is used as a gasifying agent in a gasification furnace 63 for gasifying coal 62 by pressurizing with an oxygen compressor 60, and nitrogen 59 is pressurized by a nitrogen compressor 65 and used as a gas turbine 5.
One of the combustors 66 is injected.

【0003】[0003]

【発明が解決しようとする課題】すなわち、上記従来の
技術は、それまで使用していた蒸気タービンからの抽気
の代わりに、空気分離機によって発生する窒素ガスの一
部をガスタービンのコンバスタ内へ注入して燃焼ガス中
の窒素酸化物(NOx)を低減させることを目的とした
ものであることから、この技術によってプラント効率の
改善は期待できないものであった。本願発明はこのよう
な現状に鑑みてなされたもので、簡潔な構成によって石
炭ガス化複合発電プラントにおけるプラント効率を顕著
に高め得るシステムを提供することを目的としている。
That is, in the above prior art, a part of the nitrogen gas generated by the air separator is introduced into the combustor of the gas turbine instead of the bleeding from the steam turbine used up to that time. Since the purpose is to reduce nitrogen oxides (NOx) in the combustion gas by injection, improvement of the plant efficiency by this technique cannot be expected. The present invention has been made in view of such a situation, and an object of the present invention is to provide a system capable of significantly improving the plant efficiency of a combined gasification combined cycle power plant with a simple configuration.

【0004】[0004]

【課題を解決するための手段】上記の目的は、前記特許
請求の範囲に記載された石炭ガス化複合発電プラントに
よって達成される。すなわち、 (1) 石炭をガス化するガス化炉と、ガス化炉で生成した
ガスを冷却するガスクーラと、生成したガスを精製する
ガス精製装置と、生成ガスを燃料とするガスタービン
と、ガスタービンの排ガスと熱交換して蒸気を発生する
排ガスボイラと、排ガスボイラからの蒸気によって駆動
される蒸気タービンと、不活性ガスを昇圧する装置とを
有し、ガスタービンおよび蒸気タービンによって発電機
を駆動して発電を行う石炭ガス化複合発電プラントにお
いて、昇圧した不活性ガスを冷却媒体としてガスクーラ
に導入して熱交換を行わせ、昇温した不活性ガスをコン
バスタを通じてガスタービンに導入する石炭ガス化複合
発電プラント。
The above object is achieved by a combined gasification combined cycle power plant as set forth in the appended claims. That is, (1) a gasifier for gasifying coal, a gas cooler for cooling the gas generated in the gasifier, a gas purification device for purifying the generated gas, a gas turbine using the generated gas as a fuel, and a gas turbine. An exhaust gas boiler that generates steam by exchanging heat with exhaust gas of a turbine, a steam turbine driven by steam from the exhaust gas boiler, and a device that pressurizes an inert gas, and a generator is generated by the gas turbine and the steam turbine In a coal gasification combined cycle power plant that drives and generates electricity, the pressurized inert gas is introduced into a gas cooler as a cooling medium to perform heat exchange, and the heated inert gas is introduced into a gas turbine through a combustor. Combined power plant.

【0005】(2) 不活性ガスが、空気分離装置から発生
する窒素ガスである(1) 記載の石炭ガス化複合発電プラ
ント。 (3) 不活性ガスが、窒素製造装置から発生する窒素ガス
である(1) 記載の石炭ガス化複合発電プラント。 (4) 不活性ガスが、ガス精製装置からの排ガスである
(1) 記載の石炭ガス化複合発電プラントである。 以下本発明の作用等について実施例に基づいて説明す
る。
(2) The integrated coal gasification combined cycle power plant according to (1), wherein the inert gas is nitrogen gas generated from an air separation device. (3) The integrated coal gasification combined cycle power plant according to (1), wherein the inert gas is nitrogen gas generated from a nitrogen production device. (4) Inert gas is exhaust gas from gas purification equipment
(1) The combined gasification combined cycle power plant described in (1). Hereinafter, the operation and the like of the present invention will be described based on examples.

【0006】[0006]

【実施例】図1は本願発明に基づく第1の実施例におけ
る石炭ガス化複合発電プラントの系統図、図2は本願発
明に基づく第2の実施例における石炭ガス化複合発電プ
ラントの系統図である。図1〜2において、1はガス化
炉、2はガスクーラ、3はガス精製装置、4はコンバス
タ、5はガスタービン、6,6′は蒸気タービン、7は
排ガスボイラ、8は圧縮機、9は発電機、10,19は
空気圧縮機、11は空気分離装置、12は窒素圧縮機、
13は酸素圧縮機、14は窒素、15は蒸気、16は酸
素、17は脱硫装置、18は窒素製造装置、20は空
気、21は石炭である。
FIG. 1 is a system diagram of an integrated coal gasification combined cycle power plant according to a first embodiment of the present invention, and FIG. 2 is a system diagram of a combined coal gasification combined cycle power plant according to a second embodiment of the present invention. is there. 1 and 2, 1 is a gasifier, 2 is a gas cooler, 3 is a gas purifier, 4 is a combustor, 5 is a gas turbine, 6 and 6 'are steam turbines, 7 is an exhaust gas boiler, 8 is a compressor, 9 Is a generator, 10 and 19 are air compressors, 11 is an air separation device, 12 is a nitrogen compressor,
13 is an oxygen compressor, 14 is nitrogen, 15 is steam, 16 is oxygen, 17 is a desulfurization device, 18 is a nitrogen production device, 20 is air, and 21 is coal.

【0007】まず図1に示す第1の実施例について説明
する。ガス化炉1に投入された石炭(一般には微粉炭)
21は、空気圧縮機10から送入される空気の内、空気
分離装置11を介して分離され酸素圧縮機13によって
昇圧された、理論燃焼酸素量よりも少ない酸素16によ
って高温かつ強還元雰囲気中でガス化され、高温・高圧
の状態でガス化炉1から排出される。
First, a first embodiment shown in FIG. 1 will be described. Coal charged into gasifier 1 (generally pulverized coal)
In a high-temperature and strong reducing atmosphere, oxygen 21 is separated from the air supplied from the air compressor 10 by the oxygen compressor 13 and separated by the air separation device 11 and pressurized by the oxygen compressor 13. And discharged from the gasification furnace 1 at high temperature and high pressure.

【0008】ガス化炉1から排出される生成ガスは残留
灰分、窒素酸化物や硫黄酸化物のガス、アルカリ金属等
の不純物を含んでいることにより、それを除去する必要
があるが、その除去装置の許容温度まで冷却するために
ガスクーラ2内に送入する。
Since the product gas discharged from the gasification furnace 1 contains impurities such as residual ash, nitrogen oxide and sulfur oxide gases, and alkali metals, it is necessary to remove them. The gas is sent into the gas cooler 2 to cool the apparatus to an allowable temperature.

【0009】ガスクーラ2には冷却媒体として、空気分
離装置11において酸素と分離した窒素14の一部を窒
素圧縮機12によって昇圧したものを送入し、上記生成
ガスと熱交換を行なわせる。それによって生成ガスは適
性な温度まで低減されて下流側に配設されたガス精製装
置3内に流入し、そこで不純物を除去されたのちガスタ
ービン5のコンバスタ(燃焼器)4内に流入する。一
方、ガスクーラ2において高温の生成ガスと熱交換を行
った冷却媒体としての窒素14は、逆に昇温した状態
で、生成ガスと同じくガスタービン5のコンバスタ4内
に流入する。
As a cooling medium, a part of the nitrogen 14 separated from oxygen in the air separation device 11 is supplied to the gas cooler 2 by pressurizing the nitrogen with a nitrogen compressor 12, and heat exchange with the produced gas is performed. As a result, the generated gas is reduced to an appropriate temperature and flows into the gas purification device 3 disposed downstream, where impurities are removed therefrom, and then flows into the combustor (combustor) 4 of the gas turbine 5. On the other hand, the nitrogen 14 as a cooling medium that has exchanged heat with the high-temperature generated gas in the gas cooler 2 flows into the combustor 4 of the gas turbine 5 in the same manner as the generated gas while the temperature is raised.

【0010】コンバスタ4内において圧縮器8から供給
される高圧の空気によって燃焼した生成ガスとコンバス
タ4内を通じて顯熱を高めた窒素14は高温・高圧の状
態でガスタービン5に流入して発電機9に直結したガス
タービン5を駆動する。
The product gas burned by the high-pressure air supplied from the compressor 8 in the combustor 4 and the nitrogen 14 whose heat is enhanced through the combustor 4 flow into the gas turbine 5 at a high temperature and a high pressure to flow into the gas turbine 5. The gas turbine 5 directly connected to 9 is driven.

【0011】ガスタービン5を駆動した燃焼ガスと窒素
14の混合ガスは温度および圧力を低下させた状態で更
に下流側に配設された排ガスボイラ7内に入り、高温・
高圧の蒸気15を発生し、蒸気タービン6,6′を駆動
したのち脱硫装置17において硫黄酸化物を除去され、
低温かつ清浄な状態で排出される。
The mixed gas of the combustion gas and the nitrogen 14 that has driven the gas turbine 5 enters the exhaust gas boiler 7 disposed further downstream with the temperature and pressure lowered, and
After generating high-pressure steam 15 and driving the steam turbines 6, 6 ', sulfur oxides are removed in a desulfurization unit 17,
Discharged at low temperature and clean.

【0012】これに対して従来提案されている石炭ガス
化複合発電プラントにおいては、ガスクーラに送入する
冷却媒体として一般に昇圧した水が使用され、ガスクー
ラにおいて高温の生成ガスと熱交換して昇温した水は排
ガスボイラの給水として利用し、その顯熱の増加分を発
生蒸気に変換し、該蒸発量を増加した蒸気を蒸気タービ
ンに送気することによって発電量の増加を図るものであ
った。
On the other hand, in the conventional coal gasification combined cycle power plant, pressurized water is generally used as a cooling medium to be fed into the gas cooler, and the gas cooler exchanges heat with a high-temperature generated gas to raise the temperature. The generated water is used as feed water for an exhaust gas boiler, the increased heat is converted into generated steam, and the steam with the increased evaporation is sent to a steam turbine to increase the power generation. .

【0013】一般にガスタービンと蒸気タービンとを比
較した場合、熱効率の点においてはガスタービンの方が
高く、蒸気タービンの方が低くなる。従って上記のよう
にガスクーラで吸収した熱を全て蒸気に変換して蒸気タ
ービンを駆動して発電した場合にはその熱効率はそれ程
高くは期待できない。
In general, when a gas turbine and a steam turbine are compared, the gas turbine is higher and the steam turbine is lower in terms of thermal efficiency. Therefore, when the heat absorbed by the gas cooler is converted into steam and the steam turbine is driven to generate power as described above, the heat efficiency cannot be expected to be so high.

【0014】これに対して、本願発明に基づく石炭ガス
化複合発電プラントにおけるがごとく、ガスクーラの冷
却媒体として不活性ガスを使用し、熱吸収したガスをガ
スタービンのコンバスタを通じて昇温したのち、先ず熱
効率の高いガスタービンに供給して発電を行わせ、上記
ガスタービンから排出したガスを排ガスボイラに送入し
て蒸気を発生し、その蒸気によって蒸気タービンを駆動
して更に発電に寄与させることにより、プラント効率を
顕著に向上させ得るものである。
On the other hand, as in the integrated coal gasification combined cycle power plant according to the present invention, an inert gas is used as a cooling medium for a gas cooler, and the temperature of the heat-absorbed gas is raised through a combustor of a gas turbine. By supplying power to a gas turbine with high thermal efficiency to generate power, sending the gas discharged from the gas turbine to an exhaust gas boiler to generate steam, and driving the steam turbine with the steam to further contribute to power generation In addition, the plant efficiency can be significantly improved.

【0015】図2は本願発明に基づく第2の実施例にお
ける石炭ガス化複合発電プラントの系統図で、前記第1
の実施例がいわゆる酸素吹きのガス化炉を対象にしたの
に対して、該第2の本実施例は大気を空気圧縮機19に
よって加圧してガス化炉1に送入し、石炭21をガス化
させる空気吹きといわれるガス化炉1の場合を示す図で
ある。
FIG. 2 is a system diagram of an integrated coal gasification combined cycle power plant according to a second embodiment of the present invention.
While the embodiment of the present invention is directed to a so-called oxygen-blown gasifier, the second embodiment pressurizes the atmosphere with an air compressor 19 and sends the compressed air to the gasifier 1 to remove coal 21. It is a figure which shows the case of the gasification furnace 1 called the air blowing to gasify.

【0016】該実施例においては第1の実施例における
空気分離装置11を装備しておらず、ガスクーラ2の冷
却媒体として窒素製造装置18からの窒素14の一部を
使用している。この場合においてもガスクーラ2で熱回
収した窒素14の顯熱を先ずガスタービン5で利用し、
次いで排ガスボイラ7において蒸気に変換して蒸気ター
ビン6,6′で利用する点においては、第1の実施例の
場合と全く同様である。
In this embodiment, the air separation device 11 of the first embodiment is not provided, and a part of the nitrogen 14 from the nitrogen production device 18 is used as a cooling medium of the gas cooler 2. Also in this case, the heat of the nitrogen 14 recovered by the gas cooler 2 is first used in the gas turbine 5,
Next, in the point that it is converted into steam in the exhaust gas boiler 7 and used in the steam turbines 6, 6 ', it is exactly the same as in the first embodiment.

【0017】ガスクーラの冷却媒体として、前記第1お
よび第2の実施例において用いた窒素の代わりに、例え
ば図1および図2に示す脱硫装置17から排出される低
温のガスや、或いはその他の不活性ガスを適宜加圧して
使用することによっても、ほぼ同様の効果を得ることは
勿論である。
As a cooling medium for the gas cooler, instead of the nitrogen used in the first and second embodiments, for example, a low-temperature gas discharged from a desulfurization unit 17 shown in FIGS. It is needless to say that substantially the same effects can be obtained by appropriately pressurizing and using the active gas.

【0018】[0018]

【発明の効果】このように本願発明によれば上記実施例
において説明したように、石炭ガス化複合発電プラント
において、ガスクーラにおいて回収した熱を、従来は直
接蒸気に変換して蒸気タービンを駆動させていたのに対
して、先ずガスの状態で蒸気タービンに比べて熱効率の
高いガスタービンを駆動させ、次いでその排ガスの顯熱
を蒸気に変換して蒸気タービンを駆動させることによ
り、プラント熱効率を顕著に高め得るという効果を奏す
る。
As described above, according to the present invention, in the integrated coal gasification combined cycle power plant, the heat recovered in the gas cooler is conventionally directly converted into steam to drive the steam turbine, as described in the above embodiment. On the other hand, by first driving the gas turbine, which has higher thermal efficiency than the steam turbine in the gaseous state, and then converting the heat of the exhaust gas to steam to drive the steam turbine, the plant thermal efficiency is significantly improved. This has the effect that it can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願発明に基づく第1の実施例における石炭ガ
ス化複合発電プラントの系統図である。
FIG. 1 is a system diagram of an integrated coal gasification combined cycle power plant according to a first embodiment of the present invention.

【図2】本願発明に基づく第2の実施例における石炭ガ
ス化複合発電プラントの系統図である。
FIG. 2 is a system diagram of an integrated coal gasification combined cycle power plant in a second embodiment according to the present invention.

【図3】従来の技術の例における石炭ガス化複合発電プ
ラントの系統図である。
FIG. 3 is a system diagram of an integrated coal gasification combined cycle power plant in an example of the related art.

【符号の説明】[Explanation of symbols]

1 ガス化炉 2 ガスクーラ 3 ガス精製装置 4 コンバスタ 5 ガスタービン 6,6′ 蒸気タービン 7 排ガスボイラ 8 圧縮機 9 発電機 10,19 空気圧縮機 11 空気分離装置 12 窒素圧縮機 13 酸素圧縮機 14 窒素 15 蒸気 16 酸素 17 脱硫装置 18 窒素製造装置 20 空気 21 石炭 51 ガスタービン51 52 排ガス52 53 排熱ボイラ 54 蒸気 55 蒸気タービン 56 大気 57 空気圧縮機 58 空気分離機 59 窒素 60 酸素圧縮機 61 酸素 62 石炭 63 ガス化炉 64 生成ガス 65 窒素圧縮機 66 コンバスタ DESCRIPTION OF SYMBOLS 1 Gasifier 2 Gas cooler 3 Gas purifier 4 Combustor 5 Gas turbine 6, 6 'Steam turbine 7 Exhaust gas boiler 8 Compressor 9 Generator 10, 19 Air compressor 11 Air separator 12 Nitrogen compressor 13 Oxygen compressor 14 Nitrogen Reference Signs List 15 steam 16 oxygen 17 desulfurization device 18 nitrogen production device 20 air 21 coal 51 gas turbine 51 52 exhaust gas 52 53 exhaust heat boiler 54 steam 55 steam turbine 56 atmosphere 57 air compressor 58 air separator 59 nitrogen 60 oxygen compressor 61 oxygen 62 Coal 63 Gasifier 64 Generated gas 65 Nitrogen compressor 66 Combustor

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 石炭をガス化するガス化炉と、ガス化炉
で生成したガスを冷却するガスクーラと、生成したガス
を精製するガス精製装置と、生成ガスを燃料とするガス
タービンと、ガスタービンの排ガスと熱交換して蒸気を
発生する排ガスボイラと、排ガスボイラからの蒸気によ
って駆動される蒸気タービンと、不活性ガスを昇圧する
装置とを有し、ガスタービンおよび蒸気タービンによっ
て発電機を駆動して発電を行う石炭ガス化複合発電プラ
ントにおいて、 昇圧した不活性ガスを冷却媒体としてガスクーラに導入
して熱交換を行わせ、昇温した不活性ガスをコンバスタ
を通じてガスタービンに導入することを特徴とする石炭
ガス化複合発電プラント。
1. A gasifier for gasifying coal, a gas cooler for cooling a gas generated by the gasifier, a gas purifier for purifying the generated gas, a gas turbine using the generated gas as a fuel, and a gas turbine. An exhaust gas boiler that generates steam by exchanging heat with exhaust gas of a turbine, a steam turbine driven by steam from the exhaust gas boiler, and a device that pressurizes an inert gas, and a generator is generated by the gas turbine and the steam turbine In an integrated coal gasification combined cycle power plant that drives and generates electricity, the pressurized inert gas is introduced into a gas cooler as a cooling medium to perform heat exchange, and the heated inert gas is introduced into a gas turbine through a combustor. Characteristic integrated coal gasification combined cycle power plant.
【請求項2】 不活性ガスが、空気分離装置から発生す
る窒素ガスである請求項1記載の石炭ガス化複合発電プ
ラント。
2. An integrated coal gasification combined cycle power plant according to claim 1, wherein the inert gas is nitrogen gas generated from an air separation device.
【請求項3】 不活性ガスが、窒素製造装置から発生す
る窒素ガスである請求項1記載の石炭ガス化複合発電プ
ラント。
3. The integrated coal gasification combined cycle power plant according to claim 1, wherein the inert gas is nitrogen gas generated from a nitrogen production device.
【請求項4】 不活性ガスが、ガス精製装置からの排ガ
スである請求項1記載の石炭ガス化複合発電プラント。
4. The integrated coal gasification combined cycle plant according to claim 1, wherein the inert gas is an exhaust gas from a gas purification device.
JP8073494A 1994-04-19 1994-04-19 Integrated coal gasification combined cycle power plant Expired - Lifetime JP2617089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8073494A JP2617089B2 (en) 1994-04-19 1994-04-19 Integrated coal gasification combined cycle power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8073494A JP2617089B2 (en) 1994-04-19 1994-04-19 Integrated coal gasification combined cycle power plant

Publications (2)

Publication Number Publication Date
JPH07286505A JPH07286505A (en) 1995-10-31
JP2617089B2 true JP2617089B2 (en) 1997-06-04

Family

ID=13726621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8073494A Expired - Lifetime JP2617089B2 (en) 1994-04-19 1994-04-19 Integrated coal gasification combined cycle power plant

Country Status (1)

Country Link
JP (1) JP2617089B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7810310B2 (en) 2006-12-14 2010-10-12 Mitsubishi Heavy Industries, Ltd. Integrated coal gasification combined cycle plant
US8752391B2 (en) 2010-11-08 2014-06-17 General Electric Company Integrated turbomachine oxygen plant
JP5654338B2 (en) 2010-12-20 2015-01-14 日本エア・リキード株式会社 Nitrogen gas production apparatus and gasification combined power generation system using the same
CN112576375B (en) * 2020-12-29 2023-09-22 上海电气燃气轮机有限公司 System and method for utilizing cold and heat quantity between coal presses of low-heat-value combined cycle unit

Also Published As

Publication number Publication date
JPH07286505A (en) 1995-10-31

Similar Documents

Publication Publication Date Title
EP1982053B1 (en) Method for increasing the efficiency of an integrated gasification combined cycle
JP2954972B2 (en) Gasification gas combustion gas turbine power plant
EP1982052B1 (en) Integrated gasification combined cycle with preheating of nitrogen / oxygen from air separator
JP2011202668A (en) Power generating facility
US20090223201A1 (en) Methods of Injecting Diluent Into A Gas Turbine Assembly
EP0686231B1 (en) New power process
US7513118B2 (en) Method for operating a gas turbine and a gas turbine for implementing the method
US8191349B2 (en) System and method for low emissions combustion
US6314715B1 (en) Modified fuel gas turbo-expander for oxygen blown gasifiers and related method
JP2004229374A (en) Method for mhd single high efficient power generation and system
CN113623033A (en) IGCC system adopting air gasification and working method thereof
CA2618030C (en) A method for operating a gas turbine and a gas turbine for implementing the method
JPH1082306A (en) Gasification compound power generating installation
JP2617089B2 (en) Integrated coal gasification combined cycle power plant
CN110257106B (en) Integrated coal gasification fuel cell power generation system and method adopting coal water slurry gasification
CN110218583B (en) Integrated coal gasification fuel cell power generation system and method adopting desulfurization post-conversion process
CN215860490U (en) IGCC system for oxygen generation by adopting gas turbine to exhaust smoke
US5517818A (en) Gas generation apparatus
CN215860364U (en) IGCC system adopting air gasification
CN216044043U (en) IGCC system for preparing synthesis gas components by adopting fuel cell
JP2544088B2 (en) Integrated coal gasification combined cycle power plant
CN113623074B (en) IGCC system for producing oxygen by adopting gas turbine exhaust and working method thereof
JPH06117274A (en) Power generating device
CN113464279A (en) IGCC system for preparing synthesis gas components by adopting fuel cell and working method
KR100355309B1 (en) Integration Gasification Combined Cycle system using excess nitrogen from Air Separation Unit