JPH0111712Y2 - - Google Patents

Info

Publication number
JPH0111712Y2
JPH0111712Y2 JP2009883U JP2009883U JPH0111712Y2 JP H0111712 Y2 JPH0111712 Y2 JP H0111712Y2 JP 2009883 U JP2009883 U JP 2009883U JP 2009883 U JP2009883 U JP 2009883U JP H0111712 Y2 JPH0111712 Y2 JP H0111712Y2
Authority
JP
Japan
Prior art keywords
phosphor
cathode ray
ray tube
afterglow
tube device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2009883U
Other languages
Japanese (ja)
Other versions
JPS59129855U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP2009883U priority Critical patent/JPS59129855U/en
Publication of JPS59129855U publication Critical patent/JPS59129855U/en
Application granted granted Critical
Publication of JPH0111712Y2 publication Critical patent/JPH0111712Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案は橙色乃至黄色発光の単色デイスプレイ
用陰極線管装置、更に詳しくは、高輝度で色むら
の少ない長残光性橙色乃至黄色発光蛍光膜を有す
る単色デイスプレイ用陰極線管装置に関する。 近年、細密な文字や図形の表示が行なわれるコ
ンピユーターの端末表示装置、航空機管制システ
ムの表示装置等としては高解像度のデイスプレイ
用陰極線管装置の使用が望まれている。 このような高解像度のデイスプレイ用陰極線管
装置の螢光膜は長残光性の螢光体で構成される必
要がある。これは、陰極線管装置の螢光膜が短残
光性の螢光体で構成されると、螢光膜走査速度が
遅いために画面にちらつき(フリツカ)が生じる
ためである。一般にこのような高解像度のデイス
プレイ用陰極線管装置の螢光膜を構成する螢光体
は残光時間(本明細書では励起停止後発光輝度が
励起時の10%まで低下するのに要する時間すなわ
ち「10%残光時間」を意味するものとする)が普
通の陰極線管装置の螢光膜を構成する短残光性螢
光体よりも数十乃至数百倍長いことが必要であ
る。 更に、最近この種の陰極線管装置のデイスプレ
イとしての用途が汎用化するにつれ、使い易く、
目の疲労を少くし、使用効率を高めるため、この
分野にも人間工学を応用する動きが広がつてき
た。 上記点に鑑みて、デイスプレイ用陰極線管装置
には以下に示す非常に多くの性能が要望されてい
る。 (1) フリツカが無い(陰極線管装置のフレーム周
波数に適合した残光時間を螢光膜が有してい
る)、 (2) 明かるい(螢光面の輝度が高い)、 (3) 見易い(発光色が橙色〜黄色、緑色および白
色の様な特定の発光色を示す)、 (4) 高解像度の表示が可能(陰極線管装置のビー
ム径が充分細かい)、 (5) 公害物質を含まない(特に日本では公害物質
を含むと実用されにくい)、 (6) 劣化が少ない(螢光面の輝度劣化やこれによ
る色ずれが生じない)。 特に橙色乃至黄色発光高解像度の単色デイスプ
レイ用陰極線管装置(以下陰極線管装置と略称す
る)は長時間の視認でも視覚の疲労が少ないた
め、これらの用途に多数用いられている。 本考案者等は、上記橙色乃至黄色発光の陰極線
管装置において、前記人間工学の面からの要望を
満たすべく検討した。そして、これらの性能の多
くは陰極線管装置に使用される螢光体の特性に基
くものである事に着目し、長残光性橙色乃至黄色
発光螢光体について検討した。この様な螢光体と
しては、後記の第1表の「従来」欄に示す様な螢
光体が知られている。しかしながら、前記性能を
総て満足するものは全く知られていない。一般に
は、その中で最も好ましい(特に日本においては
カドミウム公害の点から)緑色発光のマンガン付
活珪酸亜鉛螢光体(P39螢光体)と赤色発光のマ
ンガン付活燐酸亜鉛螢光体(P27螢光体)との混
合螢光体が用いられることが多い。 しかしながらこの混合螢光体は、第3図のCIE
色度図上の点A(P39螢光体)と点B(P27螢光体)
にその発光色を示す如く発光色が著しくかけ離れ
た2色の螢光体の混合であるため、高解像度にす
ると色むらが視認され易い。また、各螢光体の残
光特性は第2図の曲線a(P27螢光体)と曲線b
(P39螢光体)に示す如くであり、残光カーブが
著しく異つているため、混合螢光体においては残
光に発光色と比べて色ずれが生じ、好ましくな
い。更に輝度も不充分であり、前述の如き人間工
学的な要望を全く満足し得ない。 本考案者等は、最も現用されている前記P39螢
光体とP27螢光体との混合螢光体を螢光膜とする
陰極線管装置の有する欠点が無い、改良された陰
極線管装置を得るべく研究を進めた結果、新規な
混合螢光体を用いて螢光膜を構成し、特定の陰極
線を走査する電子銃等と組合せた陰極線管装置に
よれば前記要望を総て満足する事を見出して本考
案に至つた。 本考案の陰極線管装置は、陰極線を放射する電
子銃に対向するフエースプレート上に、長残光性
赤橙色発光ユーロピウム付活硼酸インジウム系蛍
光体と長残光性緑色発光マンガン付活硅酸亜鉛系
蛍光体をそれぞれ重量比で1/5〜99/1の範囲
で混合した混合蛍光体を主成分とする橙色乃至黄
色発光蛍光膜が形成されていることを特徴とする
ものである。 なお、本考案の陰極線管装置の螢光膜は前述の
長残光性の橙色乃至黄色発光混合螢光体のみから
形成されるものであつてもよいし、あるいは発光
色や残光時間を調整するために少量の他の螢光体
が混合されたものから形成されるものであつても
よい。 また、本明細書に述べられる残光時間の値はい
ずれも電子銃から放射される刺激電子線の電流密
度が0.4μA/cm2である場合の値であり、本考案で
言う螢光面におけるビーム径とは、陰極線のビー
ム径が直接測定出来ない事から、陰極線のビーム
を螢光面に照射した時、ジヤストフオーカス部に
て発光した発光スポツトの発光強度分布のφ10(輝
度分布上、ピーク輝度の10%の位置で定義された
スポツト径)値に相当する。 以下本考案について詳述する。 本考案の陰極線管装置の陰極線管部分は電子銃
(電子銃の駆動性能も含める)と螢光膜の構成体
を除いては従来の白黒テレビジヨン用陰極線管の
如き単色発光陰極線管とほぼ同じである。即ち、
本考案の陰極線管装置は、第1図に示される様
に、フアネル1のネツク部2に電子銃3が設けら
れ該電子銃3に対向するフエースプレート4上全
面に螢光膜5が形成された陰極線管(一般には螢
光膜5の背面に励起の際のチヤージアツプを防止
するためのアルミニウム蒸着膜6が設けられる。)
と、この陰極線管を駆動する装置とを含む。ここ
で、上記螢光膜5は特定の長残光性橙色乃至黄色
発光混合螢光体から成り、且つ上記電子銃3は特
定のビーム径と特定のフレーム周波数の陰極線を
放射することができる。 本考案装置に用いられる螢光膜5は長残光性橙
色乃至黄色発光混合螢光体から成り、この混合螢
光体は長残光性赤橙色発光ユーロピウム付活硼酸
インジウム系螢光体と長残光性緑色発光マンガン
付活硅酸亜鉛系螢光体との混合によつて得られ
る。 前記ユーロピウム付活硼酸インジウム系螢光体
は、その発光色が赤橙色と言う汎用されない発光
色の為、従来実用には供せられていなかつた螢光
体であり、特に本考案で用いられる螢光体として
は組成式が (In1-xM〓x)BO3:EuyLnz (但しM〓はSc,Y,Gd,Lu,La,Al,In,
Bi及びGaのうちの少なくとも1種、LnはTb,
Pr,Sm及びDyのうちの少なくとも1種、又、
x,y及びzはそれぞれ0≦x≦0.3,0.002≦y
≦0.2,0≦z≦0.001なる条件を満す) で示されるユーロピウム付活硼酸インジウム系螢
光体(以下単に硼酸塩螢光体と略称する)が輝度
や残光特性等の点から好ましい。 一方前記長残光性緑色発光マンガン付活硅酸亜
鉛系螢光体は、前述の如く、従来デイスプレイ用
陰極線管の緑色発光成分螢光体として汎用されて
いる螢光体であり、特に本考案に用いられる螢光
体としては、組成式が Zn2SiO4:MnaMeb (但し、MeはSb及びBiのうちの少なくとも一
方、a及びbはそれぞれ0.00005≦a≦0.03,0
≦b≦0.01なる条件を満す) で示されるマンガン付活硅酸亜鉛系螢光体(以下
硅酸塩螢光体と略称する)が輝度や残光特性等の
点から好ましい。 硅酸塩螢光体には微量の砒素を含有させても良
い。この時の砒素の含有量は残光特性や公害の点
から螢光体母体に対し0.0002モル以下に限られる
(但し、厳密な意味の無公害化が要望される場合
は砒素を除く事が推奨される)。 更に、硅酸塩螢光体においてZnの一部をMg,
Baで、又Siの一部をGeに置換してもよい。 上記硼酸塩螢光体および硅酸塩螢光体の残光特
性は第2図の曲線dおよび曲線cに示す如くであ
り、従来のP27螢光体(曲線a)やP39螢光体
(曲線b)に比べると残光時間は短かいものの残
光が60ミリ秒程度で完全に消失するため、不要な
残光の尾を引かず画像のキレが良い。しかも、こ
れらの螢光体はいずれも残光特性が近似してお
り、視覚により、残光の色ずれは全く認められな
い。また如何なる混合比を選択しても残光特性に
色ずれを生じないと言う特性を有している。第3
図に示されるCIE色度座標において硼酸塩螢光体
(点C)と硅酸塩螢光体(点A)の混合螢光体は
点Cと点Aを結ぶ直線上の発光色をその混合比に
よつて自由に選択し得る。しかしながら、混合比
の片寄りによる色むらと色再現の点から、本考案
において混合比K=硼酸塩螢光体重量/硅酸塩螢
光体重量は1/5〜99/1の範囲が実用され、特
に1/4〜19/1の範囲が好ましい。 本考案の混合螢光体は第3図より明らかな様に
従来の混合螢光体(P27螢光体とP39螢光体)よ
りも、いずれの混合比を選択しても色純度が良
く、また点AとCとが近いため色むらが少ない。
更に、本考案の混合螢光体で特筆すべき点は、そ
の発光色に最も近い発光色を示す前記従来の混合
螢光体と比べて輝度が1.5倍〜2倍以上も高いこ
とである。更に、この混合螢光体を構成する2種
類の螢光体はいづれも長時間のエージングによつ
ても輝度劣化が少なく、従つて混合螢光体におけ
る色ずれはほとんどおこらない。 以上の如き本考案混合螢光体の特性評価を従来
の螢光体の特性評価とともに第1表に示す。
The present invention relates to a cathode ray tube device for a monochrome display that emits orange to yellow light, and more particularly to a cathode ray tube device for a monochrome display that has a high brightness, low color unevenness, and a long afterglow orange to yellow light emitting phosphor film. In recent years, high-resolution cathode ray tube devices have been desired for use in computer terminal display devices, aircraft control system display devices, etc. that display detailed characters and graphics. The phosphor film of such a high-resolution cathode ray tube device for display needs to be composed of a phosphor with long afterglow property. This is because if the phosphor film of the cathode ray tube device is composed of a phosphor with short afterglow property, flickering occurs on the screen due to the slow scanning speed of the phosphor film. In general, the phosphor that makes up the phosphor film of such a high-resolution display cathode ray tube device has an afterglow time (herein, the time required for the luminance to drop to 10% of the excitation level after excitation is stopped). It is necessary that the short afterglow phosphor (hereinafter referred to as "10% afterglow time") is several tens to hundreds of times longer than the short afterglow phosphor that constitutes the phosphor film of an ordinary cathode ray tube device. Furthermore, as the use of this type of cathode ray tube device as a display has become more widespread, it has become easier to use.
In order to reduce eye fatigue and increase usage efficiency, there is a growing movement to apply ergonomics in this field as well. In view of the above points, cathode ray tube devices for displays are required to have a large number of performances as shown below. (1) No flicker (the fluorescent film has an afterglow time that matches the frame frequency of the cathode ray tube device), (2) Bright (high brightness of the fluorescent surface), (3) Easy to see ( (4) High-resolution display possible (the beam diameter of the cathode ray tube device is sufficiently fine); (5) Contains no pollutants. (Especially in Japan, it is difficult to put it into practical use if it contains pollutants.) (6) Less deterioration (no brightness deterioration of the fluorescent surface or color shift due to this). In particular, cathode ray tube devices for monochrome displays (hereinafter referred to as cathode ray tube devices) that emit orange to yellow light and have high resolution are widely used in these applications because they cause less visual fatigue even when viewed for long periods of time. The inventors of the present invention have studied the above-mentioned cathode ray tube device that emits orange to yellow light in order to satisfy the above-mentioned demands from the aspect of ergonomics. Noting that many of these performances are based on the characteristics of the phosphors used in cathode ray tube devices, we investigated long-lasting orange to yellow-emitting phosphors. As such phosphors, those shown in the "Conventional" column of Table 1 below are known. However, nothing is known that satisfies all of the above-mentioned performances. In general, the most preferred of these (particularly in Japan in terms of cadmium pollution) are the green-emitting manganese-activated zinc silicate phosphor (P39 phosphor) and the red-emitting manganese-activated zinc phosphate phosphor (P27). Mixed fluorescers (fluorescers) are often used. However, this mixed phosphor is
Point A (P39 phosphor) and point B (P27 phosphor) on the chromaticity diagram
Since it is a mixture of phosphors of two colors whose emission colors are significantly different from each other, color unevenness is easily visible when the resolution is set to high. In addition, the afterglow characteristics of each phosphor are curve a (P27 phosphor) and curve b in Figure 2.
(P39 phosphor), and since the afterglow curves are significantly different, in the mixed phosphor, a color shift occurs in the afterglow compared to the emitted light color, which is not preferable. Furthermore, the brightness is insufficient, and the ergonomic requirements mentioned above cannot be satisfied at all. The inventors of the present invention have obtained an improved cathode ray tube device that does not have the drawbacks of the most currently used cathode ray tube device whose phosphor film is a mixture of P39 and P27 phosphors. As a result of our research, we have found that a cathode ray tube device in which a phosphor film is constructed using a new mixed phosphor and is combined with an electron gun or the like that scans a specific cathode ray can satisfy all of the above requirements. This led to the discovery of this idea. The cathode ray tube device of the present invention has a long afterglow red-orange emitting europium-activated indium borate phosphor and a long afterglow green emitting manganese activated zinc silicate phosphor on the face plate facing the electron gun that emits cathode rays. The present invention is characterized in that an orange to yellow emitting phosphor film is formed, the main component of which is a mixed phosphor in which phosphors are mixed in a weight ratio of 1/5 to 99/1. The phosphor film of the cathode ray tube device of the present invention may be formed only from the above-mentioned mixed phosphor that emits orange or yellow light with a long afterglow property, or the emitted light color and afterglow time may be adjusted. It may also be formed from a mixture of small amounts of other phosphors to achieve this. Furthermore, the afterglow time values mentioned in this specification are all values when the current density of the stimulating electron beam emitted from the electron gun is 0.4 μA/cm 2 , and the values of afterglow time described in this specification are values when the current density of the stimulating electron beam emitted from the electron gun is 0.4 μA/cm 2 . Since the beam diameter of cathode rays cannot be directly measured, beam diameter is defined as the diameter of the luminous intensity distribution of the luminescent spot emitted in the just-focus area when the cathode ray beam is irradiated onto the fluorescent surface. , corresponds to the spot diameter (defined at 10% of the peak brightness). The present invention will be explained in detail below. The cathode ray tube part of the cathode ray tube device of the present invention is almost the same as a monochromatic cathode ray tube such as a conventional cathode ray tube for black and white television, except for the electron gun (including the driving performance of the electron gun) and the fluorescent film structure. It is. That is,
In the cathode ray tube device of the present invention, as shown in FIG. 1, an electron gun 3 is provided in a neck portion 2 of a funnel 1, and a fluorescent film 5 is formed on the entire surface of a face plate 4 facing the electron gun 3. Cathode ray tube (generally, an aluminum vapor-deposited film 6 is provided on the back side of the fluorescent film 5 to prevent charge-up during excitation).
and a device for driving the cathode ray tube. Here, the phosphor film 5 is made of a mixed phosphor that emits orange or yellow light with a specific long afterglow, and the electron gun 3 can emit cathode rays with a specific beam diameter and a specific frame frequency. The phosphor film 5 used in the device of the present invention is composed of a long afterglow orange to yellow emitting mixed phosphor, and this mixed phosphor consists of a long afterglow red orange emitting europium-activated indium borate phosphor and Obtained by mixing with a green afterglow-emitting manganese-activated zinc silicate phosphor. The europium-activated indium borate phosphor is a phosphor that has not been put to practical use in the past because its emission color is reddish-orange, which is not commonly used. As a light body, the composition formula is (In 1-x M〓 x ) BO 3 :Eu y Ln z (However, M〓 is Sc, Y, Gd, Lu, La, Al, In,
At least one of Bi and Ga, Ln is Tb,
At least one of Pr, Sm and Dy, and
x, y and z are 0≦x≦0.3, 0.002≦y, respectively
A europium-activated indium borate phosphor (hereinafter simply referred to as a borate phosphor), which satisfies the following conditions: ≦0.2, 0≦z≦0.001, is preferred from the viewpoint of brightness and afterglow characteristics. On the other hand, the long-afterglow green-emitting manganese-activated zinc silicate-based phosphor is a phosphor that has been widely used as a green-emitting component phosphor in conventional cathode ray tubes for displays, as described above, and is particularly suitable for the present invention. The compositional formula of the phosphor used in
A manganese-activated zinc silicate-based phosphor (hereinafter abbreviated as silicate phosphor), which satisfies the condition (≦b≦0.01), is preferable from the viewpoint of brightness, afterglow characteristics, and the like. The silicate phosphor may contain a trace amount of arsenic. The arsenic content at this time is limited to 0.0002 mol or less based on the phosphor matrix from the viewpoint of afterglow characteristics and pollution (however, if strict pollution-free is desired, it is recommended to exclude arsenic) ). Furthermore, in the silicate phosphor, part of the Zn is replaced by Mg,
Ba may be substituted, and a portion of Si may be substituted with Ge. The afterglow characteristics of the borate phosphor and silicate phosphor are as shown in curves d and c in Figure 2, and the afterglow characteristics of the conventional P27 phosphor (curve a) and P39 phosphor (curve Although the afterglow time is shorter than in b), the afterglow completely disappears in about 60 milliseconds, so the image is sharp without unnecessary afterglow tails. Moreover, all of these phosphors have similar afterglow characteristics, and no color shift in the afterglow is visually observed. It also has the characteristic that no color shift occurs in the afterglow characteristics no matter what mixing ratio is selected. Third
In the CIE chromaticity coordinates shown in the figure, a mixed phosphor of a borate phosphor (point C) and a silicate phosphor (point A) is a mixture of emitted light colors on a straight line connecting points C and A. It can be freely selected depending on the ratio. However, in view of color unevenness due to unevenness of the mixing ratio and color reproduction, in the present invention, the mixing ratio K = borate phosphor weight/silicate phosphor weight is set in the range of 1/5 to 99/1. A range of 1/4 to 19/1 is particularly preferred. As is clear from Figure 3, the mixed phosphor of the present invention has better color purity than the conventional mixed phosphor (P27 phosphor and P39 phosphor) no matter which mixing ratio is selected. Also, since points A and C are close, there is little color unevenness.
Furthermore, what is noteworthy about the mixed phosphor of the present invention is that its luminance is 1.5 to 2 times higher than that of the conventional mixed phosphor, which has an emission color closest to that of the mixed phosphor. Furthermore, both of the two types of phosphors constituting this mixed phosphor show little deterioration in brightness even after long-term aging, and therefore almost no color shift occurs in the mixed phosphor. Table 1 shows the evaluation of the characteristics of the mixed phosphor of the present invention as described above, together with the evaluation of the characteristics of the conventional phosphor.

【表】【table】

【表】 本考案装置においては、上記混合螢光体に
ZnS:CuAl,ZnS:CuAlGa,ZnS:AuAl,
ZnS:AuAlGa,ZnS:CuAuAl,ZnS:CuCl,
Ln2O2S:Eu又はTb(LnはLa,Y,Gd及びLuの
うちの少なくとも1種、以下同じ)、Ln2O3:Eu,
LnVO4:Eu,Ln2O3:EuDy,P27,P13,P25等
を混合して特性を改良することもできる。更に、
混合螢光体にY2SiO5:Ce,Y3Al5O12:Ce,Y3
(AlGa)5O12:Ce,YAlO3:Ce,ZnO:Zn等を混
合し、ライトペンに対する感応性を改良すること
もできる。 デイスプレイ用陰極線管装置においては解像度
の向上のため螢光面上におけるビーム径の小さな
陰極線を照射する必要がある。この場合、個々の
スポツトに十分に励起エネルギーを付与するため
にはある程度の時間各スポツトに陰極線を当てる
必要がある。従つて、高解像度で且つ十分な輝度
を得るためには、フレーム周波数を低くせざるを
得ない。このため、螢光体は所定の残光特性を有
することが要求され、色ずれ等をおこすことなく
十分な輝度を有するものが望ましいのである。 本考案装置においては、この様な陰極線照射時
に従来の装置に比べ良好な画質を得ることができ
るのであり、即ち本考案装置は上記の如き螢光膜
を有することとともに、電子銃より放射される陰
極線として螢光面におけるビーム径が0.05〜0.4
mmでフレーム周波数が25〜50Hzである特定の陰極
線が用いられることが推奨される。尚、本考案装
置においてはフレーム周波数が30〜50Hzの場合が
特に良好な効果が得られる。即ち、本考案の陰極
線管装置によれば、特定された走査陰極線と特定
された螢光膜との組合せにより、第1表の「本考
案」欄に示す様に、従来装置に比べてフリツカが
極めて少なく、従来よりも1.5〜2倍以上も明る
い画面と、見易い橙色〜黄色発光の画像が得ら
れ、無公害で劣化の少ない高解像度の表示が得ら
れる。 以上述べたように、本考案の陰極線管装置は良
好な螢光面と特定の陰極線走査により高輝度で且
つ人間工学的な条件を充分満足させる橙色〜黄色
発光を示す画像が得られ、産業上の利用価値が著
しく高いものである。 次に、実施例によつて本考案を説明する。 実施例 1 硅酸塩、リン酸塩、水酸化亜鉛もしくはアルミ
ン酸塩の少なくとも1種の表面処理剤で表面処理
した硼酸塩螢光体(InBO3:Eu)(平均粒径7μ)
91gと硅酸塩螢光体(Zn2SiO4:Mn,Sb)(平均
粒径7μ)9gに溶媒等を加え、充分混合して得
られた混合螢光体のスラリーを周知の沈降塗布法
により塗布して、フエースプレート内面に螢光膜
を形成し、次いでフイルミング、メタルバツク等
の諸工程を経て陰極線管を製造し、次いで電子銃
の走査回路等を付加して陰極線管装置とした。こ
の陰極線管装置の螢光面の諸特性を電子銃から放
射される陰極線の螢光面におけるビーム径とフレ
ーム周波数を変化させて測定した結果、良好な画
像が得られた。この画像の色度点は(x,y)=
(0.556,0.432)で示される(第3図の点D)良
好な橙色発光(尚この時の発光スペクトルを第4
図に示す)を示した。また点Dと最も近い色度点
を示す(P39螢光体とP27螢光体の混合螢光体を
螢光膜とする)従来の陰極線管装置に比べて管面
輝度は2倍明るかつた。尚、螢光面の残光時間は
25ミリ秒であつた。 また、この陰極線管装置を長時間エージングし
た結果、螢光面の輝度劣化も少なく、且つ色ずれ
もほとんど無かつた。 実施例 2 硼酸塩螢光体(InBO3:Eu)(平均粒径7.5μ)
80gと硅酸塩螢光体(Zn2SiO4:Mn,As,Sb:
但しAsは1×10-4gatom/mole)(平均粒径
7.5μ)20gを用いる以外は実施例1と同様にして
陰極線管装置を製造した。この陰極線管装置は良
好な画像を示した。この画像の色度点は(x,
y)=(0.503,0.475)で示される(第3図の点
E)良好な黄橙色発光を示した。また点Eと最も
近い色度点を示す前記従来の陰極線管装置に比べ
て管面輝度は2倍明るかつた。尚、螢光面の残光
時間は25ミリ秒であつた。 また、この陰極線管装置を長時間エージングし
た結果、螢光面の輝度劣化も少なく、且つ色ズレ
もほとんど無かつた。 実施例 3 硼酸塩螢光体〔(In0.9Sc0.1)BO3:Eu〕(平均
粒径8μ)70gと硅酸塩螢光体(Zn2SiO4:Mn)
(平均粒径8μ)30gを用いる以外は実施例1と同
様にして陰極線管装置を製造した。この陰極線管
装置は良好な画像を示した。この画像の色度点は
(x,y)=(0.457,0.511)で示される(第3図
の点F)良好な橙黄色発光を示した。また点Fと
最も近い色度点を示す前記従来の陰極線管装置に
比べて管面輝度は1.5倍明るかつた。尚、螢光面
の残光時間は30ミリ秒であつた。 また、この陰極線管を長時間エージングした結
果、螢光面の輝度劣化も少なく、且つ色ずれもほ
とんど無かつた。
[Table] In the device of this invention, the above mixed phosphor
ZnS:CuAl, ZnS:CuAlGa, ZnS:AuAl,
ZnS:AuAlGa, ZnS:CuAuAl, ZnS:CuCl,
Ln 2 O 2 S: Eu or Tb (Ln is at least one of La, Y, Gd and Lu; the same applies hereinafter), Ln 2 O 3 : Eu,
The characteristics can also be improved by mixing LnVO 4 :Eu, Ln 2 O 3 :EuDy, P27, P13, P25, etc. Furthermore,
Mixed phosphor contains Y 2 SiO 5 :Ce, Y 3 Al 5 O 12 : Ce, Y 3
(AlGa) 5 O 12 :Ce, YAlO 3 :Ce, ZnO:Zn, etc. can be mixed to improve the sensitivity to a light pen. In cathode ray tube devices for displays, it is necessary to irradiate cathode rays with a small beam diameter onto a fluorescent surface in order to improve resolution. In this case, it is necessary to apply cathode rays to each spot for a certain period of time in order to impart sufficient excitation energy to each spot. Therefore, in order to obtain high resolution and sufficient brightness, the frame frequency must be lowered. For this reason, the phosphor is required to have a certain afterglow characteristic, and it is desirable that the phosphor has sufficient brightness without causing color shift or the like. The device of the present invention can obtain better image quality than conventional devices during cathode ray irradiation.In other words, the device of the present invention not only has the above-mentioned phosphor film, but also has a phosphorescent film as described above. As a cathode ray, the beam diameter at the fluorescent surface is 0.05 to 0.4
It is recommended that a specific cathode ray with a frame frequency of 25-50 Hz in mm be used. In addition, in the device of the present invention, particularly good effects can be obtained when the frame frequency is 30 to 50 Hz. That is, according to the cathode ray tube device of the present invention, due to the combination of the specified scanning cathode ray and the specified fluorescent film, flicker is reduced compared to the conventional device, as shown in the column “Invention” in Table 1. It is possible to obtain a screen that is 1.5 to 2 times brighter than the conventional one and an image that emits orange to yellow light that is easy to see, resulting in a high-resolution display that is pollution-free and has little deterioration. As described above, the cathode ray tube device of the present invention uses a good fluorescent surface and specific cathode ray scanning to obtain images that are high in brightness and exhibit orange to yellow light emission that fully satisfies ergonomic conditions, and is suitable for industrial use. Its utility value is extremely high. Next, the present invention will be explained by way of examples. Example 1 Borate phosphor (InBO 3 :Eu) surface treated with at least one surface treatment agent of silicates, phosphates, zinc hydroxide or aluminates (average particle size 7μ)
91g of silicate phosphor (Zn 2 SiO 4 :Mn,Sb) (average particle size 7μ) was added with a solvent, etc., and the slurry of the mixed phosphor obtained by thorough mixing was applied using the well-known sedimentation coating method. A fluorescent film was formed on the inner surface of the face plate, and then a cathode ray tube was manufactured through various steps such as filming and metal backing, and a scanning circuit for an electron gun was added to form a cathode ray tube device. Various characteristics of the fluorescent surface of this cathode ray tube device were measured by varying the beam diameter and frame frequency of the cathode rays emitted from the electron gun on the fluorescent surface, and as a result, good images were obtained. The chromaticity point of this image is (x, y) =
(0.556, 0.432) (point D in Figure 3) good orange emission (note that the emission spectrum at this time is
) shown in the figure. In addition, the luminance of the tube surface is twice as bright as that of a conventional cathode ray tube device, which has a chromaticity point closest to point D (the phosphor film is a mixture of P39 and P27 phosphors). . Furthermore, the afterglow time of the fluorescent surface is
It took 25 milliseconds. Furthermore, as a result of long-term aging of this cathode ray tube device, there was little deterioration in the brightness of the fluorescent surface and almost no color shift. Example 2 Borate phosphor (InBO 3 :Eu) (average particle size 7.5μ)
80g and silicate phosphor (Zn 2 SiO 4 :Mn,As,Sb:
However, As is 1×10 -4 gatom/mole) (average particle size
A cathode ray tube device was manufactured in the same manner as in Example 1 except that 20 g of 7.5μ) was used. This cathode ray tube device showed good images. The chromaticity point of this image is (x,
y) = (0.503, 0.475) (point E in Figure 3) showed good yellow-orange luminescence. Furthermore, compared to the conventional cathode ray tube device having a chromaticity point closest to point E, the luminance of the tube surface was twice as bright. The afterglow time of the fluorescent surface was 25 milliseconds. Furthermore, as a result of long-term aging of this cathode ray tube device, there was little deterioration in the brightness of the fluorescent surface and there was almost no color shift. Example 3 70 g of borate phosphor [(In 0.9 Sc 0.1 )BO 3 :Eu] (average particle size 8μ) and silicate phosphor (Zn 2 SiO 4 :Mn)
A cathode ray tube device was manufactured in the same manner as in Example 1 except that 30 g (average particle size: 8 μ) was used. This cathode ray tube device showed good images. The chromaticity point of this image is (x, y) = (0.457, 0.511) (point F in Figure 3), which showed good orange-yellow luminescence. In addition, compared to the conventional cathode ray tube device having a chromaticity point closest to point F, the luminance of the tube surface was 1.5 times brighter. The afterglow time of the fluorescent surface was 30 milliseconds. Furthermore, as a result of long-term aging of this cathode ray tube, there was little deterioration in the brightness of the fluorescent surface, and there was almost no color shift.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案装置の断面概略図であり、第2
図は相対発光強度のグラフであり、第3図はCIE
色度図であり、第4図は相対発光輝度のグラフで
ある。
FIG. 1 is a schematic cross-sectional view of the device of the present invention;
The figure is a graph of relative luminescence intensity, and Figure 3 is a graph of CIE
This is a chromaticity diagram, and FIG. 4 is a graph of relative luminance.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 陰極線を放射する電子銃に対向するフエースプ
レート上に、長残光性赤橙色発光ユーロピウム付
活硼酸インジウム系蛍光体と長残光性緑色発光マ
ンガン付活硅酸亜鉛系蛍光体をそれぞれ重量比で
1/5〜99/1の範囲で混合した混合蛍光体を主
成分とする橙色乃至黄色発光蛍光膜が形成されて
いることを特徴とする、単色デイスプレイ用陰極
線管装置。
On the face plate facing the electron gun that emits cathode rays, a long-afterglow red-orange-emitting europium-activated indium borate-based phosphor and a long-afterglow green-emitting manganese-activated zinc silicate-based phosphor are placed in weight ratios. A cathode ray tube device for a monochrome display, characterized in that an orange to yellow emitting phosphor film is formed mainly of a mixed phosphor mixed in a ratio of 1/5 to 99/1.
JP2009883U 1983-02-16 1983-02-16 Cathode ray tube equipment for display Granted JPS59129855U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009883U JPS59129855U (en) 1983-02-16 1983-02-16 Cathode ray tube equipment for display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009883U JPS59129855U (en) 1983-02-16 1983-02-16 Cathode ray tube equipment for display

Publications (2)

Publication Number Publication Date
JPS59129855U JPS59129855U (en) 1984-08-31
JPH0111712Y2 true JPH0111712Y2 (en) 1989-04-06

Family

ID=30151231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009883U Granted JPS59129855U (en) 1983-02-16 1983-02-16 Cathode ray tube equipment for display

Country Status (1)

Country Link
JP (1) JPS59129855U (en)

Also Published As

Publication number Publication date
JPS59129855U (en) 1984-08-31

Similar Documents

Publication Publication Date Title
EP0137201B1 (en) White luminescent phosphor for use in cathode ray tube
JPH0139706Y2 (en)
JPS61174291A (en) Phosphor emitting blue light
JP3808127B2 (en) Fluorescent substance for color plasma display panel and color plasma display panel
WO1987000545A1 (en) Electron beam-excited display tube
US3655575A (en) Cathodoluminescent phosphor compositions
US4804882A (en) Cathode-ray tube including a white phosphor screen
JPH0111712Y2 (en)
KR930003972B1 (en) Fluorescent material composion of mixed white luminescent
JPS6128578A (en) White luminescent fluorescent
JP2004123786A (en) Phosphor for display device, its production method, and color display device using the same
JPS59105075A (en) Fluophor which emit orange to yellow light
JPH0329302Y2 (en)
JPH0329303Y2 (en)
JP3391356B2 (en) Blue light emitting phosphor
JPH0715096B2 (en) Afterglow fluorescent
JPS6351480B2 (en)
JPS61181889A (en) Fluorescent screen for cathode ray tube
CN1063475C (en) Red fluorescencer composition for color cathod-ray tube
JPH07116430B2 (en) Long afterglow blue-emitting mixture phosphor
JPS58189289A (en) White light emitting fluorescent material and cathode ray tube for display
JPH058233B2 (en)
JPS5893780A (en) High-resolution cathode ray tube
JPS61103983A (en) Cathode ray tube
JPS6359438B2 (en)