JPH0412753B2 - - Google Patents
Info
- Publication number
- JPH0412753B2 JPH0412753B2 JP59188589A JP18858984A JPH0412753B2 JP H0412753 B2 JPH0412753 B2 JP H0412753B2 JP 59188589 A JP59188589 A JP 59188589A JP 18858984 A JP18858984 A JP 18858984A JP H0412753 B2 JPH0412753 B2 JP H0412753B2
- Authority
- JP
- Japan
- Prior art keywords
- phosphor
- blue
- activated zinc
- manganese
- afterglow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 70
- -1 manganese-activated zinc phosphate phosphor Chemical class 0.000 claims description 60
- 239000011572 manganese Substances 0.000 claims description 38
- 229910052748 manganese Inorganic materials 0.000 claims description 37
- NYZGMENMNUBUFC-UHFFFAOYSA-N P.[S-2].[Zn+2] Chemical compound P.[S-2].[Zn+2] NYZGMENMNUBUFC-UHFFFAOYSA-N 0.000 claims description 21
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 claims description 10
- NYOGMBUMDPBEJK-UHFFFAOYSA-N arsanylidynemanganese Chemical compound [As]#[Mn] NYOGMBUMDPBEJK-UHFFFAOYSA-N 0.000 claims description 5
- 229910017052 cobalt Inorganic materials 0.000 claims description 5
- 239000010941 cobalt Substances 0.000 claims description 5
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 5
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 4
- 239000001055 blue pigment Substances 0.000 claims description 4
- 229910052984 zinc sulfide Inorganic materials 0.000 claims description 4
- 239000005083 Zinc sulfide Substances 0.000 claims description 2
- IRERQBUNZFJFGC-UHFFFAOYSA-L azure blue Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[S-]S[S-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-] IRERQBUNZFJFGC-UHFFFAOYSA-L 0.000 claims description 2
- 238000000034 method Methods 0.000 claims description 2
- XSMMCTCMFDWXIX-UHFFFAOYSA-N zinc silicate Chemical class [Zn+2].[O-][Si]([O-])=O XSMMCTCMFDWXIX-UHFFFAOYSA-N 0.000 claims 2
- 239000012528 membrane Substances 0.000 claims 1
- 229910052709 silver Inorganic materials 0.000 description 20
- 239000004332 silver Substances 0.000 description 20
- 239000000203 mixture Substances 0.000 description 8
- ZOIVSVWBENBHNT-UHFFFAOYSA-N dizinc;silicate Chemical compound [Zn+2].[Zn+2].[O-][Si]([O-])([O-])[O-] ZOIVSVWBENBHNT-UHFFFAOYSA-N 0.000 description 7
- 238000009125 cardiac resynchronization therapy Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 1
- 229910004283 SiO 4 Inorganic materials 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000004110 Zinc silicate Substances 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 235000019352 zinc silicate Nutrition 0.000 description 1
Landscapes
- Luminescent Compositions (AREA)
Description
本発明は、カラーブラウン管(本明細書に於て
CRTと記す)、特に、コンピユーターの端末機器
等の観測用に使用される高精細度表示カラーデイ
スプレー管に適した青色成分がライトブルーであ
る蛍光膜を提供するにある。
The present invention relates to a color cathode ray tube (hereinafter referred to as a color cathode ray tube).
The object of the present invention is to provide a fluorescent film whose blue component is light blue, which is suitable for high-definition display color display tubes used for observation of computer terminal equipment, etc.
現在のカラーCRTは、JEDEC(現TEPAC)番
号P−22の蛍光膜を有し、これらの蛍光体は数
100マイクロ秒の短かい残光特性である。この蛍
光膜を有するカラーCRTは、現在のフレーム周
波数が60ヘルツの繰り返し画面では、フリツカー
(チラツキ)は感じられない。しかしこれを高精
細度化する為に、蛍光体のドツトサイズを縮小し
てドツト数を増加させ、この蛍光面を、ビーム径
をより小さく絞つた電子ビームによつて刺激して
いる。そして更に、分解能を高める為に、水平走
査本数を増加させているが、このことは、必然的
に水平走査周波数を高めることになる。この結
果、映像周波数帯域が上昇して、これの駆動回路
のコストが非常に増大する。このコストの増加を
避けるためには、水平走査本数は増加させるが、
フレーム周波数を例えば40ヘルツと低くすること
によつて、水平走査周波数の増加を低く抑え、こ
れによつて、映像周波数帯域を狭くするのが良
い。しかしこのように、フレームの周波数を下げ
ると、1秒間の繰り返し画面数が少なくなつて、
チラツキを生ずる。これを防止する為には、蛍光
体に残光性を持たせる必要がある。本発明はこの
残光性の蛍光体に係るものである。
本明細書に於て、残光時間の表示には、一般
に、刺激を停止した後の輝度が、停止前の輝度の
10%に低下した時の時間を以て表している。
残光を有する蛍光体には、緑色発光としてP−
39(マンガンヒ素付活珪酸亜鉛)、P−1(マンガ
ン付活珪酸亜鉛)が知られている。また赤色発光
としては、P−27(マンガン付活燐酸亜鉛)、P−
38(マンガン付活フツ化亜鉛マグネシウム)が知
られていて、これは何れも数10ミリ秒あるいはそ
れ以上の残光を示す。
しかし青色の蛍光体については、残光の長い実
用性のある蛍光体は知られていない。青色発光蛍
光体の残光時間を長くするために、従来から知ら
れている残光の短かいZnS:AgCl(銀付活硫化亜
鉛)に、既に述べたような長残光の、マンガン付
活珪酸亜鉛、マンガンヒ素付活珪酸亜鉛、マンガ
ン付活燐酸亜鉛、マンガン付活フツ化亜鉛マグネ
シウム等の蛍光体を適当に混合して、残光性を持
たせる技術が開発されている(特公昭57−37098
号公報)。
Current color CRTs have a phosphor film with JEDEC (currently TEPAC) number P-22, and these phosphors are
It has a short afterglow characteristic of 100 microseconds. Color CRTs with this fluorescent film do not produce any noticeable flicker on repetitive screens with a current frame frequency of 60 hertz. However, in order to achieve higher definition, the dot size of the phosphor is reduced to increase the number of dots, and this phosphor screen is stimulated by an electron beam with a narrower beam diameter. Furthermore, in order to improve the resolution, the number of horizontal scans is increased, but this inevitably increases the horizontal scan frequency. As a result, the video frequency band increases and the cost of the driving circuit increases significantly. In order to avoid this increase in cost, the number of horizontal scans should be increased, but
By lowering the frame frequency to, for example, 40 Hz, it is preferable to suppress the increase in horizontal scanning frequency, thereby narrowing the video frequency band. However, when the frame frequency is lowered in this way, the number of repeated screens per second decreases,
Causes flickering. In order to prevent this, it is necessary to provide the phosphor with afterglow properties. The present invention relates to this afterglow phosphor. In this specification, the display of afterglow time generally means that the brightness after stopping the stimulation is the same as the brightness before stopping.
It is expressed as the time when the rate drops to 10%. Phosphors with afterglow have P-
39 (manganese arsenic activated zinc silicate) and P-1 (manganese activated zinc silicate) are known. In addition, for red luminescence, P-27 (manganese activated zinc phosphate), P-
38 (manganese-activated zinc magnesium fluoride) is known, and all of these exhibit an afterglow of several tens of milliseconds or longer. However, no practical blue phosphor with long afterglow is known. In order to lengthen the afterglow time of the blue-emitting phosphor, we added manganese-activated material with a long afterglow as described above to ZnS:AgCl (silver-activated zinc sulfide), which has a short afterglow and has been known for a long time. A technology has been developed to provide afterglow properties by appropriately mixing phosphors such as zinc silicate, manganese-arsenic-activated zinc silicate, manganese-activated zinc phosphate, and manganese-activated zinc magnesium fluoride. −37098
Publication No.).
しかしながら、残光時間の長い蛍光体は、残光
時間の短かい蛍光体に比べて輝度が低い欠点があ
り、高解像度のブラウン管は、充分な明るさのも
のが実用化されていない。
更にまた、銀付活硫化亜鉛蛍光体の一部を、相
対発光輝度が高いマンガン付活フツ化カルシウム
蛍光体又は、これに自己付活硫化亜鉛蛍光体を混
合した蛍光体に置き換え、これによつて長残光青
色蛍光体の発光輝度を高くする技術も開発されて
いる(特開昭57−163240号公報)。
上記のマンガン付活フツ化カルシウム蛍光体
は、バーニング特性と、電流飽和特性が悪く、相
対発光輝度が、たかだか20%程度高いのに比べ、
本発明の青色蛍光体として使用する自己付活硫化
亜鉛蛍光体は、相対発光輝度が、銀付活硫化亜鉛
蛍光体の2倍もあつて著しく高い。この為、自己
付活硫化亜鉛蛍光体を使用して充分な残光時間の
ものが実用化できるなら、従来のものを卓越する
優れた長残光青色蛍光体が実現できる。
さらにまた、自己付活硫化亜鉛蛍光体に、残光
時間の長いマンガン付活フツ化カルシウム蛍光体
を混合した青色発光蛍光体も開発されている(特
開昭57−103240号公報)。この蛍光体は、マンガ
ン付活フツ化カルシウム蛍光体によつて残光時間
を延長することはできる。しかしながら、この蛍
光体は、マンガン付活フツ化カルシウム蛍光体の
発色色が青緑であることから、発光色をライトブ
ルーにすることはできない。マンガン付活フツ化
カルシウム蛍光体と、自己付活硫化亜鉛蛍光体の
カラーポイントを第1図に示している。この図に
おいて、B点は自己付活硫化亜鉛蛍光体のカラー
ポイントを、G点はマンガン付活フツ化カルシウ
ム蛍光体のカラーポイントを示している。これ等
の蛍光体を混合した蛍光体の発光色は、B点とG
点とを結ぶ線分上にある。
本発明は、発光色がライトブルーで、しかも残
光時間が長く、低いフレーム周波数で使用されて
もフリツカが起こらず、しかも発光輝度の高い青
色発光性成分のカラーCRTの蛍光膜を提供する
ことを目的とする。
However, phosphors with a long afterglow time have the disadvantage of lower brightness than phosphors with a short afterglow time, and high-resolution cathode ray tubes with sufficient brightness have not been put into practical use. Furthermore, a part of the silver-activated zinc sulfide phosphor is replaced with a manganese-activated calcium fluoride phosphor that has a high relative luminance, or a phosphor that is a mixture of this and a self-activated zinc sulfide phosphor. A technique for increasing the luminance of long-afterglow blue phosphors has also been developed (Japanese Patent Application Laid-Open No. 163240/1983). Compared to the above manganese-activated calcium fluoride phosphor, which has poor burning characteristics and current saturation characteristics, and has a relative luminance that is about 20% higher at most,
The self-activated zinc sulfide phosphor used as the blue phosphor of the present invention has an extremely high relative luminance, twice that of the silver-activated zinc sulfide phosphor. Therefore, if a self-activating zinc sulfide phosphor with a sufficient afterglow time can be put into practical use, an excellent long-afterglow blue phosphor that surpasses conventional ones can be realized. Furthermore, a blue-emitting phosphor has been developed in which a self-activated zinc sulfide phosphor is mixed with a manganese-activated calcium fluoride phosphor having a long afterglow time (Japanese Patent Application Laid-open No. 103240/1983). The afterglow time of this phosphor can be extended by using a manganese-activated calcium fluoride phosphor. However, since the color of the manganese-activated calcium fluoride phosphor is blue-green, this phosphor cannot emit light blue. The color points of the manganese-activated calcium fluoride phosphor and the self-activated zinc sulfide phosphor are shown in FIG. In this figure, point B indicates the color point of the self-activated zinc sulfide phosphor, and point G indicates the color point of the manganese-activated calcium fluoride phosphor. The luminescent color of the phosphor mixed with these phosphors is point B and G.
It is on the line segment connecting the points. The present invention provides a fluorescent film for a color CRT of a blue light-emitting component that emits light blue, has a long afterglow time, does not cause flickering even when used at a low frame frequency, and has high luminance. With the goal.
本発明はこの目的を達成するために開発された
もので、この発明のカラーCRTの蛍光膜は、残
光時間の短かい青色蛍光体に、自己付活硫化亜鉛
蛍光体または青色フイルターを有する自己付活硫
化亜鉛蛍光体を使用している。青色発光蛍光体に
は、残光時間が20ミリ秒以上の残光性を有する緑
色および赤色蛍光体の少なくとも一種が混合され
ている。青色発光蛍光体と、赤色発光蛍光体と、
緑色発光蛍光体の混合比が調整されて、色度値で
x=0.226、y=0.230付近のライトブルー発光色
を青色成分としている。
The present invention was developed to achieve this objective, and the color CRT phosphor film of the present invention has a self-activating zinc sulfide phosphor or a blue filter in addition to a blue phosphor with a short afterglow time. Uses activated zinc sulfide phosphor. The blue-emitting phosphor is mixed with at least one of green and red phosphors having an afterglow property of 20 milliseconds or more. A blue-emitting phosphor, a red-emitting phosphor,
The mixing ratio of the green-emitting phosphor is adjusted, and the light blue emitted color with chromaticity values of around x=0.226 and y=0.230 is made into a blue component.
自己付活硫化亜鉛蛍光体の発光色は青色で、銀
付活硫化亜鉛蛍光体のように深青色でない。この
ため、自己付活硫化亜鉛蛍光体に、別の青色蛍光
体を混合することなく、これに赤又は緑色の長残
光蛍光体を混合して長残光の青色蛍光体は実用化
出来ないと考えられていた。しかしながら、本発
明者等の実験によつて、青色フイルターで発光色
を深青色に近づけ、あるいは青色フイルターを全
く使用しない自己付活硫化亜鉛蛍光体に、マンガ
ン付活珪酸亜鉛、マンガンヒ素付活珪酸亜鉛、マ
ンガン付活燐酸亜鉛、マンガン付活フツ化亜鉛マ
グネシウム等の長残光蛍光体を混合した青色蛍光
体は、意外にも、銀付活硫化亜鉛に赤と緑の長残
光蛍光体を混合した青色長残光蛍光体にほぼ等し
い発光色(x値、y値)を有し、しかも、充分な
残光時間と、従来品を卓越する発光輝度を実現し
た。
これは、赤と緑色の長残光蛍光体が混合された
青色長残光蛍光体の発光色は、青色蛍光体単独の
場合に比べるとライトブルーとなる傾向にあり、
しかも、自己付活硫化亜鉛蛍光体と銀付活硫化亜
鉛蛍光体の発光色を比べると、発光色は銀付活硫
化亜鉛蛍光体が深青色であるが、自己付活硫化亜
鉛蛍光体は、銀付活硫化亜鉛蛍光体よりもx値が
小さく、より多くの長残光赤色蛍光体が混合で
き、更に又、長残光赤色蛍光体は、一般的に残光
時間が長残光緑色蛍光体よりも長いという特性を
有効に組み合わせることによつて本発明は完成さ
れたものである。
以下、その理由を詳述する。
第1図のA,B,C各点に、銀付活硫化亜鉛蛍
光体、自己付活硫化亜鉛蛍光体、コバルトブルー
青色顔料付自己付活硫化亜鉛蛍光体のx値、y値
を示す。これ等の蛍光体に、D点(P−27の長残
光赤)、E点(P−39長残光緑)蛍光体を混合し
て、発光色がライトブルーであるF点のx値、y
値の蛍光体を製作する。
カラーポイントがA,B,D各点にある蛍光体
は、マンガン付活燐酸亜鉛赤色蛍光体(カラーポ
イントD点のP−27)の混合量を増加させるとx
値がしだいに大きくなり、マンガンヒ素付活珪酸
亜鉛緑色蛍光体(カラーポイントE点のP−39)
の混合量を増加させると、y値が大きくなる。
B、C点の蛍光体(自己付活硫化亜鉛)は、A
点の蛍光体(銀付活硫化亜鉛)よりもy値が大き
い。このため、F点の発光色とするためには、
B,C点蛍光体は、A点の蛍光体よりも、マンガ
ンヒ素付活珪酸亜鉛蛍光体(E点)の混合量を少
なくする必要がある。しかしながら、B,C点の
蛍光体は、A点の蛍光体よりもx値が小さく、マ
ンガン付活燐酸亜鉛蛍光体(D点)の混合量を多
くして、発光色をF点とすることができる。
ここで、好都合なことに、長残光の赤色蛍光体
であるマンガン付活燐酸亜鉛やマンガン付活フツ
化亜鉛マグネシウム蛍光体は、マンガンひ素付活
珪酸亜鉛やマンガン付活珪酸亜鉛等の緑色蛍光体
に比べて残光時間が長いので、残光時間が長い赤
色蛍光体の混合量を多くして残光時間を長くでき
る。
このため、本発明の蛍光体は、長残光蛍光体の
混合量を少なくして、充分に長い残光特性を実現
できる。ちなみに、長残光赤色蛍光体であるマン
ガン付活燐酸亜鉛、マンガン付活フツ化亜鉛マグ
ネシウムの残光時間が、それぞれ約120ミリ秒と
1000ミリ秒であるのに対し、長残光緑色発光蛍光
体であるマンガンヒ素付活珪酸亜鉛およびマンガ
ン付活珪酸亜鉛蛍光体の残光時間は、80ミリ秒と
20ミリ秒と相当に短かい。
更に好都合なことに、自己付活硫化亜鉛蛍光体
の相対発光輝度は、第1表に示すように、銀付活
硫化亜鉛に比べて著しく高く、これに長残光蛍光
体が更に加えられたときの発光輝度を著しく高く
できる。
The emission color of the self-activated zinc sulfide phosphor is blue, not the deep blue color of the silver-activated zinc sulfide phosphor. For this reason, it is not possible to put into practical use a long afterglow blue phosphor by mixing a red or green long afterglow phosphor with a self-activated zinc sulfide phosphor without mixing another blue phosphor. It was thought that However, through experiments conducted by the present inventors, we have found that manganese-activated zinc silicate, manganese arsenic-activated silicate, and self-activating zinc sulfide phosphors that bring the emission color closer to deep blue with a blue filter or that do not use a blue filter at all. The blue phosphor is a mixture of long-afterglow phosphors such as zinc, manganese-activated zinc phosphate, and manganese-activated zinc-magnesium fluoride.Surprisingly, the blue phosphor is a combination of silver-activated zinc sulfide and red and green long-afterglow phosphors. It has an emission color (x value, y value) that is almost the same as that of the mixed blue long afterglow phosphor, and has also achieved sufficient afterglow time and emission brightness superior to conventional products. This is because the emitted light color of blue long afterglow phosphor, which is a mixture of red and green long afterglow phosphors, tends to be lighter blue compared to the case of blue phosphor alone.
Moreover, when comparing the emission color of self-activated zinc sulfide phosphor and silver-activated zinc sulfide phosphor, the emission color of silver-activated zinc sulfide phosphor is deep blue, but that of self-activated zinc sulfide phosphor is The x-value is smaller than that of silver-activated zinc sulfide phosphors, and more long-afterglow red phosphors can be mixed together; furthermore, long-afterglow red phosphors generally have long afterglow green phosphors The present invention was completed by effectively combining the characteristics of being longer than the body. The reason for this will be explained in detail below. Points A, B, and C in FIG. 1 show the x and y values of the silver-activated zinc sulfide phosphor, the self-activated zinc sulfide phosphor, and the self-activated zinc sulfide phosphor with cobalt blue blue pigment. These phosphors are mixed with D point (P-27 long afterglow red) and E point (P-39 long afterglow green) phosphor, and the x value of F point where the emission color is light blue. ,y
Producing value phosphors. Phosphors with color points A, B, and D have x
The value gradually increases, and the manganese arsenic activated zinc silicate green phosphor (color point E point P-39)
When the mixing amount of is increased, the y value becomes larger. The phosphor (self-activated zinc sulfide) at points B and C is A
The y value is larger than that of the point phosphor (silver-activated zinc sulfide). Therefore, in order to obtain the emission color of point F,
For the B and C point phosphors, it is necessary to mix a smaller amount of the manganese arsenic activated zinc silicate phosphor (E point) than for the A point phosphor. However, the phosphors at points B and C have a smaller x value than the phosphor at point A, and the amount of mixed manganese-activated zinc phosphate phosphor (point D) can be increased to change the emission color to point F. I can do it. Here, advantageously, long afterglow red phosphors such as manganese-activated zinc phosphate and manganese-activated zinc fluoride magnesium phosphors are replaced by green fluorescent materials such as manganese-arsenic-activated zinc silicate and manganese-activated zinc silicate. Since the afterglow time is longer than that of the body, the afterglow time can be increased by increasing the amount of red phosphor that has a long afterglow time. Therefore, the phosphor of the present invention can achieve sufficiently long afterglow characteristics by reducing the amount of long afterglow phosphor mixed. By the way, the afterglow times of manganese-activated zinc phosphate and manganese-activated zinc fluoride magnesium, which are long afterglow red phosphors, are approximately 120 milliseconds.
1000 milliseconds, whereas the afterglow time of manganese arsenic-activated zinc silicate and manganese-activated zinc silicate phosphors, which are long afterglow green-emitting phosphors, is 80 milliseconds.
It's quite short at 20 milliseconds. Further advantageously, the relative luminance of self-activated zinc sulfide phosphors is significantly higher than that of silver-activated zinc sulfide, as shown in Table 1, to which long afterglow phosphors are further added. It is possible to significantly increase the luminance when
【表】
更に、コバルトブルー青色フイルターで発光色
が第1図のB点からC点に移された自己付活硫化
亜鉛蛍光体は、発光色をF点に移すためにより多
量の長残光緑色蛍光体が混合でき、残光時間を長
くできる。
第1図にマンガン付活フツ化カルシウムのカラ
ーポイントGを示す。この蛍光体は相対発光精度
が銀付活硫化亜鉛蛍光体よりも多少高いとして
も、F点よりもy値が大きく、発光輝度の低い銀
付活硫化亜鉛蛍光体を相当量に混合してy値を小
さくしない限り、長残光青色蛍光体としては使用
できない。従つて、実際の使用状態に於て、発光
輝度を高くするのは著しく困難である。[Table] Furthermore, the self-activated zinc sulfide phosphor whose emission color was moved from point B to point C in Figure 1 using a cobalt blue blue filter has a larger amount of long afterglow green in order to move the emission color to point F. Phosphors can be mixed and the afterglow time can be extended. Figure 1 shows the color point G of manganese-activated calcium fluoride. Although this phosphor has a relative luminescence accuracy that is somewhat higher than that of the silver-activated zinc sulfide phosphor, the y value is larger than the F point, and a considerable amount of the silver-activated zinc sulfide phosphor, which has low emission brightness, is mixed with the y value. Unless the value is reduced, it cannot be used as a long afterglow blue phosphor. Therefore, it is extremely difficult to increase the luminance in actual use.
自己付活硫化亜鉛青色蛍光体、あるいはコバル
トブルー又は群青等の青顔料を被着させた自己付
活硫化亜鉛蛍光体に、マンガン付活珪酸亜鉛、マ
ンガンヒ素付活珪酸亜鉛、マンガン付活燐酸亜
鉛、マンガン付活フツ化亜鉛マグネシウム等の蛍
光体を適宜混合すると、残光時間が40〜65ミリ秒
あるいは100ミリ秒を超える程度のものが得られ
た。
本発明の蛍光体が、従来の長残光青色蛍光体に
比べていかに優れた特性を有するかを実証する為
に、本発明者は、3種の従来例と、3種の本発明
の実施例を試作した。
従来例 1
銀付活硫化亜鉛蛍光体と、マンガンヒ素付活珪
酸亜鉛蛍光体(P−39)と、マンガン付活燐酸亜
鉛蛍光体(P−27)とを、それぞれ重量比で、27
重量%、30重量%、43重量%混合して長残光青色
蛍光体を試作した。
従来例 2
銀付活硫化亜鉛蛍光体33重量%、マンガン付活
珪酸亜鉛蛍光体(P−1)32重量%、マンガン付
活フツ化マグネシウム蛍光体(P−38)35重量%
を混合して、長残光青色蛍光体を試作した。
従来例 3
銀付活硫化亜鉛蛍光体11重量%、マンガン付活
フツ化カルシウム蛍光体30重量%、マンガンヒ素
付活珪酸亜鉛蛍光体9重量%、マンガン付活燐酸
亜鉛蛍光体50重量%を混合して長残光青色蛍光体
を試作した。
実施例 1
自己付活硫化亜鉛蛍光体(青色発光)ZnS:
ZnCl、マンガンヒ素付活珪酸亜鉛蛍光体(緑色
発光)Zn2SiO4:MnAsおよびマンガン付活燐酸
亜鉛蛍光体(赤色発光)Zn3(PO4)2:Mnをそれ
ぞれ40重量%、12重量%および48重量%の割合で
混合したものは、1/10残光時間が43ミリ秒であ
り、その輝度は、自己付活硫化亜鉛を銀付活硫化
亜鉛に代える以外は同じ組成の従来の蛍光体混合
物に比べて12%高かつた。
実施例 2
1.5重量%のコバルトブルー顔料を、表面被覆
した自己付活硫化亜鉛を用いること以外は、実施
例1と同じ成分をそれぞれ、32重量%、16重量
%、52重量%の割合で混合したものは、色調は実
施例1でほぼ同じであり、残光時間は65ミリ秒で
あり、その輝度は自己付活硫化亜鉛に代えて銀付
活硫化亜鉛を用いた同一色調の従来の蛍光体混合
物に比べ、8%高かつた。
実施例 3
自己付活硫化亜鉛蛍光体、マンガン付活珪酸亜
鉛蛍光体、およびマンガン付活フツ化亜鉛マグネ
シウム蛍光体をそえぞれ、43重量%、23重量%、
および34重量%の割合で混合したものは、1/10
残光時間が140ミリ秒であり、その輝度は、自己
付活硫化亜鉛に代えて銀付活硫化亜鉛を用いる以
外は、同一組成であつて、色調を同一にしたもの
に比べて20%高かつた。
Self-activated zinc sulfide blue phosphor, or self-activated zinc sulfide phosphor coated with a blue pigment such as cobalt blue or ultramarine, manganese-activated zinc silicate, manganese-activated zinc silicate, or manganese-activated zinc phosphate. By appropriately mixing phosphors such as , manganese-activated zinc magnesium fluoride, etc., a product with an afterglow time of 40 to 65 milliseconds or more than 100 milliseconds was obtained. In order to demonstrate how the phosphor of the present invention has superior properties compared to conventional long-afterglow blue phosphors, the present inventors conducted three conventional examples and three implementations of the present invention. I made an example. Conventional Example 1 A silver-activated zinc sulfide phosphor, a manganese-arsenic-activated zinc silicate phosphor (P-39), and a manganese-activated zinc phosphate phosphor (P-27) were each mixed in a weight ratio of 27
A long afterglow blue phosphor was prototyped by mixing % by weight, 30% by weight, and 43% by weight. Conventional example 2 Silver activated zinc sulfide phosphor 33% by weight, manganese activated zinc silicate phosphor (P-1) 32% by weight, manganese activated magnesium fluoride phosphor (P-38) 35% by weight
A long afterglow blue phosphor was prototyped by mixing. Conventional Example 3 Mixing 11% by weight of silver-activated zinc sulfide phosphor, 30% by weight of manganese-activated calcium fluoride phosphor, 9% by weight of manganese-arsenic-activated zinc silicate phosphor, and 50% by weight of manganese-activated zinc phosphate phosphor. A long-afterglow blue phosphor was produced as a prototype. Example 1 Self-activated zinc sulfide phosphor (blue emission) ZnS:
ZnCl, manganese arsenic activated zinc silicate phosphor (green emission) Zn 2 SiO 4 : MnAs and manganese activated zinc phosphate phosphor (red emission) Zn 3 (PO 4 ) 2 : Mn 40% by weight and 12% by weight respectively and a mixture of 48% by weight has a 1/10 afterglow time of 43 milliseconds, and its brightness is similar to that of the conventional fluorescent material with the same composition except that self-activated zinc sulfide is replaced with silver-activated zinc sulfide. It was 12% higher than that of the body mixture. Example 2 The same components as in Example 1 were mixed in proportions of 32% by weight, 16% by weight, and 52% by weight, respectively, except that 1.5% by weight of cobalt blue pigment was used with self-activated zinc sulfide coated on the surface. The color tone is almost the same as in Example 1, the afterglow time is 65 milliseconds, and the brightness is higher than that of the conventional fluorescence of the same color tone using silver-activated zinc sulfide instead of self-activated zinc sulfide. It was 8% higher than that of the body mixture. Example 3 Self-activated zinc sulfide phosphor, manganese-activated zinc silicate phosphor, and manganese-activated zinc magnesium fluoride phosphor, 43% by weight, 23% by weight,
and 34% by weight is 1/10
The afterglow time is 140 milliseconds, and the brightness is 20% higher than that of the same composition but with the same color tone except that silver-activated zinc sulfide is used instead of self-activated zinc sulfide. It was.
本発明の蛍光体が、従来の蛍光体に比べていか
に優れた特長を有するかを第2表に示す。
この第2表について説明すると、従来の銀付活
硫化亜鉛を使用した蛍光体の色度値x=0.226、
y=0.230のほとんど同じ値に調整した自己付活
硫化亜鉛を使用した本発明の蛍光体(実施例1)
は、その残光時間は少し短かくなるが、輝度は約
10%向上した。また、顔料を被着した
Table 2 shows how the phosphor of the present invention has superior features compared to conventional phosphors. To explain this Table 2, the chromaticity value x = 0.226 of the conventional phosphor using silver-activated zinc sulfide,
Phosphor of the present invention using self-activated zinc sulfide adjusted to almost the same value of y = 0.230 (Example 1)
, the afterglow time will be a little shorter, but the brightness will be about
Improved by 10%. Also, pigment coated
【表】
場合(実施例2)では、残光時間ほ遜色なく輝度
な8%向上した。またP−1とP−38を使用した
実施例3に於ては、輝度は20%向上し、残光時間
も100ミリ秒を超える程に長くなる為、フレーム
周波数の設計に対して有利となる。
このように、青色蛍光体に残光をを生ぜしめた
蛍光体は、発光色はライトブルーとなるが、この
発光素子と緑および赤色に発光する素子とを組合
わせた蛍光膜の色再現性は、第1図に於て、D,
E,Fを頂点とする三角形に示される範囲に相当
広範囲に可能となる。なお、残光時間が30ミリ秒
を超えるものは、フレーム周波数40Hzに於てフリ
ツカが感じられず、本発明の蛍光体は、充分な残
光時間を有していた。すなわち、本発明は、従来
の蛍光膜に比べて10〜20%も相対発光輝度が高
く、しかもカラーポイント、残光時間共に従来品
に勝るとも劣らない優れた特性を有する。[Table] In the case (Example 2), the afterglow time was comparable and the brightness was improved by 8%. In addition, in Example 3 using P-1 and P-38, the brightness is improved by 20% and the afterglow time is longer than 100 milliseconds, which is advantageous for frame frequency design. Become. In this way, a phosphor that causes afterglow in a blue phosphor emits light blue, but the color reproducibility of a phosphor film that combines this light-emitting element with elements that emit green and red light is In Figure 1, D,
A considerably wide range is possible within the range shown by the triangle with E and F as vertices. In addition, in those with an afterglow time of more than 30 milliseconds, no flicker was perceived at a frame frequency of 40 Hz, indicating that the phosphor of the present invention had a sufficient afterglow time. That is, the present invention has a relative luminance that is 10 to 20% higher than that of conventional fluorescent films, and also has superior characteristics in both color point and afterglow time that are comparable to those of conventional products.
第1図は蛍光体のカラーポイントを示すグラフ
である。
FIG. 1 is a graph showing the color points of phosphors.
Claims (1)
短かい青色蛍光体に、残光時間が20ミリ秒以上の
残光性を有する緑色および赤色蛍光体の少なくと
も一種が混合されて色度値でx=0.226且つy=
0.230付近のライトブルー発光色を青色成分とし
て呈するカラーCRTの蛍光膜に於いて、残光時
間の短かい青色蛍光体が、自己付活硫化亜鉛ある
いは青色フイルターを有する自己付活硫化亜鉛蛍
光体のみから構成されることを特徴とするカラー
CRTの蛍光膜。 2 自己付活硫化亜鉛蛍光体が、長残光赤色およ
び長残光緑色蛍光体を含む蛍光体全体に対して30
〜50重量%含まれている特許請求の範囲第1項記
載のカラーCRTの蛍光膜。 3 青色顔料被着自己付活硫化亜鉛蛍光体が長残
光赤色および長残光緑色蛍光体を含む蛍光体全体
に対して20〜40重量%含まれている特許請求の範
囲第1項記載のカラーCRTの蛍光膜。 4 青色蛍光体の表面に青色顔料であるコバルト
ブルー又は群青が被着された特許請求の範囲第1
項記載のカラーCRTの蛍光膜。 5 青色蛍光体に加えられる長残光赤色蛍光体が
マンガン付活燐酸亜鉛蛍光体とマンガン付活フツ
化亜鉛マグネシウム蛍光体のいずれか又は両方で
ある特許請求の範囲第1項記載のカラーCRTの
蛍光膜。 6 青色蛍光体に加えられる長残光緑色蛍光体
が、マンガンヒ素付活珪酸亜鉛蛍光体とマンガン
付活珪酸亜鉛蛍光体のいずれか又は両方である特
許請求の範囲第1項記載のカラーCRTの蛍光膜。[Scope of Claims] 1. A phosphor film for a color picture tube comprising a blue phosphor with a short afterglow time and at least one of green and red phosphors with an afterglow property of 20 milliseconds or more. are mixed and the chromaticity value is x=0.226 and y=
In the phosphor film of a color CRT that exhibits a light blue emission color around 0.230 as the blue component, the only blue phosphor with a short afterglow time is self-activating zinc sulfide or self-activating zinc sulfide phosphor with a blue filter. A color characterized by consisting of
CRT fluorescent membrane. 2 The self-activated zinc sulfide phosphor has a
50% by weight of the color CRT fluorescent film according to claim 1. 3. The method according to claim 1, wherein the blue pigment-attached self-activating zinc sulfide phosphor is contained in an amount of 20 to 40% by weight based on the entire phosphor including the long afterglow red and long afterglow green phosphors. Color CRT fluorescent film. 4. Claim 1 in which cobalt blue or ultramarine, which is a blue pigment, is deposited on the surface of a blue phosphor.
Fluorescent film of color CRT described in section. 5. The color CRT according to claim 1, wherein the long afterglow red phosphor added to the blue phosphor is either or both of a manganese-activated zinc phosphate phosphor and a manganese-activated zinc magnesium fluoride phosphor. Fluorescent film. 6. The color CRT according to claim 1, wherein the long afterglow green phosphor added to the blue phosphor is either or both of a manganese arsenic activated zinc silicate phosphor and a manganese activated zinc silicate phosphor. Fluorescent film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18858984A JPS6166784A (en) | 1984-09-08 | 1984-09-08 | Fluorescent screen of color crt |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18858984A JPS6166784A (en) | 1984-09-08 | 1984-09-08 | Fluorescent screen of color crt |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6166784A JPS6166784A (en) | 1986-04-05 |
JPH0412753B2 true JPH0412753B2 (en) | 1992-03-05 |
Family
ID=16226308
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18858984A Granted JPS6166784A (en) | 1984-09-08 | 1984-09-08 | Fluorescent screen of color crt |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6166784A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57103240A (en) * | 1980-12-19 | 1982-06-26 | Toshiba Corp | Color picture tube |
-
1984
- 1984-09-08 JP JP18858984A patent/JPS6166784A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57103240A (en) * | 1980-12-19 | 1982-06-26 | Toshiba Corp | Color picture tube |
Also Published As
Publication number | Publication date |
---|---|
JPS6166784A (en) | 1986-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4512912A (en) | White luminescent phosphor for use in cathode ray tube | |
WO1987000545A1 (en) | Electron beam-excited display tube | |
JPH0139706Y2 (en) | ||
US4377768A (en) | Data display CRT having a white-emitting screen | |
EP0104328A2 (en) | Cathodoluminescent red-emitting superlinear phosphor | |
EP0148110B1 (en) | White-emitting phosphor | |
KR20000073496A (en) | Low-voltage white phosphor | |
JPH0460511B2 (en) | ||
JPS632314B2 (en) | ||
JPH0412753B2 (en) | ||
JP2000319652A (en) | Pink phosphor for use at low voltage | |
US4405880A (en) | Data display CRT having a yellow-emitting screen | |
JPS6144910B2 (en) | ||
JPH0715096B2 (en) | Afterglow fluorescent | |
JPS6326155B2 (en) | ||
JPS6242955B2 (en) | ||
JPH0329302Y2 (en) | ||
JPS6218589B2 (en) | ||
JPS58210989A (en) | Cathode ray tube for color display | |
JPH0329303Y2 (en) | ||
JPS5861547A (en) | Cathode-ray tube for color display | |
JPS6144909B2 (en) | ||
JPS63251491A (en) | Long afterglow blue luminescent phosphor mixture | |
JPS6332111B2 (en) | ||
JPH0111712Y2 (en) |