JPH04127044A - Analysis of surface structure - Google Patents

Analysis of surface structure

Info

Publication number
JPH04127044A
JPH04127044A JP24711690A JP24711690A JPH04127044A JP H04127044 A JPH04127044 A JP H04127044A JP 24711690 A JP24711690 A JP 24711690A JP 24711690 A JP24711690 A JP 24711690A JP H04127044 A JPH04127044 A JP H04127044A
Authority
JP
Japan
Prior art keywords
rays
sample
characteristic
slit
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24711690A
Other languages
Japanese (ja)
Inventor
Yoshio Suzuki
芳生 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24711690A priority Critical patent/JPH04127044A/en
Publication of JPH04127044A publication Critical patent/JPH04127044A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To find the position of an element near a surface by determining an angle distribution of fluorescent X-rays emitted from a sample or near the surface of the sample. CONSTITUTION:Excitation X-rays 1 impinge upon a sample substrate 5 almost vertically using characteristic X-rays from a target. The characteristic X-rays 2 from a substrate adhesion layer are detected with an X-ray detector 4 passing through a slit 3. An intake angle thetat is determined by a position at which the excitation X-rays impinges on the sample and a geometrical position of the slit 3. The detector 4 employs a semiconductor detector capable of analyzing energy to discriminate desired characteristic X rays alone by a pulse height discrimination to remove effect of scattered X rays or the like otherwise serving as other backgrounds. To vary the intake angle thetat, it is so arranged to rotate the sample substrate 5 with the slit 3 fixed. The slit 3 may be replaced with a duct-shaped collimator or a collimator can be used utilizing a Bragg reflection of a crystal.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はX線分析装置において、試料あるいは試料表面
近傍から放出される蛍光X線の角度分布を求めることに
よって、表面近傍の元素の位置を同定する方法に関する
[Detailed Description of the Invention] [Industrial Application Field] The present invention uses an X-ray analyzer to determine the position of elements near the surface by determining the angular distribution of fluorescent X-rays emitted from a sample or near the surface of the sample. Concerning how to identify.

〔従来の技術〕[Conventional technology]

従来、基板表面近傍の一次元橋造を計測する方法として
、フィジカルレピューレターズ62巻(1989年)1
376頁から1379頁において論じられている。上記
方法は、平滑な基板表面でX線が全反射される場合に、
入射X線と反射X線との干渉により定在波が生じること
を利用したものである。ここでX線の定在波と表面近傍
層にある原子の相互作用によって、その原子から放射さ
れる特性X線を検出することによって基板上の付着層の
(垂直方向の)−次元構造が計測されるものである。
Conventionally, as a method for measuring one-dimensional bridge structures near the substrate surface, Physical Repulsion Letters Vol. 62 (1989) 1
Discussed on pages 376-1379. In the above method, when X-rays are totally reflected on a smooth substrate surface,
This method takes advantage of the fact that standing waves are generated due to interference between incident X-rays and reflected X-rays. Here, the -dimensional structure (in the vertical direction) of the deposited layer on the substrate is measured by detecting the characteristic X-rays emitted from the atoms due to the interaction between the standing wave of X-rays and the atoms in the layer near the surface. It is something that will be done.

上記方法に対して、本発明は同一の目的をもつものであ
り、また利用する物理現象もきわめて類似したものであ
る。しかしながら、以下に述べる点で従来法とは異なっ
ている。すなわち本発明は付着層から放出される特性X
線が基板との界面で反射される際の、反射されずに直接
検出器に到達する特性X線と反射されてから検出器に到
達する特性X線との間の干渉効果を利用するものである
The present invention has the same purpose as the above method, and the physical phenomena utilized are very similar. However, it differs from the conventional method in the following points. That is, the present invention has the characteristic X emitted from the adhesion layer.
This method utilizes the interference effect between the characteristic X-rays that reach the detector directly without being reflected and the characteristic X-rays that reach the detector after being reflected when the radiation is reflected at the interface with the substrate. be.

なお1本発明に関連する従来技術としては、ジャパニー
ズ・ジャーナル・オブ・アプライド・フィジックス24
巻(1985年)L387頁からL390頁に報告され
ているものがある。上記論文中の図3に示されているX
線強度の角度依存性は、本発明での理論を用いて解析す
ることにより、基板表面上に原子が付着した状態(すな
わち基板表面と付着原子との距離が零である場合)を示
していることが理解出来る。上記論文では本発明の装置
と同様の構成を有するが、この蛍光X線強度と付着原子
位置との関連性が明らかにされていなかったために、蛍
光X線角度分布測定データから付着原子と基板間の距離
を求める方法としては利用出来ていなかった。
1. As a prior art related to the present invention, Japanese Journal of Applied Physics 24
(1985), pages L387 to L390. X shown in Figure 3 in the above paper
The angular dependence of the line intensity is analyzed using the theory of the present invention, and shows the state in which atoms are attached to the substrate surface (that is, when the distance between the substrate surface and the attached atoms is zero). I can understand that. The above paper has the same configuration as the device of the present invention, but since the relationship between the fluorescent X-ray intensity and the attached atom position was not clarified, it was found that the relationship between the attached atoms and the substrate was determined from the fluorescent X-ray angle distribution measurement data. It could not be used as a method to find the distance between.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は入射X線と反射X線の干渉効果を利用す
るために、平行かつ単色な入射X線が必要であった。
The above-mentioned conventional technology requires parallel and monochromatic incident X-rays in order to utilize the interference effect between incident X-rays and reflected X-rays.

本発明は、上記従来技術と同一の目的、すなわち基板上
の表面構造をX線の干渉効果を利用して計測することを
目的とするが、特性X線を励起させるための平行かつ単
色な入射X線を不要とし、いかなる励起方法(電子線、
イオンビーム等による励起法、および内部転換元素によ
るγ線をも含む)を用いた場合でも従来方法と同様に基
板上の付着層における着目する元素の位置を解析出来る
方法を提供することを目的とする。
The present invention aims to measure the surface structure on a substrate using the interference effect of X-rays, which is the same objective as the above-mentioned conventional technology, but the present invention aims to measure the surface structure on a substrate using the interference effect of X-rays. Eliminates the need for X-rays and does not require any excitation method (electron beam,
The purpose of the present invention is to provide a method that can analyze the position of the element of interest in the adhesion layer on the substrate in the same way as conventional methods even when using excitation methods such as ion beams and gamma rays from internal conversion elements). do.

CHMを解決するための手段〕 上記目的を達成するために、試料基板及び基板上の層に
含まれる元素からの特性X線を検出するX線検出器を有
する装置において、スリットあるいはコリメーターによ
り、試料表面と特性X線の検出方法とのなす角(取り出
し角)を制限し、かつ試料あるいはスリットを可動とす
ることにより、特性X線の角度分布(すなわち特性X線
強度の取り出し角依存性)を測定するものである。さら
に本発明では得られた特性X線の角度分布を、特性X線
の界面における反射・干渉効果を考慮した計算値と対応
させることによって、基板に付着した表面層の構造を求
めるようにしたものである。
Means for Solving CHM] In order to achieve the above object, in an apparatus having an X-ray detector that detects characteristic X-rays from elements contained in a sample substrate and a layer on the substrate, By limiting the angle (takeout angle) between the sample surface and the characteristic X-ray detection method and by making the sample or slit movable, the angular distribution of the characteristic X-rays (i.e., the dependence of the characteristic X-ray intensity on the takeoff angle) It is used to measure. Furthermore, in the present invention, the structure of the surface layer attached to the substrate is determined by correlating the obtained angular distribution of the characteristic X-rays with a calculated value that takes into account reflection and interference effects of the characteristic X-rays at the interface. It is.

〔作用〕[Effect]

本発明においては、基板表面近傍から発生した特性X線
は、第1図に示すように、スリットにより定められる角
度θ、で放射されるものが検出される。ここで、スリッ
トを上下に動かすかあるいは試料基板を回転させること
によって角度θtを変化させながら特性X線の強度を測
定することによって、特性X線強度の取り出し角(θt
)依存性を求めることが出来る。この特性X線強度の角
度依存性は以下のようにして計算出来る。第2図に示す
ように、基板5の表面から距離dの位置に特性X線の発
光点である原子6が存在する場合、検出器に到達するX
4Iの強度は、基板で反射されずに直接検出器に到達す
るX線の光路7と一度基板にあたって反射されてから検
出器に向かう光路8を考えると、二つの光路を通るX線
の干渉効果によって以下のように表わされる。
In the present invention, characteristic X-rays generated near the substrate surface are detected when they are emitted at an angle θ defined by a slit, as shown in FIG. Here, by measuring the intensity of the characteristic X-rays while changing the angle θt by moving the slit up and down or rotating the sample substrate, the extraction angle (θt
) Dependency can be found. The angle dependence of this characteristic X-ray intensity can be calculated as follows. As shown in FIG. 2, when an atom 6, which is the emission point of characteristic X-rays, exists at a distance d from the surface of the substrate 5, the X-rays that reach the detector
The intensity of 4I is determined by the interference effect of the X-rays passing through the two optical paths, considering the optical path 7 of the X-rays, which reach the detector directly without being reflected by the substrate, and the optical path 8, which once hits the substrate and is reflected and then heads to the detector. is expressed as follows.

ここで Eoは光路7を通るX線の電場ERは光路8を
通るX線の電場 である。
Here, Eo is the electric field of the X-rays passing through the optical path 7. ER is the electric field of the X-rays passing through the optical path 8.

ERとEo の関係はフレネルの反射率と光路差 を考慮することによって例えば次のような式で近似的に
表わされる。
The relationship between ER and Eo can be approximately expressed, for example, by the following equation by considering Fresnel reflectance and optical path difference.

sinθt + (sin2θ、−26−2iβ)テこ
こでλはX線の波長、δとβは複素屈折率に関係する量
であり、基板の複素屈折率をnとした場合、 n=1−δ−1β である。
sinθt + (sin2θ, -26-2iβ) Here, λ is the wavelength of the X-ray, δ and β are quantities related to the complex refractive index, and if the complex refractive index of the substrate is n, then n=1-δ -1β.

したがって、特性X線出力の取り出し角(θt)依存性
を測定し、上述の式を用いて解析することによって、屈
折率n及びX線波長λが既知であれば、基板表面からの
原子位置dを求めることが出来る。また、nが未知の場
合でもパラメータフィッティングによってn、dを同時
に求めることも可能である。
Therefore, by measuring the dependence of the characteristic X-ray output on the take-off angle (θt) and analyzing it using the above formula, it is possible to determine that if the refractive index n and the X-ray wavelength λ are known, the atomic position d from the substrate surface is can be found. Further, even if n is unknown, it is possible to simultaneously obtain n and d by parameter fitting.

X線の反射率は通常きめわて小さく、通常10−10程
度である。したがって、これによる干渉効果は実用上は
観測不能である。しかしながら本発明では全反射臨界角
近傍の角度を用いることによって十分な反射率を得るこ
とによって、十分に強い干渉効果が発現するのである。
The reflectance of X-rays is usually extremely small, usually on the order of 10-10. Therefore, the interference effect caused by this is practically unobservable. However, in the present invention, a sufficiently strong interference effect is produced by obtaining sufficient reflectance by using an angle near the critical angle of total reflection.

上記の理論式によって計算された干渉パターンの一例を
第3図に示す。図の横軸は全反射臨界角(θC)で規格
化した取り出し角、縦軸はθ1が十分に大きいところ(
θ、)θC)の特性X線強度で規格化した特性X線の強
度である。全反射臨界角の低角側で強い干渉があられれ
、θ、が大きくなるにしたがって干渉効果が小さくなっ
ていることが示されている。
FIG. 3 shows an example of an interference pattern calculated using the above theoretical formula. The horizontal axis of the figure is the extraction angle normalized by the critical angle of total reflection (θC), and the vertical axis is the point where θ1 is sufficiently large (
It is the characteristic X-ray intensity normalized by the characteristic X-ray intensity of θ, )θC). It is shown that strong interference occurs on the low angle side of the total reflection critical angle, and as θ becomes larger, the interference effect becomes smaller.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。励起
X線1はターゲットからの特性X線を用い、試料基板5
にほぼ垂直に入射させる。基板付着層からの特性Xg2
はスリット3を通りX線検出器4で検出する。取り出角
θ、は励起X線1の試料上への照射位置とスリット3の
幾何学的位置で決められる。本実施例では検出器にエネ
ルギー分析の出来る半導体検出器を用いて、波高弁列に
より所望の特性XI!のみを弁別し、他のバンクグラウ
ンドとなる散乱X線等の影響を除去した。また、取り出
し角θ、を変化させるために、スリットを動かさずに、
試料基板を回転させる構造とした。スリット3はダクト
形状のコリメータあるいはソーラースリットでおきかえ
ても良く、また結晶のブラッグ反射を利用したコリメー
タを用いても良い。本実施例では、未知のパラメータで
ある距離dを求めるために、あらかじめ計算した角度依
存性のグラフと実験で得られたデータを比較対照して最
も良く実験値と一致するdの値を選択する方法を用いた
。その−例を第4図に示す。ここでは実験値として文献
(ジャパニーズ・ジャーナル・オブ・アプライド・フィ
ジックス24巻(1985年)L387頁から5390
頁)に報告されているSi基板上のAgLα線の角度分
布を測定した結果を用いた。理論計算はAgLα線の波
長(4,147人)とSiの密度から求められる全反射
臨界角(0,6°)を用いて計算した。β/αは0.0
5  を仮定し、d=o人、50人。
An embodiment of the present invention will be described below with reference to FIG. The excitation X-ray 1 uses characteristic X-rays from the target, and the sample substrate 5
incident almost perpendicularly to. Characteristics from the substrate adhesion layer Xg2
passes through the slit 3 and is detected by the X-ray detector 4. The extraction angle θ is determined by the irradiation position of the excitation X-ray 1 onto the sample and the geometrical position of the slit 3. In this embodiment, a semiconductor detector capable of energy analysis is used as the detector, and the desired characteristic XI! is determined by the wave height valve array. The effects of other bank grounds such as scattered X-rays were eliminated. In addition, in order to change the extraction angle θ, without moving the slit,
The structure was such that the sample substrate could be rotated. The slit 3 may be replaced with a duct-shaped collimator or a solar slit, or a collimator utilizing Bragg reflection of a crystal may be used. In this example, in order to find the distance d, which is an unknown parameter, the value of d that best matches the experimental value is selected by comparing and contrasting the angle dependence graph calculated in advance with the data obtained from the experiment. method was used. An example of this is shown in FIG. Here, experimental values are taken from the literature (Japanese Journal of Applied Physics, Vol. 24 (1985), pp. L387 to 5390).
We used the results of measuring the angular distribution of AgLα rays on a Si substrate, as reported in Page). Theoretical calculations were performed using the wavelength of AgLα rays (4,147 people) and the critical angle of total reflection (0.6°) determined from the density of Si. β/α is 0.0
Assuming 5, d=o people, 50 people.

100人の三つの場合について求めである。この実験値
は試料作成方法からあらかじめd=o人(基板表面に付
着した薄膜)であると予想される試料を用いているが、
実際に第4図から明らかなようにd=o人の場合がもっ
とも良く実験データに一致しており、本発明の解析方法
によって求めた距離clO人であった。
This is a request for three cases of 100 people. This experimental value uses a sample that is expected to be d=o (thin film attached to the substrate surface) based on the sample preparation method.
In fact, as is clear from FIG. 4, the case where d=o person best matched the experimental data, and the distance clO person was determined by the analysis method of the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、特性XI!の励起方法として、平行な
単色X線を用いる必要がなく、発散X線や白色X線を用
いても等価なデータが得られ、さらに励起方法はX線で
なく電子線、イオンビーム。
According to the invention, characteristic XI! There is no need to use parallel monochromatic X-rays as an excitation method; equivalent data can be obtained using divergent X-rays or white X-rays, and the excitation method is not X-rays but electron beams or ion beams.

中性粒子等を用いても良く、装置を簡略化出来る効果が
ある。
Neutral particles or the like may be used, which has the effect of simplifying the apparatus.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明するための図である。第2
図は第1図におけるX線の光路を拡大して示した図であ
る。第3図は特性X線出力の取り出し角依存性の理論計
算結果の一例である。第4図は本発明の一実施例におけ
る理論計算結果と実験結果の比較である。
FIG. 1 is a diagram for explaining the present invention in detail. Second
The figure is an enlarged view of the optical path of the X-rays in FIG. 1. FIG. 3 is an example of a theoretical calculation result of the dependence of the characteristic X-ray output on the extraction angle. FIG. 4 is a comparison of theoretical calculation results and experimental results in one embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1、試料の試料表面近傍より放射されるX線のなかで、
特定の試料表面とのなす角度のものを検出すること、お
よび放射X線強度の前記角度依存性を全反射臨界角の近
傍で測定、解析することにより、試料表面近傍に存在す
る元素の試料表面から計った位置を求めることを特徴と
する表面構造解析方法。
1. Among the X-rays emitted from near the sample surface of the sample,
By detecting the angle formed with a specific sample surface and by measuring and analyzing the angular dependence of the emitted X-ray intensity near the critical angle of total reflection, A surface structure analysis method characterized by determining the position measured from .
JP24711690A 1990-09-19 1990-09-19 Analysis of surface structure Pending JPH04127044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24711690A JPH04127044A (en) 1990-09-19 1990-09-19 Analysis of surface structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24711690A JPH04127044A (en) 1990-09-19 1990-09-19 Analysis of surface structure

Publications (1)

Publication Number Publication Date
JPH04127044A true JPH04127044A (en) 1992-04-28

Family

ID=17158676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24711690A Pending JPH04127044A (en) 1990-09-19 1990-09-19 Analysis of surface structure

Country Status (1)

Country Link
JP (1) JPH04127044A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001235436A (en) * 2000-02-23 2001-08-31 Japan Science & Technology Corp Observation/analysis method for sample surface by oblique emission proton beam induced characteristic x- ray analysis and apparatus therefor
CN106855523A (en) * 2015-12-08 2017-06-16 株式会社岛津制作所 X-ray spectrum analysis equipment and elemental analysis method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001235436A (en) * 2000-02-23 2001-08-31 Japan Science & Technology Corp Observation/analysis method for sample surface by oblique emission proton beam induced characteristic x- ray analysis and apparatus therefor
CN106855523A (en) * 2015-12-08 2017-06-16 株式会社岛津制作所 X-ray spectrum analysis equipment and elemental analysis method

Similar Documents

Publication Publication Date Title
US6408048B2 (en) Apparatus for analyzing samples using combined thermal wave and X-ray reflectance measurements
US5619548A (en) X-ray thickness gauge
EP0397388B1 (en) Method and apparatus for measuring thickness of thin films
US7130376B2 (en) X-ray reflectometry of thin film layers with enhanced accuracy
US6535285B1 (en) Combination thermal wave and optical spectroscopy measurement system
EP0396409A2 (en) High resolution ellipsometric apparatus
JP2004045369A (en) Method for evaluating orientation of polycrystalline material
JP3889851B2 (en) Film thickness measurement method
Graebner Measurement of thermal diffusivity by optical excitation and infrared detection of a transient thermal grating
JP2821585B2 (en) In-plane distribution measuring method and apparatus
JPH04127044A (en) Analysis of surface structure
Voegeli et al. A quick convergent-beam laboratory X-ray reflectometer using a simultaneous multiple-angle dispersive geometry
JPH0833359B2 (en) Total reflection X-ray fluorescence analyzer
SU1103126A1 (en) Method of determination of structural characteristics of thin near-the-surface monocrystal layers
JPH07208937A (en) Equipment and method for measuring film thickness and permittivity
JPH09304308A (en) Analytical method for thin-film structure and its device
JPH0792112A (en) X-ray evaluation system
JP2952284B2 (en) X-ray optical system evaluation method
TW200530576A (en) X-ray reflectometry of thin film layers with enhanced accuracy
JPH04329347A (en) Thin film sample x-ray diffracting device
JP2780324B2 (en) X-ray thickness gauge
JPH03146846A (en) Method for measuring density of thin film
Chumakov et al. Experimental Determination of Electron Escape Weight Functions by Using the Methods of “Calibrated Amorphous Layers” and “Total External Reflection”
RU1800294C (en) Method of determining plasma generation threshold under action of monopulse laser radiation on polished metallic surface
JPH02107952A (en) X-ray diffraction measurement for powder