JPH04127860A - Magnetizer for electric rotating machine - Google Patents

Magnetizer for electric rotating machine

Info

Publication number
JPH04127860A
JPH04127860A JP24946790A JP24946790A JPH04127860A JP H04127860 A JPH04127860 A JP H04127860A JP 24946790 A JP24946790 A JP 24946790A JP 24946790 A JP24946790 A JP 24946790A JP H04127860 A JPH04127860 A JP H04127860A
Authority
JP
Japan
Prior art keywords
magnetized
magnetizing
magnetic flux
magnetic field
superconducting magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24946790A
Other languages
Japanese (ja)
Inventor
Akiyuki Hino
陽至 日野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asmo Co Ltd
Original Assignee
Asmo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asmo Co Ltd filed Critical Asmo Co Ltd
Priority to JP24946790A priority Critical patent/JPH04127860A/en
Priority to US07/651,658 priority patent/US5204569A/en
Publication of JPH04127860A publication Critical patent/JPH04127860A/en
Pending legal-status Critical Current

Links

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PURPOSE:To impart a predetermined magnetizing wave-form on an object to be magnetized by producing a parallel field having high flux density by means of a superconducting magnet and then introducing the parallel field to a rare earth metal object to be magnetized by means of a magnetizing yoke. CONSTITUTION:When an object is magnetized, a pair of arched objects 16 to be magnetized are disposed vertically in the object holding section 26 of a magnetizing yoke 22 and then the magnetizing yoke 22 is disposed on the inside of a superconducting magnet 20 with a magnetizing core 24 being disposed between the pair of objects 16. When the superconducting magnet 20 is excited to produce high density magnetizing flux 32, the magnetizing flux 32 passes through the inside of the superconducting magnet 20 in parallel therewith while being guided by the magnetizing yoke 22. At that time, the superconducting magnet 20 prevents leakage of the magnetizing flux 32 through Meissner effect. Since the magnetizing flux is introduced, as it is, to the object to be magnetized the object is fully magnetized with high flux density.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、回転電機用着磁装置に関し、特に希土類等方
性磁石に着磁するための回転電機用着磁装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetizing device for a rotating electrical machine, and particularly to a magnetizing device for a rotating electrical machine for magnetizing a rare earth isotropic magnet.

[従来の技術] 今日、磁石に用いられる磁性材料として、着磁のために
大きな保磁力を必要とする希土類などが用いられること
が多い。とりわけ、モータや発電機などの回転機の固定
子側には、希土類などを用いて形成された磁石が取付け
られることが多い。
[Prior Art] Today, as magnetic materials used in magnets, rare earths and the like, which require a large coercive force for magnetization, are often used. In particular, magnets made of rare earth materials are often attached to the stator side of rotating machines such as motors and generators.

しかし、このような希土類を着磁するためには、30〜
50キロ工ルステツド程度の高起磁力による均一な高磁
束密度が必要とされる。
However, in order to magnetize such rare earth metals, it is necessary to
A uniform high magnetic flux density with a high magnetomotive force on the order of 50 km/hr is required.

このため、従来の着磁装置では、これを良好にフル着磁
(着磁率100%)することができないという問題かあ
った。
For this reason, there was a problem in that conventional magnetizing devices could not satisfactorily fully magnetize the magnet (magnetization rate of 100%).

第5図には、従来の内管型着磁装置の一例か示され、こ
の着磁装置は、モータMの内側にコイル]0を配置し、
希土類などで形成された固定子側磁石12.12をその
内側から着磁するように形成されている。
FIG. 5 shows an example of a conventional inner tube type magnetizing device, in which a coil 0 is arranged inside a motor M,
The stator side magnets 12, 12 made of rare earth or the like are magnetized from the inside.

[発明が解決しようとする課題] しかし、この従来装置は、発生する磁束が十分でなく、
しかも不均一の磁束密度しか得られないため、希土類を
確実に着磁するために必要である均一な高磁束密度を得
ることが難しいという問題かあった。
[Problem to be solved by the invention] However, this conventional device does not generate enough magnetic flux,
Moreover, since only non-uniform magnetic flux densities can be obtained, there is a problem in that it is difficult to obtain a uniform high magnetic flux density that is necessary to reliably magnetize rare earth elements.

特に、直流モータ等の回転電機では固定子側磁石12が
円弧状に形成されている。このため、このような円弧状
磁石12か希土類以外の磁性材料で形成されている場合
でも、これを前記従来技術を用いて内管すると、各磁石
12は第6図中Aに示すよう両端にピークがあり、中央
が少し凹んだ不均一な台形パターンでしか着磁されず、
同図中Bに示すようなきれいなサインカーブの理想ノ(
ターンでフル着磁することかできなかった。このためモ
ータに大きなコギングトルクか発生し、モタの振動が大
きくなってしまうという問題かあった。
In particular, in a rotating electric machine such as a DC motor, the stator side magnet 12 is formed in an arc shape. Therefore, even if such arc-shaped magnets 12 are made of a magnetic material other than rare earth, if they are inserted into an inner tube using the prior art, each magnet 12 will be attached to both ends as shown in A in FIG. It is only magnetized in an uneven trapezoidal pattern with a peak and a slightly concave center.
The ideal shape of a beautiful sine curve as shown in B in the figure (
I could only fully magnetize it by turning. This caused a problem in that a large cogging torque was generated in the motor, increasing the vibration of the motor.

また、これ以外の着磁技術として、磁石をモータの外側
から着磁する外管型の着磁装置も知られている。しかし
、この技術を用いて磁石を4着しても、第6図中のCに
示すよう中央に磁束か集中したパターンとなり、これて
は磁界強度が小さ過ぎて有効磁束量か不足し、最大トル
クの低下が避けられなかった。
In addition, as another magnetization technique, an outer tube type magnetization device that magnetizes the magnet from the outside of the motor is also known. However, even if four magnets are attached using this technology, the magnetic flux will be concentrated in the center as shown in C in Figure 6, resulting in a pattern where the magnetic field strength is too small and the effective amount of magnetic flux is insufficient. A decrease in torque was unavoidable.

他の振動低減策として、モータのブラケット部にゴム等
の防振材を用いた防振対策を採っているものも知られて
いるが、この場合にはモータの価格アップの要因となり
問題となっていた。
As another vibration reduction measure, it is known to use vibration isolating material such as rubber in the bracket part of the motor, but in this case, it becomes a problem as it increases the price of the motor. was.

また、最近の例では、特開昭63−260118号公報
に示されるように、ラジアル異方性の円筒状磁石に対し
着磁の方法で改善を狙ったものも知られているが、この
場合には磁石の一部の着磁を中途にして、なめらかな磁
束分布を得ようとするもので、最大トルクの低下は避け
られないものであった。
Furthermore, as a recent example, as shown in Japanese Unexamined Patent Application Publication No. 63-260118, it is known that a cylindrical magnet with radial anisotropy is improved by a method of magnetization. In order to obtain a smooth magnetic flux distribution by partially magnetizing a part of the magnet, a decrease in maximum torque was unavoidable.

本発明は、このような従来の課題に鑑みてなされたもの
であり、その目的は、希土類系等方性磁石の高磁束密度
フル着磁を可能にするとともに、理想的な磁力分布とす
ることができ、かつ出力低減なしで回転電機の低振動、
低騒音化を図ることのできる回転電機用着磁装置を提供
することにある。
The present invention has been made in view of such conventional problems, and its purpose is to enable full magnetization of a rare earth isotropic magnet with a high magnetic flux density and to provide an ideal magnetic force distribution. It is possible to reduce the vibration of rotating electric machines without reducing the output.
An object of the present invention is to provide a magnetizing device for a rotating electric machine that can reduce noise.

[課題を解決するための手段] 前記目的を達成するため、本発明は、 希土類の被着磁体を着磁し回転電機固定子用の等方性磁
石を形成する回転電機用着磁装置において、 超伝導マグネットを用いて高磁束密度の平行磁界を発生
させる超伝導型磁場発生装置と、前記超伝導マグネット
から生じる高磁束密度の平行磁界内に配置され、この平
行磁界を前記希土類の被着磁体に導く着磁ヨークと、 前記被着磁体内又は被着磁体間に配設され、前記高磁束
密度の平行磁界が被着磁体内を所定の着磁波形に合わせ
て通過するよう磁路を制御する着磁コアと、 を含み、被着磁体に対し所定の着磁波形を付与すること
を特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a magnetizing device for a rotating electric machine that magnetizes a rare earth magnetized body to form an isotropic magnet for a stator of a rotating electric machine. A superconducting magnetic field generator that generates a parallel magnetic field with a high magnetic flux density using a superconducting magnet, and a superconducting magnetic field generator disposed within a parallel magnetic field with a high magnetic flux density generated from the superconducting magnet, and which transmits this parallel magnetic field to the rare earth magnetized body. a magnetizing yoke disposed within or between the magnetized body, and controlling a magnetic path so that the parallel magnetic field with high magnetic flux density passes through the magnetized body in accordance with a predetermined magnetization waveform. A magnetized core that applies a predetermined magnetizing waveform to a magnetized body.

[作 用] 上記構成の回転電機用着磁装置にあっては、超伝導マグ
ネットを用いて高磁束密度の平行磁界を生じさせ、この
平行磁界を着磁ヨークを用いて希土類の被着磁体に導く
。このとき、超伝導現象の一つであるマイスナー効果に
より、外部への磁束の漏れが防止され、発生した平行磁
界は高磁束密度の状態を保ったまま被着磁体まて導かれ
る。
[Function] In the magnetizing device for a rotating electrical machine having the above configuration, a superconducting magnet is used to generate a parallel magnetic field with a high magnetic flux density, and a magnetizing yoke is used to apply this parallel magnetic field to a rare earth magnetized body. lead. At this time, the Meissner effect, which is one of the superconducting phenomena, prevents leakage of magnetic flux to the outside, and the generated parallel magnetic field is guided to the magnetized object while maintaining a state of high magnetic flux density.

本発明は、このようにして被着磁体に導かれた高磁束密
度の平行磁界を、被着磁体内又は被着磁体間に配置され
た着磁コアを用いて制御し、被着磁体に対し所定の着磁
波形を付与することを特徴とする。
The present invention controls the high magnetic flux density parallel magnetic field guided to the magnetized object using a magnetized core placed within the magnetized object or between the magnetized objects, and It is characterized by applying a predetermined magnetization waveform.

これにより、被着磁体を高磁束密度でフル着磁すること
ができると共に、理想的な着磁パターンにて着磁を成す
ことができ、その結果出力低減なして、回転電機の低振
動、低騒音化を図ることができる。
As a result, it is possible to fully magnetize the magnetized object with high magnetic flux density, and also to achieve magnetization in an ideal magnetization pattern.As a result, there is no reduction in output, and the vibration and vibration of the rotating electric machine are reduced. It is possible to reduce noise.

また、請求項(2)の発明は、被着磁体が回転電機の固
定子側磁石のように円弧状をしている場合でも、これを
ほぼ理想的なサイン波形に近いパターンでフル着磁する
ことか可能となる。
Furthermore, the invention of claim (2) fully magnetizes the magnetized body in a pattern close to an ideal sinusoidal waveform even when the magnetized body has an arc shape like a stator-side magnet of a rotating electric machine. It becomes possible.

[実施例] 次に、本発明の好適な実施例を図面に基づき詳細に説明
する。
[Example] Next, a preferred example of the present invention will be described in detail based on the drawings.

第1図は、本発明の一実施例に係るモータ用着磁装置を
示す図である。
FIG. 1 is a diagram showing a motor magnetizing device according to an embodiment of the present invention.

このモータ用着磁装置は、サマリウム、セリウム、ネオ
ジウム等の希土類等方性の磁石18を着磁するもので、
着磁用の超伝導マグネット20と、着磁ヨーク22と、
着磁コア24とを備える。
This motor magnetizing device magnetizes a rare earth isotropic magnet 18 such as samarium, cerium, neodymium, etc.
A superconducting magnet 20 for magnetization, a magnetization yoke 22,
A magnetized core 24 is provided.

超伝導マグネット20は、希土類等方性の磁石18を着
磁する着磁用の大磁束を発生させるもので、高磁束密度
の平行磁界を生じさせるようになっている。
The superconducting magnet 20 generates a large magnetic flux for magnetizing the rare earth isotropic magnet 18, and is designed to generate a parallel magnetic field with a high magnetic flux density.

着磁ヨーク22は、上記超伝導マクネット20の内側に
配されて、上記超伝導マクネット20からの高磁束密度
の平行磁界を導くようになっている。また、二〇着磁ヨ
ーク22は、そのほぼ中央に被着磁体保持部26を有し
、この被着磁体保持部26内に被着磁体16を収めるよ
うになっている。この被着磁体16は、円弧状のものと
なっている。また上記被着磁体保持部26は円弧状の被
着磁体16を上下位置に密着接触状態を保ったまま2個
配設し得るように筒形に形成されている。
The magnetizing yoke 22 is disposed inside the superconducting mucket 20 to guide a parallel magnetic field with a high magnetic flux density from the superconducting mucket 20. The magnetized yoke 22 has a magnetized body holding portion 26 approximately in the center thereof, and the magnetized body 16 is housed within this magnetized body holding portion 26 . This magnetized body 16 has an arc shape. Further, the magnetized body holding section 26 is formed into a cylindrical shape so that two arcuate magnetized bodies 16 can be disposed at upper and lower positions while maintaining close contact with each other.

更に、本実施例では、被着磁体保持部26の左右両側に
位置する部分の厚さtlを、被着磁体16の厚さt2よ
りも小さく設定している。
Furthermore, in this embodiment, the thickness tl of the portions located on both left and right sides of the magnetized body holding portion 26 is set smaller than the thickness t2 of the magnetized body 16.

着磁コア24は、上記被着磁体保持部26内の被着磁体
16間に配設されるようになっている。
The magnetized core 24 is arranged between the magnetized bodies 16 in the magnetized body holding section 26 .

また、この着磁コア24は、円形の中央部28と、この
円形の中央部28の上下位置より突出し被着磁体16と
密着接触する円弧状の被着磁体接触部30とを備えてい
る。
The magnetized core 24 also includes a circular center portion 28 and an arcuate magnetized body contact portion 30 that protrudes above and below the circular center portion 28 and comes into close contact with the magnetized body 16 .

そして、上記被着磁体接触部30の被着磁体16に対す
る接触面32の範囲θを、被着磁体16の着磁範囲αよ
りも小さく設定している。また、円形の中央部28は、
その半径r1か、中央部28の中心から上下の被着磁体
接触部30の端部同士を結んた線Xまでの距離r2より
も短く設定されている。
The range θ of the contact surface 32 of the magnetized body contact portion 30 with respect to the magnetized body 16 is set smaller than the magnetization range α of the magnetized body 16. Further, the circular center portion 28 is
The radius r1 is set to be shorter than the distance r2 from the center of the central portion 28 to a line X connecting the ends of the upper and lower magnetized body contact portions 30.

さらに、上記被着磁体保持部26の着磁コア24以外の
部分には、非磁性体34が配設されるようになっている
Furthermore, a non-magnetic material 34 is disposed in a portion of the magnetized object holding section 26 other than the magnetized core 24.

次に、上記モータ用着磁装置を用いて被着磁体16を着
磁する状態を説明する。
Next, a state in which the magnetized body 16 is magnetized using the motor magnetizing device will be described.

まず、着磁ヨーク22の被着磁体保持部26内の上下位
置に、一対の円弧状の被着磁体16を配し、その一対の
被着磁体16間に、着磁コア24を配設した状態で、上
記着磁ヨーク22を超伝導マグネット20の内側に配設
する。
First, a pair of arc-shaped magnetized bodies 16 were arranged at upper and lower positions in the magnetized body holding portion 26 of the magnetizing yoke 22, and a magnetized core 24 was arranged between the pair of magnetized bodies 16. In this state, the magnetizing yoke 22 is disposed inside the superconducting magnet 20.

次いて、超伝導マグネット20に通電して励磁し、高密
度の着磁用磁束32を発生させると、この着磁用磁束3
2は着磁ヨーク22によって超伝導マグネット20の内
側を平行に導かれて通過する。
Next, when the superconducting magnet 20 is energized and excited to generate a high-density magnetizing magnetic flux 32, this magnetizing magnetic flux 3
2 are guided in parallel inside the superconducting magnet 20 by the magnetizing yoke 22 and pass through it.

このとき、上記超伝導マグネット20は、その超伝導現
象の−っであるマイスナー効果により、外部への着磁用
磁束32の漏れを防止する。このため、発生した着磁用
磁束32は、そのまま被着磁体16に導かれる。
At this time, the superconducting magnet 20 prevents the leakage of the magnetizing magnetic flux 32 to the outside due to the Meissner effect, which is the origin of the superconducting phenomenon. Therefore, the generated magnetizing magnetic flux 32 is directly guided to the magnetized body 16.

また、被着磁体16に導かれた着磁用磁束32は、着磁
コア24を通って出口(下端)側に平行に通過しようと
するが、着磁コア24の被着磁体接触部30が被着磁体
16の着磁範囲αよりも、その接触面の範囲θを小さく
設定しており、しかも着磁コア24が接触している被着
磁体16の中央部では、着磁コア24の被着磁体接触部
30の両端が着磁コア24の中心にセクタ状に向ってい
ることから、被着磁体16に平行に導かれた着磁用磁束
32は所定の角度でセクタ状絞られラジアル方向に通過
する。
Further, the magnetizing magnetic flux 32 guided to the magnetized body 16 tries to pass through the magnetized core 24 in parallel to the exit (lower end) side, but the magnetized body contact portion 30 of the magnetized core 24 The range θ of the contact surface is set smaller than the magnetization range α of the magnetized body 16, and moreover, in the central part of the magnetized body 16 where the magnetized core 24 is in contact, Since both ends of the magnetized body contact portion 30 face the center of the magnetized core 24 in a sector shape, the magnetizing magnetic flux 32 guided parallel to the magnetized body 16 is constricted in a sector shape at a predetermined angle and radially directed. pass through.

これに対し、その両端部では着磁コア24が接触してお
らず、しかも非磁性体34の存在により、非磁性体34
附近の着磁用磁束32は、やや着磁コア24に引かれる
ものの完全なラジアル方向には進ます、被着磁体]6の
端に行くにしたかって着磁コア24の中心からずれるよ
うになり、更に端に行くと着磁ヨーク22に引かれてや
や逆ラジアル方向に進むようになる。
On the other hand, the magnetized core 24 is not in contact with the both ends, and moreover, due to the presence of the non-magnetic material 34, the non-magnetic material 34
Although the nearby magnetizing magnetic flux 32 is slightly attracted to the magnetized core 24, it proceeds in the complete radial direction, and as it goes to the edge of the magnetized object 6, it becomes deviated from the center of the magnetized core 24. As it goes further to the end, it is pulled by the magnetizing yoke 22 and begins to move in a slightly reverse radial direction.

この場合、被着磁体保持部26の左右両側に位置する部
分の厚さtlか、被着磁体16の厚さt2よりも小さく
設定しているのて、着磁用磁束32か大量に被着磁体保
持部26の左右両側に流れるようなことはなく、従って
着磁用磁束32か被着磁体16の両側で大量にラジアル
方向と反対方向に流れるのを防止できる。
In this case, since the thickness tl of the portions located on both left and right sides of the magnetized object holding portion 26 is set smaller than the thickness t2 of the magnetized object 16, a large amount of the magnetizing magnetic flux 32 is attached. There is no flow to both the left and right sides of the magnetic body holding portion 26, and therefore a large amount of the magnetizing magnetic flux 32 can be prevented from flowing in the opposite direction to the radial direction on both sides of the magnetized body 16.

また、着磁コア24の中央部28は、その半径「1が、
中央部28の中心から上下の被着磁体接触部30の端部
同士を結んだ線Xまての距離「2よりも短く設定されて
いるため、被着磁体16の両端部を通る着磁用磁束32
が必要以上に着磁コア24に引かれてラジアル方向に流
れるのを防止することが可能となる。
Further, the center portion 28 of the magnetized core 24 has a radius of “1”.
Since the distance from the center of the central portion 28 to the line magnetic flux 32
It is possible to prevent the magnet from being drawn to the magnetized core 24 more than necessary and flowing in the radial direction.

このように、本発明によれば、被着磁体16がモータの
固定子側磁石のように円弧状をしている場合でも、これ
をほぼ理想的なパターンでフル着磁することか可能とな
る。従って、着磁された磁石は、第6図中Cに示すよう
なサイン波形の理せ的な着磁パターンとなるものである
As described above, according to the present invention, even when the magnetized body 16 has an arc shape like a stator side magnet of a motor, it is possible to fully magnetize it in an almost ideal pattern. . Therefore, the magnetized magnet has a typical magnetization pattern of a sine waveform as shown in C in FIG.

第2図には、このようにして形成した希土類等方性の磁
石]8を直流モータに組込んた状態か示され、同図にお
いて36は回転子、38はヨークである。磁石18は、
図中矢印で示すように、中央部ではラジアル方向に磁力
線か向き、両端部では次第に外側に磁力線が向くように
なっており、第6図中Cに示すようなサイン波形の状態
となっている。従って、直流モータの最大トルクを低下
させることなく、コギンクトルクの大幅な低下がなしえ
、回転時の直流モータの振動低減がなしえて、なめらか
なモータの回転か得られることとなる。
FIG. 2 shows a state in which the rare earth isotropic magnet 8 thus formed is incorporated into a DC motor, in which numeral 36 is a rotor and numeral 38 is a yoke. The magnet 18 is
As shown by the arrows in the figure, the lines of magnetic force are oriented in the radial direction at the center, and the lines of force are gradually directed outward at both ends, resulting in a sine waveform as shown in C in Figure 6. . Therefore, the cogging torque can be significantly reduced without reducing the maximum torque of the DC motor, and the vibration of the DC motor during rotation can be reduced, resulting in smooth motor rotation.

第3図及び第4図には、本発明の他の実施例か示されて
いる。
Another embodiment of the invention is shown in FIGS. 3 and 4.

この実施例では、円筒状の被着磁体40を、超伝導マク
ネット20の内側に配した着磁ヨーク22の被着磁体保
持部26内に配置し、その被着磁体40内に、被着磁体
40の内面に接する円筒状の着磁コア42を設けるよう
にしている。
In this embodiment, a cylindrical magnetized body 40 is disposed within the magnetized body holding portion 26 of the magnetizing yoke 22 arranged inside the superconducting macnet 20, and the magnetized body 40 is placed inside the magnetized body 40. A cylindrical magnetized core 42 is provided in contact with the inner surface of the magnetic body 40.

このようにして形成した磁石44をモータに組込んた状
態か第4図である。この場合の磁力線は図中矢印で示す
ように、上方から下方に、平行に進むようになっている
。なお、図中46は回転子、48はヨークである。
FIG. 4 shows a state in which the magnet 44 formed in this manner is assembled into a motor. In this case, the lines of magnetic force run in parallel from above to below, as shown by the arrows in the figure. In addition, in the figure, 46 is a rotor, and 48 is a yoke.

なお、本発明は前記実施例に限定されるものではなく、
本発明の要旨の範囲内で各種の変形実施が可能である。
Note that the present invention is not limited to the above embodiments,
Various modifications can be made within the scope of the invention.

例えば、前記実施例においては、2種類の着磁コア24
.42を用いて着磁する場合について説明したが、上記
の例に限らず、着磁コアの形状を変更することによって
、種々の状態の着磁がなし得るものである。
For example, in the embodiment, two types of magnetized cores 24
.. Although the case where magnetization is carried out using 42 has been described, the case is not limited to the above example, and magnetization in various states can be achieved by changing the shape of the magnetization core.

また、着磁ヨーク22は一体のものを用いているが、分
割形状としてもよく、さらには被着磁体保持部26の左
右側の部分の厚さtlを0にすることも可能である。
Further, although the magnetizing yoke 22 is integral, it may have a divided shape, and furthermore, it is also possible to set the thickness tl of the left and right portions of the magnetized body holding portion 26 to zero.

さらに、前記実施例においては、超伝導マグネット20
の内側に着磁ヨーク22を位置させる場合を例にとり説
明したが、本発明はこれに限らす、着磁ヨーク22は超
伝導マグネット20で発生させた平行磁界ならばとの位
置に配してもよく、例えば、超伝導マグネット20て発
生させた平行磁界を筒状の超伝導ガイド部を用いて導く
場合には、この超伝導ガイド部内に着磁ヨーク22を配
しても良い。
Furthermore, in the embodiment, the superconducting magnet 20
Although the description has been made taking as an example the case where the magnetizing yoke 22 is located inside the superconducting magnet 20, the present invention is not limited to this. For example, in the case where the parallel magnetic field generated by the superconducting magnet 20 is guided using a cylindrical superconducting guide part, the magnetizing yoke 22 may be arranged within this superconducting guide part.

[発、明の効果〕 以上説明したように、本発明によれば、希土類系の被着
磁体に対して、容易に高磁束密度でフル着磁を成すこと
ができる回転電機用着磁装置を得ることができるという
効果がある。
[Effects of the Invention and Invention] As explained above, according to the present invention, there is provided a magnetizing device for a rotating electrical machine that can easily fully magnetize a rare earth-based magnetized material at a high magnetic flux density. There is an effect that can be obtained.

特に、本発明によれば、被着磁体内又は被着磁体間の着
磁コアの形状によって、被着磁体への着磁波形を制御す
ることにより、理想的な着磁パターンにて着磁を成すこ
とができ、その結果出力低減なしで回転電機の低振動、
低騒音化を図ることがてきるという効果かある。
In particular, according to the present invention, by controlling the magnetization waveform of the magnetized object by the shape of the magnetizing core within the magnetized object or between the magnetized objects, magnetization is achieved in an ideal magnetization pattern. As a result, the vibration of rotating electric machines can be reduced without reducing the output.
This has the effect of reducing noise.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る回転電機用着磁装置を
示す断面図、 第2図は第1図の回転電機用着磁装置にて形成した磁石
を用いたモータの断面図、 第3図は本発明の他の実施例に係る回転電機用着磁装置
を示す断面図、 第4図は第3図の回転電機用着磁装置にて形成した磁石
を用いたモータの断面図、 第5図は従来の着磁装置を示す断面図、第6図は着磁装
置による着磁パターンを示す特性図である。 16.40・・・被着磁体、18.44・・・磁石、2
0・・・超伝導マグネット、22・・・着磁ヨーク、2
4.42・・・着磁コア、32・・・着磁用磁束。 代理人  弁理士  布施行夫 (他2名)第 図 第 図 第 図
FIG. 1 is a cross-sectional view showing a magnetizing device for a rotating electric machine according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of a motor using a magnet formed by the magnetizing device for a rotating electric machine of FIG. 1, FIG. 3 is a sectional view showing a magnetizing device for a rotating electrical machine according to another embodiment of the present invention, and FIG. 4 is a sectional view of a motor using magnets formed by the magnetizing device for a rotating electrical machine of FIG. 3. , FIG. 5 is a sectional view showing a conventional magnetizing device, and FIG. 6 is a characteristic diagram showing a magnetization pattern by the magnetizing device. 16.40...Magnetized body, 18.44...Magnet, 2
0... Superconducting magnet, 22... Magnetizing yoke, 2
4.42... Magnetizing core, 32... Magnetic flux for magnetization. Agent: Patent attorney, Futsuo (and 2 others)

Claims (2)

【特許請求の範囲】[Claims] (1)希土類の被着磁体を着磁し回転電機固定子用の等
方性磁石を形成する回転電機用着磁装置において、 超伝導マグネットを用いて高磁束密度の平行磁界を発生
させる超伝導型磁場発生装置と、前記超伝導マグネット
から生じる高磁束密度の平行磁界内に配置され、この平
行磁界を前記希土類の被着磁体に導く着磁ヨークと、 前記被着磁体内又は被着磁体間に配設され、前記高磁束
密度の平行磁界が被着磁体内を所定の着磁波形に合わせ
て通過するよう磁路を制御する着磁コアと、 を含み、被着磁体に対し所定の着磁波形を付与すること
を特徴とする回転電機用着磁装置。
(1) Superconductivity, which uses a superconducting magnet to generate a parallel magnetic field with high magnetic flux density, in a magnetizing device for rotating electrical machines that magnetizes rare earth magnetized materials to form isotropic magnets for rotating electrical machine stators. a magnetic field generator, a magnetizing yoke disposed within a high magnetic flux density parallel magnetic field generated from the superconducting magnet and guiding this parallel magnetic field to the rare earth magnetized body, and a magnetized yoke within the magnetized body or between the magnetized bodies. a magnetizing core that is arranged in a magnetic field and controls a magnetic path so that the high magnetic flux density parallel magnetic field passes through the magnetized object in accordance with a predetermined magnetization waveform; A magnetizing device for a rotating electrical machine characterized by imparting a magnetic waveform.
(2)請求項(1)において、 前記着磁コアは、被着磁体との接触面が被着磁体の着磁
範囲よりも小さく設定され、被着磁体の磁束が両端部で
弱く中央になるにしたがって漸次強くなる着磁波形を得
るように形成されることを特徴とする回転電機用着磁装
置。
(2) In claim (1), the magnetized core has a contact surface with the magnetized body set to be smaller than a magnetization range of the magnetized body, and the magnetic flux of the magnetized body is weak at both ends and becomes central. 1. A magnetizing device for a rotating electric machine, characterized in that the magnetizing device is formed to obtain a magnetizing waveform that gradually becomes stronger as the temperature increases.
JP24946790A 1990-02-07 1990-09-18 Magnetizer for electric rotating machine Pending JPH04127860A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP24946790A JPH04127860A (en) 1990-09-18 1990-09-18 Magnetizer for electric rotating machine
US07/651,658 US5204569A (en) 1990-02-07 1991-02-06 Anisotropic magnet for rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24946790A JPH04127860A (en) 1990-09-18 1990-09-18 Magnetizer for electric rotating machine

Publications (1)

Publication Number Publication Date
JPH04127860A true JPH04127860A (en) 1992-04-28

Family

ID=17193393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24946790A Pending JPH04127860A (en) 1990-02-07 1990-09-18 Magnetizer for electric rotating machine

Country Status (1)

Country Link
JP (1) JPH04127860A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012242205A (en) * 2011-05-18 2012-12-10 Nsk Ltd Angle detection encoder and magnetization method for the same
JP2020113578A (en) * 2019-01-08 2020-07-27 大同特殊鋼株式会社 Mold and method for forming magnet material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012242205A (en) * 2011-05-18 2012-12-10 Nsk Ltd Angle detection encoder and magnetization method for the same
JP2020113578A (en) * 2019-01-08 2020-07-27 大同特殊鋼株式会社 Mold and method for forming magnet material

Similar Documents

Publication Publication Date Title
US5436518A (en) Motive power generating device
US5204569A (en) Anisotropic magnet for rotary electric machine
US5075814A (en) External method and apparatus for magnetizing metal pieces in rotary electric apparatus to a permanent magnetization state
US5557248A (en) Magnetizer for magnets with shaped magnetic waveform
JPH0636404B2 (en) Method and apparatus for forming a magnetized zone on a magnetizable object
Imamura et al. Design of variable magnetization pattern machines for dynamic changes in the back EMF waveform
JP3671442B2 (en) Demagnetizing method and demagnetizing device
JPH04127860A (en) Magnetizer for electric rotating machine
JPH1014181A (en) Magnetizing unit for permanent magnet synchronous machine and positioning/fixing method therefor
JPH05236686A (en) Brushless cd motor
EP0630096A1 (en) Motive power generating device
Nakata et al. Numerical design method for magnetizers
JP2831123B2 (en) Permanent magnet type DC machine
JPS61263206A (en) Magnetizing method
KR100252831B1 (en) Method for magnetization of permanent magnet
JPH11308825A (en) Magnetization device of rotor magnet
JPS6039333A (en) Rotary electric machine driven by inverter
JPH11308824A (en) Magnetization method of permanent magnet
JP3326882B2 (en) Magnetizing device for FDD spindle motor
JPS60167310A (en) Magnetization of anisotropic cylinder magnet
JPH0235703A (en) Magnetizing apparatus and method
Hipper Iron loss analysis in linear DC motor: laminated vs. solid core
JP2002075733A (en) Method and device for magnetizing permanent magnet piece for magnetic pole of rotating machine
JPS63260118A (en) Magnetizing apparatus of radial anisotropic cylindrical magnet
JPH03125411A (en) Magnetizer