JPH04126790A - Luminescent element - Google Patents

Luminescent element

Info

Publication number
JPH04126790A
JPH04126790A JP2247161A JP24716190A JPH04126790A JP H04126790 A JPH04126790 A JP H04126790A JP 2247161 A JP2247161 A JP 2247161A JP 24716190 A JP24716190 A JP 24716190A JP H04126790 A JPH04126790 A JP H04126790A
Authority
JP
Japan
Prior art keywords
transport layer
hole transport
light
formula
phenylenediamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2247161A
Other languages
Japanese (ja)
Inventor
Shigeru Takahara
茂 高原
Nobuhiro Fukuda
福田 信弘
Yutaka Ohashi
豊 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP2247161A priority Critical patent/JPH04126790A/en
Publication of JPH04126790A publication Critical patent/JPH04126790A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a thin-film type luminescent element, having a positive hole transport layer which is a specific m-phenylenediamine-based compound, improved in deterioration of emission brightness with time, having the high emission brightness and usable as light sources, etc., for illumination, display, indication and optical communication. CONSTITUTION:The objective luminescent element having a positive hole transport layer which is an m-phenylenediamine-based compound expressed by formula I [R1 to R5 are H, halogen or alkyl or alkoxy which may be respectively substituted; M is H, alkyl, alkoxy, halogen or formula II (R6 and R7 are H, halogen or alkyl or alkoxy which may be respectively substituted)].

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は液晶のバックライトや各種デコレーシテンなど
の照明や、デイスプレィや表示、光通信の光源などに用
いられる薄膜型の発光素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a thin film light emitting element used for illumination such as a backlight of a liquid crystal and various decorators, a display, a light source for optical communication, and the like.

C従来の技術] 高輝度の電荷注入型有機電界発光素子が最近発表され、
これらが面発光素子であり、マトリックス可動型デイス
プレィなどへの応用が期待されている。
C. Prior Art] A high-brightness charge injection type organic electroluminescent device has recently been announced.
These are surface-emitting devices, and are expected to be applied to matrix movable displays.

これらの電荷注入型電界発光素子については、例えば、
アプライド フィジフクス レター(Appl、Phy
s、Let、) Ll 913 (1987)やジャパ
ニーズ ジャーナル オブ アプライド フィジフクス
(Jpn、J、Appl、Phys、) U 1269
 (1988)などに発表されている0発表されている
薄膜デバイスの積層構造は、ガラスなどの透明基板上に
透明電極を作成し、その上にジアミンなどの有機化合物
からなる正孔輸送層、発光層、電極からなり、全体の厚
さは数μm以下の1il1発光素子となり得る。
Regarding these charge injection type electroluminescent devices, for example,
Applied Physics Letter (Appl, Phys.
S, Let,) Ll 913 (1987) and Japanese Journal of Applied Physics (Jpn, J, Appl, Phys,) U 1269
(1988), etc. The laminated structure of the thin film device that has been published is to create a transparent electrode on a transparent substrate such as glass, and on top of that is a hole transport layer made of an organic compound such as diamine, and a light emitting layer. It can be an 1il1 light-emitting element consisting of layers and electrodes and having a total thickness of several μm or less.

〔発明が解決しようとする!!Iff]上記の有機電界
発光素子においては、発光強度が時間とともに低下して
いく現象、すなわち発光輝度の経時劣化が課題とされて
いる。したがって発光輝度の経時劣化の改善と発光輝度
の向上が望まれている。
[Invention tries to solve it! ! [Iff] In the organic electroluminescent device described above, a problem is a phenomenon in which the luminescence intensity decreases over time, that is, the luminance deteriorates over time. Therefore, it is desired to improve the deterioration of luminance over time and improve the luminance.

[課題を解決するための手段] 本発明者らは、上記課題を解決するため、鋭意検討した
結果、有機化合物からなる正孔輸送層にもちいるジアミ
ン誘導体として、m−フェニレンジアミン系化合物を用
いることによって、高効率の薄膜型発光素子が得られる
のではないかとの着想を得て、これを試みたところ、高
発光効率のみならず経時劣化の少ない薄膜型発光素子が
実現し、本発明を完成した。
[Means for Solving the Problems] In order to solve the above problems, the present inventors, as a result of intensive studies, used m-phenylenediamine-based compounds as diamine derivatives used in the hole transport layer made of organic compounds. I got the idea that a highly efficient thin-film light-emitting device could be obtained by doing this, and when I tried this, I realized a thin-film light-emitting device that not only has high luminous efficiency but also has little deterioration over time. completed.

電子写真用感光体の研究において、トリフェニルアミン
系のジアミン誘導体が正孔輸送層の材料として知られて
いる。この中でも、m−フェニレンジアミン系化合物に
ついては、例えば国中、検出らの日本化学会第56回春
期年会、3XII C39での発表にみられるように、
電子写真用感光体の樹脂分散系のキャリア輸送材料とし
て、m−フェニレンジアミン系化合物が検討され、他の
アミン系化合物と比較して、高いドリフト移動度を有し
ている。この理由として、フェニレンジアミンがm位に
ついた誘導体では、分子内の電子密度の偏りが小さいと
実送まれている。このために、正孔を移動する中間状態
であるイオンラジカル状態が分子内で局在化せず、高い
ドリフト移動度を与えるのではないかと提案している。
In research on electrophotographic photoreceptors, triphenylamine-based diamine derivatives are known as materials for hole transport layers. Among these, regarding m-phenylenediamine compounds, for example, as seen in the presentation by Kuninaka and Sendai et al. at the 56th Spring Annual Meeting of the Chemical Society of Japan, 3XII C39,
m-phenylenediamine compounds have been studied as carrier transport materials in resin dispersion systems for electrophotographic photoreceptors, and have higher drift mobility than other amine compounds. The reason for this is that derivatives in which phenylenediamine is attached to the m-position have a small deviation in electron density within the molecule. For this reason, we propose that the ion radical state, which is an intermediate state that moves holes, is not localized within the molecule and provides high drift mobility.

電子写真用感光体においては、通常、正孔輸送材料は樹
脂に分散させて用いられ、光によって電荷を発生する電
荷発生材料とともに用いられる。
In an electrophotographic photoreceptor, a hole transporting material is usually used by being dispersed in a resin, and is used together with a charge-generating material that generates charges when exposed to light.

また、電子写真用感光体に用いられる正孔輸送層は20
μm程度の厚みで形成され、電荷発生材料で発生した微
量の正孔を輸送し、コロナ帯電した表面電荷を消去する
機能を果たしている。
In addition, the hole transport layer used in electrophotographic photoreceptors is 20
It is formed with a thickness of about μm and functions to transport a small amount of holes generated in the charge-generating material and erase corona-charged surface charges.

これに対して、本発明における発光素子においては、電
子写真用素子における帯電電荷の消去とは興なり、連続
的な直流電流が直接流れるばかりではなく、正孔輸送層
には高い電界をかけるため非常に薄い膜が形成され樹脂
などは用いられない。
On the other hand, in the light-emitting device of the present invention, unlike the electrophotographic device, erasing of the electrical charges is not possible, and not only does a continuous direct current flow directly, but also a high electric field is applied to the hole transport layer. A very thin film is formed and no resin is used.

しかしながら、m−フェニレンジアミン系化合物の正孔
を移動するイオンラジカル状態の非局在化が本発明にお
けるような素子においても、高い正孔輸送能を発現し、
発光効率を向上させるのではないかと考えた。また、意
外なことに、今までm−フェニレンジアミン系化合物は
発光素子に用いられたことはなかった。
However, the delocalization of the ionic radical state that transports holes in m-phenylenediamine-based compounds results in high hole transport ability even in devices such as those in the present invention.
I thought that it might improve luminous efficiency. Moreover, surprisingly, m-phenylenediamine-based compounds have never been used in light-emitting devices.

驚いたことには、m−フェニレンジアミン系化合物を正
孔輸送層に用いたところ、高い発光輝度が得られたのみ
ならず、発光の経時劣化が小さくなることを見いだした
。これば、m位の置換体であるため、2位での置換体な
どに比べて対称性がくずれ、本発明で用いられるような
バインダーなどの構成物がない薄膜においてもドメイン
などをつくりにくいためであると考えられる。
Surprisingly, it was found that when m-phenylenediamine-based compounds were used in the hole transport layer, not only high luminance was obtained, but also the deterioration of luminescence over time was reduced. Since this is a substituent at the m-position, the symmetry is broken compared to a substituent at the 2-position, and it is difficult to form domains even in a thin film without a binder or other constituents as used in the present invention. It is thought that.

これによって、高い正孔輸送能をもちながら安定な正孔
輸送層が得られたものと考えられる。
It is thought that this resulted in a stable hole transport layer having high hole transport ability.

本発明は、少なくとも透明電極上に有機化合物からなる
正孔輸送層、発光層、電極を順に積層した構成からなり
、有機化合物からなる正孔輸送層が、−数式(1) 〔式(1)において、R1、R2、R1、R4、R3は
水素原子、アルキル基、アルコキシル基、ハロゲン原子
を示し、それぞれ置換できるかぎり置換してもよく、ま
た、すべての置換基は同一でも、それぞれ互いに異なっ
ていてもよい。Mは水素原子、アルキル基、アルコキシ
ル基、ハロゲン原子、または、−数式(2) 〔式(2)においてR−1R7は水素原子、アルキル基
、アルコキシル基、ハロゲン原子を示し、それぞれ置換
できるかぎり置換してもよく、また、すべての置換基は
同一でも、それぞれ互いに異なっていてもよい]を示す
〕 で表されるm−フェニレンジアミン系化合物であること
を特徴とする発光素子及び発光層と電極の間に電子輸送
層が積層されている上記の発光素子に関するものである
The present invention has a structure in which a hole transport layer made of an organic compound, a light emitting layer, and an electrode are laminated in this order on at least a transparent electrode, and the hole transport layer made of an organic compound is formed by -Equation (1) [Formula (1) In, R1, R2, R1, R4, and R3 represent a hydrogen atom, an alkyl group, an alkoxyl group, or a halogen atom, and may be substituted as long as each can be substituted, and all substituents may be the same or different from each other. You can. M is a hydrogen atom, an alkyl group, an alkoxyl group, a halogen atom, or - Formula (2) [In Formula (2), R-1R7 represents a hydrogen atom, an alkyl group, an alkoxyl group, or a halogen atom, and each is substituted as much as possible. and all substituents may be the same or different from each other.] A light-emitting element, a light-emitting layer, and an electrode, characterized by being an m-phenylenediamine-based compound represented by The present invention relates to the above-mentioned light emitting element in which an electron transport layer is laminated therebetween.

すなわち、m−フェニレンジアミン系化合物を正孔輸送
層とした高輝度で低劣化の薄膜型発光素子である。
In other words, it is a thin film type light emitting element with high brightness and low deterioration using an m-phenylenediamine compound as a hole transport layer.

なお、式(1)及び(2)において「それぞれ置換でき
る」の意味は式中の各ベンゼン環が各々1〜5の置換基
を持ちうろことを意味する。
In addition, in formulas (1) and (2), the meaning of "each can be substituted" means that each benzene ring in the formula has 1 to 5 substituents.

図1は本発明の構成を例示した図である。図1において
100は透明基板を表し、製造上および素子の機械的構
成要素や保護の目的で用いられるが、場合によってはな
くとも構わない。透明基板は入射光に対して透明であれ
ばよく、好適な例としては、ガラスやプラスチック樹脂
基板があげられる。これらの基板には発光する光を一部
分除去するために無機やを機の顔料や染料などの添加物
を加えてもよい。また、光学フィルター4ill!能を
もつ膜を挿入または積層してもよい。
FIG. 1 is a diagram illustrating the configuration of the present invention. In FIG. 1, reference numeral 100 represents a transparent substrate, which is used for manufacturing purposes and for the purpose of protecting the mechanical components of the device, but may not be necessary depending on the case. The transparent substrate only needs to be transparent to incident light, and suitable examples include glass and plastic resin substrates. Additives such as inorganic or organic pigments or dyes may be added to these substrates to partially remove the emitted light. Also, optical filter 4ill! A functional membrane may be inserted or laminated.

本発明における透明電極は図1では101で示される。The transparent electrode in the present invention is indicated by 101 in FIG.

用いられる材料は、入射光あるいは出力光に対して十分
な光透過性を持つものであればよい、好適な例としては
、正孔輸送層に正孔を注入しやすいものが好まれ、−船
釣に電子の仕事関数の大きな金属、合金、金属酸化物な
どの金属化合物薄膜や、それらの積層された薄膜などが
用いられる。例えば、白金、金、セレン、パラジウム、
ニッケル、タングステン、タンタル、テルルなどの金属
や合金化合物またそれらの積層膜、CuIなどの金属化
合物薄膜や積層膜が好ましい例としてあげられる。
The material used may be any material as long as it has sufficient optical transparency for incident light or output light.For example, a material that can easily inject holes into the hole transport layer is preferred. Thin films of metals with large electron work functions, alloys, metal oxides, and other metal compounds, and thin films made of stacked layers of these metals are used for fishing. For example, platinum, gold, selenium, palladium,
Preferred examples include metals and alloy compounds such as nickel, tungsten, tantalum, and tellurium, and laminated films thereof, and thin films and laminated films of metal compounds such as CuI.

本発明において、透明電極上に有機化合物からなる正孔
輸送層が形成される。図1においては、有機化合物から
なる正孔輸送層は102で示される。本発明の特徴はこ
の有機化合物からなる正孔輸送層材料に、−数式(1)
で示されるm−フェニレンジアミン系化合物を用いるこ
とである。
In the present invention, a hole transport layer made of an organic compound is formed on a transparent electrode. In FIG. 1, a hole transport layer made of an organic compound is indicated by 102. The feature of the present invention is that the hole transport layer material made of this organic compound has the following formula:
It is to use m-phenylenediamine type compound shown by.

例えば、好適な例としてN、N、N”、N“−テトラフ
ェニル−1,3−ジアミノトンゼン(m−PDA)C式
%式% 〔式(12)) 、N、N、N’、N’−テトラキス(
3−メチルフェニル’)−3,5−ジアミノトルエン(
5Me−m−PDA)C式(13)) 、N、N、N’
、N’、N”、N“−へキサキス(4〜メチルフエニル
)−1,3,5−トリアミノベンゼン(6Me−1,3
,5−DPAB)C式(14)Eなどをあげることがで
きる。これらの例の構造式を式(11)から式(14)
に示す。
For example, suitable examples include N, N, N'', N''-tetraphenyl-1,3-diaminotonzene (m-PDA) C formula % formula % [formula (12)), N, N, N', N'-tetrakis (
3-methylphenyl')-3,5-diaminotoluene (
5Me-m-PDA)C formula (13)) , N, N, N'
, N', N", N"-hexakis(4-methylphenyl)-1,3,5-triaminobenzene (6Me-1,3
, 5-DPAB)C formula (14)E. The structural formulas of these examples are expressed as formulas (11) to (14)
Shown below.

(I2) また、これらのm−フェニレンジアミン系化合物の合成
方法は、例えば、特開平1−142642号に開示され
一般に知られているものである。
(I2) Furthermore, methods for synthesizing these m-phenylenediamine compounds are disclosed in, for example, JP-A-1-142642 and are generally known.

本発明における有機化合物からなる正孔輸送層の厚さは
特に限定されないが通常5nmから2μmが採用される
The thickness of the hole transport layer made of an organic compound in the present invention is not particularly limited, but is usually 5 nm to 2 μm.

本発明における正孔輸送層の製造方法としては、真空蒸
着法や昇華法、モレキュラービームエピタキシー法、L
B法、ディッピングやスピンコードなどの塗布法などの
物理的または化学的な薄膜形成方法をとることができる
Methods for manufacturing the hole transport layer in the present invention include vacuum evaporation method, sublimation method, molecular beam epitaxy method, L
Physical or chemical thin film forming methods such as Method B, coating methods such as dipping and spin cording can be used.

上記の有機化合物からなる正孔輸送層と接して発光層が
形成される。図1においては103が発光層を示す。本
発明における発光層に用いられる有機化合物としては、
高い発光量子収率をもち、外部摂動を受けやすいπ電子
系を有し、容易に励起されやすい有機化合物などが好適
に用いられる。
A light emitting layer is formed in contact with the hole transport layer made of the above organic compound. In FIG. 1, 103 indicates a light emitting layer. Organic compounds used in the light emitting layer in the present invention include:
Organic compounds that have a high emission quantum yield, have a π-electron system that is susceptible to external perturbations, and are easily excited are preferably used.

このような有機化合物としては、例えば、アントラセン
、コロネン、ペリレンなどの縮合多環芳香族炭化水素類
やP−ターフェニル、ポリ−p−キシレンなどのポリフ
ェニル12.5−ジフェニルオキサゾール、1,4−ビ
ス−(2−メチルスチリル)−ベンゼンなどのジスチル
ヘンセン類、シクロペンタジェン類、ペリノン類、キサ
ンチン類、クマリン類、アクリジン類、NK1952(
日本感光色素製品)などのシアニン色素類、ヘンシフエ
ノン類、フタロシアニン色素類、ならびに、上記以外の
複素環化合物、芳香族アミン、芳香族ポリアミン、およ
びキノン構造を有する化合物の中で励起状態で錯体を形
成する化合物やポリアセチレン、ポリシランなどを挙げ
ることができる。また、金属と有機物の配位子からなる
金属錯体化合物が好ましい例としてあげられる。具体的
な例としては金属種としては例えば、^1、Ga、 I
r、 Zn、Cd、 Mg、 Pb、τaなどが好まし
く、有機物からなる配位子としては、例えばポルフィリ
ン、クロロフィル、8−ヒドロキシキノリン(オキシン
)、フタロシアニン、サリチルアルデヒドオキシム、1
−ニトロソ−2−ナフトール、クフェロン、ジチゾン、
アセチルアセトンなどが用いられる。より具体的には、
例えば、オキシン錯体、5,7−ジブロムオキシン錯体
、5.7−ジヨードオキシン錯体、チオオキシン錯体、
メチルオキシン錯体があげられ、より具体的にはアルミ
ニウムオキシン錯体、鉛オキシン錯体、鉛ジブロムオキ
シン錯体、鉛(5,7−ジヨードオキシン)錯体、鉛チ
オオキシン錯体、鉛セレノオキシン錯体、ビスマスメチ
ルオキシン錯体などが好ましい例としてあげられる。
Examples of such organic compounds include fused polycyclic aromatic hydrocarbons such as anthracene, coronene, and perylene, polyphenyl 12.5-diphenyloxazole, 1,4 -Bis-(2-methylstyryl)-benzene and other distylphenses, cyclopentagenes, perinones, xanthines, coumarins, acridines, NK1952 (
Forms complexes in an excited state in cyanine dyes such as Nippon Photosensitive Color Products), hensifenones, phthalocyanine dyes, as well as heterocyclic compounds other than those listed above, aromatic amines, aromatic polyamines, and compounds with a quinone structure. Examples of such compounds include polyacetylene, polysilane, etc. A preferred example is a metal complex compound consisting of a metal and an organic ligand. As a specific example, the metal species include ^1, Ga, I
r, Zn, Cd, Mg, Pb, τa, etc. are preferable, and examples of the organic ligand include porphyrin, chlorophyll, 8-hydroxyquinoline (oxine), phthalocyanine, salicylaldehyde oxime, 1
-Nitroso-2-naphthol, couferone, dithizone,
Acetylacetone and the like are used. More specifically,
For example, oxine complex, 5,7-dibromooxine complex, 5,7-diiodooxine complex, thioxin complex,
Examples include methyloxine complexes, more specifically aluminum oxine complexes, lead oxine complexes, lead dibromooxine complexes, lead (5,7-diiodooxine) complexes, lead thioxine complexes, lead selenooxine complexes, and bismuth methyloxine complexes. Preferred examples include complexes.

代表例として弐(21)に示されるトリス(8−ヒドロ
キシキノリン)アルミニウムや式(22)から式(26
)に示されるような多環系の化合物があげられる。
Representative examples include tris(8-hydroxyquinoline)aluminum shown in 2 (21) and formulas (22) to (26).
) include polycyclic compounds such as those shown in

また、これらの化合物の混合物を用いてもかまわない。Moreover, a mixture of these compounds may be used.

これらの発光層にドーパントと呼ばれる添加剤を0.0
1wtχから30−tχの量で添加することにより発光
色を変えることができる。例えば式(21)に示されて
いるトリス(8−ヒドロキシキノリン)アルミニウムに
クマリンを添加することによってもとの緑色の発光から
青緑色の発光となる。また、スチリル系色素の添加では
橙色の発光色が得られることが知られている。添加剤を
いれた場合の発光は添加剤からの発光であり、添加剤を
変えることによって発光を変えることができることを示
している。
Additives called dopants are added to these light-emitting layers.
By adding in an amount of 1wtχ to 30-tχ, the color of the emitted light can be changed. For example, by adding coumarin to tris(8-hydroxyquinoline)aluminum shown in formula (21), the original green light emission changes to blue-green light emission. Furthermore, it is known that an orange luminescent color can be obtained by adding a styryl dye. The light emission when an additive is added is the light emission from the additive, which shows that the light emission can be changed by changing the additive.

本発明における発光層はこれらの有機化合物の非晶質、
微結晶または微結晶を含む非晶質、多結晶、単結晶層で
ある。層の厚さは特に限定されないが通常5nmから2
μmが採用される。
The light-emitting layer in the present invention is an amorphous layer of these organic compounds,
It is an amorphous, polycrystalline, or single crystal layer containing microcrystals or microcrystals. The thickness of the layer is not particularly limited, but is usually between 5 nm and 2 nm.
μm is adopted.

本発明における発光層の製造方法としては、真空蒸着法
や昇華法、モレキュラービームエピタキシー法、LB法
、ディッピングやスピンコードなどの塗布法などの物理
的または化学的な薄膜形成方法をとることができる。
As a manufacturing method of the light emitting layer in the present invention, physical or chemical thin film forming methods such as vacuum evaporation method, sublimation method, molecular beam epitaxy method, LB method, coating method such as dipping or spin cord can be used. .

さらに発光層と接して電極がもうけられる。本発明を示
す例である図1において、電極は104で示される。ま
た、電極と発光層との間に電子輸送層をもうけてもよい
Furthermore, an electrode is provided in contact with the light emitting layer. In FIG. 1, an example illustrating the invention, the electrode is indicated at 104. Furthermore, an electron transport layer may be provided between the electrode and the light emitting layer.

本発明において、発光層もしくは電子輸送層と接する電
極は透明または半透明、または透明でなくともよい、こ
こで用いられる電極は発光層または電子輸送層に電子を
注入しやすいものが好ましく、−iに電子の仕事関数の
小さな金属や合金薄膜、その積層膜が用いられ、例えば
、マグネシウム、リチウム、カリウム、カルシウム、ル
ビジウム、ストロンチウム、セリウムなどの金属薄膜や
マグネシウム−銀などの合金やCCs−0−A、C5z
SbSNaJSbSCsNaJSb、などの金属化合物
薄膜、またはそれらの積層薄膜があげられる。 本発明
において、発光層と電極との間にあってもよい電子輸送
層に用いられる材料としては、例えば、式(31)や式
(32)に示されるようなジフェノキノン類などの交差
共役系化合物やベンゾフェノン系、ヒドラゾン系の化合
物や2,4.7− )ジニトロ−9−フルオレノンや式
(33)に示される化合物などのフルオレン系化合物な
どが好適な例としてあげることができる。
In the present invention, the electrode in contact with the light-emitting layer or electron-transporting layer may be transparent or translucent, or may not be transparent. The electrode used here is preferably one that easily injects electrons into the light-emitting layer or electron-transporting layer, and -i For example, metals with small electron work functions, alloy thin films, and laminated films thereof are used. For example, metal thin films such as magnesium, lithium, potassium, calcium, rubidium, strontium, and cerium, alloys such as magnesium-silver, and CCs-0- A, C5z
Examples include metal compound thin films such as SbSNaJSbSCsNaJSb, and laminated thin films thereof. In the present invention, examples of materials used for the electron transport layer that may be present between the light emitting layer and the electrode include cross-conjugated compounds such as diphenoquinones as shown in formula (31) and formula (32), and benzophenone. Suitable examples include hydrazone-based compounds, 2,4.7-)dinitro-9-fluorenone, and fluorene-based compounds such as the compound represented by formula (33).

Cat、、CI“ 本発明における電子輸送層の製造方法としては、真空蒸
着法や昇華法、モレキュラービームエピタキシー法、L
B法、ディッピングやスピンコードなどの塗布法などの
物理的または化学的な薄膜形成方法をとることができる
。膜厚としては特に制限はないが、10nmから2μm
程度が使用される。
Cat, CI" The method for manufacturing the electron transport layer in the present invention includes vacuum evaporation method, sublimation method, molecular beam epitaxy method, L
Physical or chemical thin film forming methods such as Method B, coating methods such as dipping and spin cording can be used. There is no particular limit to the film thickness, but it is from 10 nm to 2 μm.
degree is used.

[発明の効果] 本発明の発光素子はm−フェニレンジアミン系化合物を
正孔輸送層に用いることによって、発光輝度の経時劣化
が改善され、なおかつ高い発光輝度をもつ発光素子であ
る。
[Effects of the Invention] By using an m-phenylenediamine compound in the hole transport layer, the light-emitting element of the present invention is a light-emitting element in which deterioration of luminance over time is improved and has high luminance.

C実施例] 以下、実施例により本発明を具体的に説明するが、これ
により本発明の実施の形態が限定されるものではない。
C Example] Hereinafter, the present invention will be specifically explained with reference to Examples, but the embodiments of the present invention are not limited thereto.

実施例I ITOを透明電極として200nmの厚さでパターンエ
ツチングされているガラス基1(松崎真空社製)上に真
空蒸着法によってm−フェニレンジアミン系化合物であ
るm−PDAの薄膜を作成した。真空度10− ’To
rrの条件で水晶発振膜厚計の振動数が0.5 kHz
変化したところで蒸着をやめ、さらに、同条件でトリス
(8−ヒドロキシキノリン)アルミニウムをこの層の上
に蒸着した。膜厚は水晶発振膜厚計が0.4k)Iz変
化するところまでとした。さらに、この上に真空度2 
Xl0−6Torrの条件でMgを200 n mの厚
みまで真空蒸着した。
Example I A thin film of m-PDA, which is an m-phenylenediamine compound, was formed by vacuum evaporation on a glass substrate 1 (manufactured by Matsuzaki Shinku Co., Ltd.) which had been pattern-etched to a thickness of 200 nm using ITO as a transparent electrode. Degree of vacuum 10-'To
The frequency of the crystal oscillation film thickness meter is 0.5 kHz under the conditions of rr.
Vapor deposition was stopped when the change occurred, and tris(8-hydroxyquinoline) aluminum was further vapor-deposited on this layer under the same conditions. The film thickness was set to a point where the crystal oscillation film thickness meter changed by 0.4k)Iz. Furthermore, on top of this, the degree of vacuum is 2
Mg was vacuum deposited to a thickness of 200 nm under the conditions of Xl0-6 Torr.

このようにして作成した積層薄膜の電極のITO側を正
、Mg側を負にして電圧をかけると発光が観測された。
When a voltage was applied with the ITO side of the electrode of the laminated thin film thus prepared being positive and the Mg side being negative, light emission was observed.

電圧を逆に印加した場合は発光は観察されなかった。No light emission was observed when the voltage was applied in the opposite direction.

電圧に対する発光輝度特性を図2に示す。2000cd
/m”近くまでの発光輝度が得られ、高い発光輝度の素
子であることが示される。
FIG. 2 shows the luminance characteristics with respect to voltage. 2000cd
Emission brightness close to /m'' was obtained, indicating that the device has high emission brightness.

この試料に電圧を印加したまま、ドライボックス中で連
続発光させた。この場合の発光輝度が初期において12
7cd/+”であったものが100時間後に同し12V
の電圧の印加で113cd/m”であった。
This sample was allowed to emit light continuously in a dry box while a voltage was applied to it. In this case, the luminance is initially 12
7cd/+” was the same 12V after 100 hours.
The voltage was 113 cd/m'' when a voltage of

比較例1 実施例1に準して、ITOを透明電極として200nm
の厚さでパターンエツチングされているガラス基板(松
崎真空社製)上に真空蒸着法によってフェニレンジアミ
ン系化合物であるがm位の置換体ではないN、N’−ジ
フェニル−N、 N’−ビス(3−メチルフェニル)−
1,4−ジアミノベンゼン(p−PDA)の薄膜を作成
した。真空度10−’Torrの条件で水晶発振膜厚計
の振動数がQ、5kHz変化したところで蒸着をやめ、
さらに、同条件でトリス(8−ヒドロキシキノリン)ア
ルミニウムをこの層の上に蒸着した。膜厚は水晶発振膜
厚計が0.4kHz変化するところまでとした。さらに
、この上に真空度2 X 10− ’Torrの条件で
Mgを200nmの厚みまで真空蒸着した。
Comparative Example 1 According to Example 1, ITO was used as a transparent electrode and the thickness was 200 nm.
N,N'-diphenyl-N,N'-bis, which is a phenylenediamine compound but is not a substituent at the m position, was deposited on a glass substrate (manufactured by Matsuzaki Vacuum Co., Ltd.), which was pattern-etched to a thickness of , by vacuum evaporation. (3-methylphenyl)-
A thin film of 1,4-diaminobenzene (p-PDA) was created. At a vacuum level of 10-'Torr, the evaporation was stopped when the frequency of the crystal oscillation film thickness meter changed to Q, 5kHz.
Further, tris(8-hydroxyquinoline)aluminum was evaporated onto this layer under the same conditions. The film thickness was set to a point where the crystal oscillation film thickness meter changes by 0.4 kHz. Furthermore, Mg was vacuum-deposited onto this to a thickness of 200 nm under the condition of a vacuum degree of 2×10 −' Torr.

ここで用いたp−PDAは以下のようにして合成した。p-PDA used here was synthesized as follows.

 N、N’−ジフェニル−1,4−ジアミノベンゼン(
東京化成) 21.8g、炭酸カリウム8.5g、銅粉
末1.1g、ニトロベンゼン100II+1を24時間
還流反応させた0反応後、水蒸気蒸留により溶媒および
未反応原料を除いた。残留物を水洗しベンゼン400 
−slにあけ、硫酸マグネシウムで乾燥し、不溶物をろ
過で除去した。この溶液から展開液をベンゼン−ヘキサ
ン1:1(体積比)として活性アルミナカラムクロマト
で分離をjテい、最初に溶出してくるフラクシヨンをわ
けとった。溶媒を留去して淡黄色の固体を得た。収量9
.8g、収率44Z。ベンゼン−メタノールから再結晶
しうすい黄色の板結晶を得た。この結晶をさらに昇華精
製し白色固体となったものを使用した。融点170−1
71°C0作成した積層薄−M試料の電圧に対する発光
輝度特性を図3に実線で示した。
N,N'-diphenyl-1,4-diaminobenzene (
After a reflux reaction of 21.8 g of Tokyo Kasei, 8.5 g of potassium carbonate, 1.1 g of copper powder, and nitrobenzene 100II+1 for 24 hours, the solvent and unreacted raw materials were removed by steam distillation. Wash the residue with water and add benzene 400
-sl, dried over magnesium sulfate, and insoluble matter was removed by filtration. This solution was separated using activated alumina column chromatography using a benzene-hexane solution of 1:1 (volume ratio), and the first fraction eluted was separated. The solvent was distilled off to obtain a pale yellow solid. Yield 9
.. 8g, yield 44Z. Recrystallization from benzene-methanol gave pale yellow plate crystals. This crystal was further purified by sublimation to form a white solid, which was then used. Melting point 170-1
The luminance characteristics versus voltage of the laminated thin-M sample prepared at 71°C are shown in FIG. 3 by a solid line.

この試料に電圧を印加したまま、ドライボックス中で連
続発光させた。この場合の発光輝度が初期において18
Vの電圧印加で118cd/m”であったものが100
時間後に同じ18Vの電圧の印加で70cd/+” と
減少した。
This sample was allowed to emit light continuously in a dry box while a voltage was applied to it. In this case, the luminance is initially 18
What was 118 cd/m” when a voltage of V was applied became 100 cd/m”
After some time, the voltage decreased to 70 cd/+'' by applying the same voltage of 18 V.

実施例1と比較すると電圧−輝度特性が劣り、輝度の経
時劣化に大きな差があることがわかる。
When compared with Example 1, it can be seen that the voltage-luminance characteristics are inferior and there is a large difference in luminance deterioration over time.

比較例2 比較例1と同様、実施例1に準じて、ITOを透明電極
として200nmの厚さでパターンエツチングされてい
るガラス基板(松崎真空社製)上に真空蒸着法によって
m−PDAの代わりに正孔輸送材料の一つとして知られ
ているニッケルフタロシアニン(東京化成)の薄膜を作
成した。真空度10−’Torrの条件で水晶発振膜厚
計の振動数が0.4kHz変化したところで蒸着をやめ
、さらに、同条件でトリス(8−ヒドロキシキノリン)
アルミニウムをこの層の上に蒸着した。S厚は水晶発振
膜厚計が0.4kHz変化するところまでとした。さら
に、この上に真空度2 Xl0−”丁orrの条件でM
gを200nmの厚みまで真空蒸着した。 作成した積
層薄膜試料の電圧に対する発光輝度特性を図3に破線で
示した。
Comparative Example 2 Similar to Comparative Example 1, in accordance with Example 1, ITO was used as a transparent electrode on a glass substrate (manufactured by Matsuzaki Vacuum Co., Ltd.) on which a pattern was etched to a thickness of 200 nm. created a thin film of nickel phthalocyanine (Tokyo Kasei), which is known as a hole transport material. Vapor deposition was stopped when the frequency of the crystal oscillation film thickness meter changed by 0.4 kHz under the vacuum condition of 10-' Torr, and then the deposition of tris(8-hydroxyquinoline) was continued under the same conditions.
Aluminum was evaporated onto this layer. The S thickness was set to a point where the crystal oscillation film thickness meter changes by 0.4 kHz. Furthermore, on top of this, M
g was vacuum deposited to a thickness of 200 nm. The luminance characteristics of the produced laminated thin film sample with respect to voltage are shown in FIG. 3 by broken lines.

実施例1と比較すると電圧−輝度特性が大きく劣ること
が示される。
A comparison with Example 1 shows that the voltage-luminance characteristics are significantly inferior.

実施例2 ITOを透明電極として200nmの厚さでパターンエ
ツチングされているガラス基板(秘峰真空社製)上に真
空蒸着法によってm−フェニレンジアミン系化合物であ
るN、N、N’、N’、N”、N”−へキサキス(4−
メチルフェニル) −1,3,5−トリアミノベンゼン
(6Me−1,3,5−DPAB)の薄膜を作成した。
Example 2 N, N, N', N', which are m-phenylenediamine compounds, were deposited by vacuum evaporation on a glass substrate (manufactured by Hiho Shinku Co., Ltd.) on which a pattern of 200 nm thick was etched using ITO as a transparent electrode. , N”, N”-hexakis (4-
A thin film of methylphenyl)-1,3,5-triaminobenzene (6Me-1,3,5-DPAB) was prepared.

真空度10−’Torrの条件で水晶発振膜厚計の振動
数が0.6kHz変化したところで蒸着をやめ、さらに
、同条件でトリス(8−ヒドロキシキノリン)アルミニ
ウムをこの層の上に蒸着した。
The vapor deposition was stopped when the frequency of the crystal oscillation film thickness meter changed by 0.6 kHz under the vacuum condition of 10-' Torr, and tris(8-hydroxyquinoline) aluminum was further vapor-deposited on this layer under the same conditions.

膜厚は水晶発振膜厚計が0.4kHz変化するところま
でとした。さらに、この上に真空度2X10−’Tor
rの条件でMgを200nmの厚みまで真空蒸着した。
The film thickness was set to a point where the crystal oscillation film thickness meter changes by 0.4 kHz. Furthermore, on top of this, a vacuum degree of 2X10-'Tor is applied.
Mg was vacuum-deposited to a thickness of 200 nm under conditions of r.

ここで用いた6Me−1,3,5−DPABは以下のよ
うにして合成した。フロログルシノール(牛丼化学)2
gとp+ p’−ジトリルアミン(東京化成)14.5
g、ヨウ素0.6gをオートクレーブ中250°Cで2
0時間反応させた。反応後、ベンゼン1mlにあけ、炭
酸ナトリウム、硫酸ナトリウムをそれぞれ5gづつ加え
て2時間撹拌した。ろ過で不溶物を除去し、この溶液か
ら展開液をベンゼン−ヘキサンl:1(体積比)として
活性アルミナカラムろ過を行った。溶媒を留去し、昇華
管を使ってp、p’−ジトリルアミン、油状物を除いて
ろすい茶色の固体を得た。収量0.66g、収率6.3
χ。ヘンセンーメタノルから再結晶し白色の針状結晶を
得てこれを使用した。融点234−236°C0 作成した積層薄膜試料の電圧に対する発光輝度特性を図
4に示した。実施例1と同様高い発光輝度を示した。
6Me-1,3,5-DPAB used here was synthesized as follows. Phloroglucinol (Gyudon Chemical) 2
g and p+ p'-ditolylamine (Tokyo Kasei) 14.5
g, 0.6 g of iodine at 250°C in an autoclave.
The reaction was allowed to proceed for 0 hours. After the reaction, the mixture was poured into 1 ml of benzene, 5 g each of sodium carbonate and sodium sulfate were added, and the mixture was stirred for 2 hours. Insoluble matter was removed by filtration, and the solution was subjected to active alumina column filtration using benzene-hexane (l:1 (volume ratio)) as a developing solution. The solvent was distilled off, and p,p'-ditolylamine and oil were removed using a sublimation tube to obtain a pale brown solid. Yield 0.66g, Yield 6.3
χ. It was recrystallized from Hensen-methanol to obtain white needle-shaped crystals, which were used. Melting point: 234-236°C0 Figure 4 shows the luminance characteristics of the prepared laminated thin film sample versus voltage. Similar to Example 1, high luminance was exhibited.

この試料に電圧を印加したまま、ドライボックス中で連
続9発光させた。この場合の発光輝度が初期においてI
OVの電圧印加で115cd/m2であったものが10
0時間後に同じIOVの電圧の印加で105cd/m”
であった。実施例1と同様安定性に優れていることが示
される。
While voltage was applied to this sample, nine consecutive lights were emitted in a dry box. In this case, the luminance is initially I
What was 115 cd/m2 with OV voltage application was 10
105 cd/m” by applying the same IOV voltage after 0 hours
Met. As with Example 1, it is shown that the stability is excellent.

【図面の簡単な説明】[Brief explanation of drawings]

図1は本発明の構成例を示す斜視図である。 100:透明基板   101:透明電極102:正孔
輸送層  103:発光層104:電極 図2および図4はそれぞれ実施例1および2の電圧−輝
度特性を表したグラフである。 図3は比較例の電圧−輝度特性を表したグラフである。 □:比較例1  −−−−・−:比較例2特許出願人 
 三井東圧化学株式会社 図1 輝度(c d / m2) 輝度 (cd/m2)
FIG. 1 is a perspective view showing a configuration example of the present invention. 100: Transparent substrate 101: Transparent electrode 102: Hole transport layer 103: Light emitting layer 104: Electrode FIGS. 2 and 4 are graphs showing the voltage-luminance characteristics of Examples 1 and 2, respectively. FIG. 3 is a graph showing voltage-luminance characteristics of a comparative example. □: Comparative example 1 ------・-: Comparative example 2 Patent applicant
Mitsui Toatsu Chemical Co., Ltd.Figure 1 Brightness (cd/m2) Brightness (cd/m2)

Claims (2)

【特許請求の範囲】[Claims] 1.少なくとも透明電極上に有機化合物からなる正孔輸
送層、発光層、電極を順に積層した構成からなり、有機
化合物からなる正孔輸送層が、一般式(1) ▲数式、化学式、表等があります▼ 〔式(1)において、R_1、R_2、R_3、R_4
、R_5は水素原子、アルキル基、アルコキシル基、ハ
ロゲン原子を示し、それぞれ置換できるかぎり置換して
もよく、また、すべての置換基は同一でも、それぞれ互
いに異なっていてもよい。Mは水素原子、アルキル基、
アルコキシル基、ハロゲン原子、または、一般式(2) ▲数式、化学式、表等があります▼ 〔式(2)においてR_6、R_7は水素原子、アルキ
ル基、アルコキシル基、ハロゲン原子を示し、それぞれ
置換できるかぎり置換してもよく、また、すべての置換
基は同一でも、それぞれ互いに異なっていてもよい〕を
示す〕 で表されるm−フェニレンジアミン系化合物であること
を特徴とする発光素子。
1. It consists of a structure in which a hole transport layer made of an organic compound, a light emitting layer, and an electrode are laminated in this order on at least a transparent electrode, and the hole transport layer made of an organic compound has the general formula (1) ▲There are mathematical formulas, chemical formulas, tables, etc. ▼ [In formula (1), R_1, R_2, R_3, R_4
, R_5 represents a hydrogen atom, an alkyl group, an alkoxyl group, or a halogen atom, each of which may be substituted as long as it can be substituted, and all substituents may be the same or different from each other. M is a hydrogen atom, an alkyl group,
Alkoxyl group, halogen atom, or general formula (2) ▲ Numerical formulas, chemical formulas, tables, etc. A light-emitting element characterized by being an m-phenylenediamine-based compound represented by the following formula.
2.発光層と電極の間に電子輸送層が積層されている請
求項1記載の発光素子。
2. 2. The light emitting device according to claim 1, wherein an electron transport layer is laminated between the light emitting layer and the electrode.
JP2247161A 1990-09-19 1990-09-19 Luminescent element Pending JPH04126790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2247161A JPH04126790A (en) 1990-09-19 1990-09-19 Luminescent element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2247161A JPH04126790A (en) 1990-09-19 1990-09-19 Luminescent element

Publications (1)

Publication Number Publication Date
JPH04126790A true JPH04126790A (en) 1992-04-27

Family

ID=17159346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2247161A Pending JPH04126790A (en) 1990-09-19 1990-09-19 Luminescent element

Country Status (1)

Country Link
JP (1) JPH04126790A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06267658A (en) * 1993-03-09 1994-09-22 Mitsubishi Kasei Corp Organic el element
JP2005190993A (en) * 2003-11-21 2005-07-14 Bando Chem Ind Ltd Organic electron function material and method for utilizing the same
US7629059B2 (en) * 2003-11-21 2009-12-08 Bando Chemical Industries, Ltd. Organo-electronic functional material and use thereof
JP2010056364A (en) * 2008-08-29 2010-03-11 Toyota Central R&D Labs Inc Organic light emitting element
US8980441B2 (en) 2008-12-22 2015-03-17 Udc Ireland Limited Organic electroluminescent device having specific diamine compound
JP2017204492A (en) * 2016-05-09 2017-11-16 保土谷化学工業株式会社 Organic electroluminescent element
US10381571B2 (en) 2013-05-27 2019-08-13 Samsung Sdi Co., Ltd. Compound, organic light emitting element comprising same, and display device comprising organic light emitting element

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06267658A (en) * 1993-03-09 1994-09-22 Mitsubishi Kasei Corp Organic el element
JP2005190993A (en) * 2003-11-21 2005-07-14 Bando Chem Ind Ltd Organic electron function material and method for utilizing the same
US7629059B2 (en) * 2003-11-21 2009-12-08 Bando Chemical Industries, Ltd. Organo-electronic functional material and use thereof
JP2010056364A (en) * 2008-08-29 2010-03-11 Toyota Central R&D Labs Inc Organic light emitting element
US8980441B2 (en) 2008-12-22 2015-03-17 Udc Ireland Limited Organic electroluminescent device having specific diamine compound
US9564599B2 (en) 2008-12-22 2017-02-07 Udc Ireland Limited Organic electroluminescent device having specific diamine compound
US10381571B2 (en) 2013-05-27 2019-08-13 Samsung Sdi Co., Ltd. Compound, organic light emitting element comprising same, and display device comprising organic light emitting element
JP2017204492A (en) * 2016-05-09 2017-11-16 保土谷化学工業株式会社 Organic electroluminescent element

Similar Documents

Publication Publication Date Title
KR100861434B1 (en) Novel compound and organic electronic device using such compound
US5891587A (en) Electroluminescent devices
JP3069139B2 (en) Dispersion type electroluminescent device
US5952115A (en) Electroluminescent devices
US5247226A (en) Organic electroluminescent device
US6620529B1 (en) Materials for light emitting devices and light emitting devices using the same
JP4213832B2 (en) Organic light emitting device material, organic light emitting device using the same, and styrylamine compound
US6689491B1 (en) Luminescent device material, luminescent device using the same, and amine compound
JP2000182772A (en) Organic electroluminescent element
JPH0785972A (en) Organic el element
JP3640090B2 (en) Hole transport material and use thereof
JPH0794807A (en) Amorphous organic thin film element, amorphous organic polymer compound and amorphous inorganic compound
JPH06267658A (en) Organic el element
JPH0820771A (en) Hole-transporting material and its use
EP2379472B1 (en) Novel organic compound
JPH09301934A (en) High molecular weight aromatic amine compound and hole-transporting material
JP3229654B2 (en) Compound for organic EL device and organic EL device
JP3296147B2 (en) Triphenylamine polymer, its production method and use
JPH1135688A (en) Silicon-containing compound, production of the same silicon-containing compound and luminous element using the same silicon-containing compound
JP2002038141A (en) New condensed heterocyclic compound, luminous element material and luminous element using the same
JPH04126790A (en) Luminescent element
JPH05271166A (en) Tetraaryldiamine compound
JP3575335B2 (en) Organic light emitting device
KR20070067612A (en) Organic electroluminescent devices
JP3079903B2 (en) Hole transport material and its use