JP3575335B2 - Organic light emitting device - Google Patents

Organic light emitting device Download PDF

Info

Publication number
JP3575335B2
JP3575335B2 JP17498799A JP17498799A JP3575335B2 JP 3575335 B2 JP3575335 B2 JP 3575335B2 JP 17498799 A JP17498799 A JP 17498799A JP 17498799 A JP17498799 A JP 17498799A JP 3575335 B2 JP3575335 B2 JP 3575335B2
Authority
JP
Japan
Prior art keywords
organic
light emitting
organic light
emitting device
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17498799A
Other languages
Japanese (ja)
Other versions
JP2001003044A (en
Inventor
三紀子 松尾
徹哉 佐藤
均 久田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP17498799A priority Critical patent/JP3575335B2/en
Priority to US09/495,654 priority patent/US6391482B1/en
Priority to EP00102058A priority patent/EP1026222B1/en
Priority to DE60000455T priority patent/DE60000455T2/en
Priority to KR10-2000-0005505A priority patent/KR100360204B1/en
Publication of JP2001003044A publication Critical patent/JP2001003044A/en
Application granted granted Critical
Publication of JP3575335B2 publication Critical patent/JP3575335B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、発光ディスプレイや液晶ディスプレイ用バックライト等として用いられる表示素子に関するものである。
【0002】
【従来の技術】
エレクトロルミネッセンス(EL)パネルは視認性が高く、表示能力に優れ、高速応答も可能という特徴を持っている。近年、有機化合物を構成材料とする有機発光素子について報告がなされた(例えば、関連論文 アプライド・フィジックス・レターズ、第51巻913頁1987年(Applied Physics Letters,51,1987,P.913.)、)。この報告には有機発光層及び電荷輸送層を積層した構造の有機発光素子が記載されている。
【0003】
有機発光素子は、図1〜3に示す3種類の積層構造に分けられる。それぞれ略称として、一般に図1の構成はSH−A型、図2はSH−B型、図3はDH型と呼ばれている。
【0004】
上記Tangらの報告は、図1のSH−A型と呼ばれる構成になっている。発光材料としてはトリス(8−キノリノール)アルミニウム錯体(以下Alq)を用いており、高い発光効率と、電子輸送を合わせ持つ優れた発光物質である。
【0005】
また、ジャーナル・オブ・アプライド・フィジックス、第65巻3610頁1989年(Journal of Applied Physics,65,1989,p.3610.)には有機発光層を形成するAlqにクマリン誘導体やDCM1等の蛍光色素をドープした素子を作成し、色素の適切な選択により発光色が変わることを見いだした。さらに、発光効率も非ドープに比べ上昇することを明らかにした。この場合は、図1のSH−A型の他、キャリアの再結合領域にのみドープし、発光と電子輸送の機能分離を図ることにより、図3のDH型を実現することができる。
【0006】
一方、図2のSH−B型は、2−(4−ビフェニリル)―5−(4−t−ブチルフェニル)−1,3,4−オキサジアゾール(PBD)に代表されるオキサジアゾール誘導体が電子輸送材料として使用されることが多い。しかし、PBD等のオキサジアゾール誘導体は結晶化を起こしやすく実用化には不向きである。
【0007】
従って、研究開発は図1のSH−A型、あるいは図3のDHを中心として進められ、電子輸送性、正孔輸送性、蛍光発光性それぞれの機能に応じた新しい素子材料が開発、検討されている。特に正孔輸送性有機分子はトリフェニルアミンを基本骨格とする材料が数多く開発され、また蛍光発光性有機分子についても蛍光顔料やレーザー色素等の適用および修飾が盛んに行われている。
【0008】
【発明が解決しようとする課題】
しかしながら、一方で電子輸送性有機分子は非常に少なく、電子輸送性発光材料であるAlq、Alq誘導体、ベリリウムベンゾキノリンのキレート金属錯体が挙げられるのみである。従って、材料選択の余地が非常に狭いという課題がある。
【0009】
また、これらの錯体はSH−A型あるいはDH型の素子構成に基づいて開発されており、上記錯体の発光色は緑から黄色であるため、これよりエネルギー的に高い位置にある短波長側の発光色は原理的に得られない。
【0010】
有機発光層は、一般に上記の蛍光顔料やレーザー色素をゲスト材料としてドープすることにより構成される。ドーピング法は、ドープ濃度と発光効率は逆比例の関係にあるため、ドープ濃度が低いとき効率が高く、ドープ濃度が高くなるにつれ、濃度消光により効率は低下する。通常、最適濃度は0.1〜1%に存在するため制御が難しい。
【0011】
さらに、ドーパントである蛍光色素の吸収スペクトルとホスト材料の発光スペクトルの重なりの大きさが発光効率の決定要因となるが、前述したようにホスト材料となりうる電子輸送性発光材料の選択肢が狭いため、ドーパントを選択する範囲も狭くなるという課題が生じる。
【0012】
また、ドーピング法ではホスト材料の発光よりも長波長シフトするため、短波長側の発光が得られないという課題があった。
【0013】
さらに、有機発光素子では特に赤色発光が課題である。赤色を得るには、エネルギーギャップの狭い化合物が必要になるが、このような化合物はパイ電子系の広がりが大きく濃度消光へのさらなる配慮が必要となる。
【0014】
【課題を解決するための手段】
そこで我々は、新規な電子輸送性有機材料を提供し、これを用いることにより安定な有機発光素子を実現するに至った。また、エキサイプレックスからの発光を取り出すことにより、高輝度でかつ新規な発光色を与え、さらにプロセス的にも再現性の高い有機発光層を形成することができ、前記課題を解決するに至った。
【0015】
具体的には、第1の有機発光素子は陽電極および陰電極間に、少なくとも有機発光層、有機電子輸送層を有する有機発光素子において、少なくとも前記有機電子輸送層が下記一般式(化2)で表される電子不足化合物を含むことを特徴とする有機発光素子材料が提供される。
【0016】
【化2】

Figure 0003575335
【0017】
(R1及びR2は少なくとも2つの窒素原子を含む含窒素芳香環もしくは含窒素芳香環誘導体を有する架橋配位子あるいはハロゲン、炭素数1〜3のアルキルを有する架橋配位子であり、含窒素芳香環中の窒素を配位原子とする。R3,R4,R5およびR6はそれぞれ水素、アルキル、アリール、アリール誘導体及び少なくとも1つの窒素原子を含む含窒素芳香環もしくは含窒素芳香環誘導体から選ばれる1つであり、Mは中心金属)。
【0019】
第2の有機発光素子は、第1の有機発光素子の有機電子輸送層に含まれる有機多核金属錯化合物が、ピラザボール構造を有するとしたものである。
【0020】
第3の有機発光素子は、第1の有機発光素子の有機電子輸送層に含まれる
有機多核金属錯化合物を、4,4,8,8−テトラキス(1H−ピラゾールー1−イル)ピラザボールで構成するとしたものである。
【0021】
第4の有機発光素子は、順次陽電極、有機発光層、有機電子輸送層および陰電極からなる有機発光素子であることを特徴とする。
【0022】
第5の有機発光素子は、第4の有機発光素子の有機電子輸送層に含まれる有機多核金属錯化合物を、4,4,8,8−テトラキス(1H−ピラゾールー1−イル)ピラザボールで構成するとしたものである。
【0031】
【発明の実施の形態】
以下本発明の実施の形態について説明する。
【0032】
本願発明記載の電子不足化合物とは、原子価軌道数に比べ価電子数が少なく、オクテット則に従わない化合物である。我々が検討を行った結果、請求項1の一般式(化1)のように、三中心二電子結合を有する電子不足化合物である有機多核金属錯化合物が有機発光素子材料として適合していることを見出した。電子不足化合物を構成する元素としてはLi,Be,Mg,B,Alがよく知られている。これら化合物は、文字通り電子が不足していることから、電子を得ることによって安定化する。特に、請求項2〜6に記載したとおり、アニオンラジカルを形成することにより電子を伝達する電子輸送層として、熱的、膜質的に優れた性質を保有している。有用な化合物例としては以下のものがある。
A−1 ピラザボール
A−2 1,3,5,7−テトラメチルピラザボール
A−3 4,4,8,8−テトラエチルピラザボール
A−4 4,4,8,8−テトラキス(1H―ピラゾールー1−イル)ピラザボール
一般式(化1)に表される化合物の内、A−1〜4をはじめとするピラザボール構造からなる有機多核金属錯化合物は、溶液中あるいは薄膜状態で400nm〜420nmの紫色発光を有する。これは、バンドギャップが広い事を意味しており、またイオン化ポテンシャルが大きい。同時に、前述の通り優れた電子輸送能を持つことから、有機電子輸送層として用いた場合、エネルギーはより低い方へ移動、すなわち紫色よりも長波長側の発光色が可能になる。
【0033】
有機多核金属錯体からなる薄膜は非常に安定で、PBD薄膜のように結晶化することはなく、大気中に放置していても結晶化は見られない。従って、素子構成もSH−A型、DH型のみならず、陽極側の層にホール輸送性発光層あるいはエキサイプレックスからなる発光サイトを置くことにより、請求項5、6あるいは11に記したように、安定なSH−B型素子構成を実現することができる。
【0034】
本願請求項7〜12は有機発光素子の主要部である有機発光層に関するものである。有機発光層中で形成されるエキサイプレックスとは、異種の有機分子の組合せからなる励起錯体によって実現される。
【0035】
この場合、どちらの有機分子も、通常のドーパントのように、それ自体に必要な発光色を求められないので、エネルギー移動に必要なスペクトルの重なりや、パイ電子系の拡がりによる相互作用あるいは濃度消光等のおそれがない。
【0036】
例えば、特開平10−159076号公報において、電子輸送層中のドーパントがホール輸送材料との相互作用により本来のドーパントの発光色から波長シフトしてしまうため、電子輸送層とホール輸送層との間にブロッキング層を設けているが、本発明では、このようなプロセスの煩雑さを必要とせず、発光層内において全く異種の分子を形成し、その励起錯体からの発光を得ることができる。
【0037】
すなわち、個々には蛍光強度が弱い性質の有機分子であっても、エキサイプレックスの形成が新たな電子状態を生じ、強い蛍光発光を実現することも可能である。
【0038】
また、エキサイプレックスの形成は、分子全体が相互作用を及ぼし合う場合だけでなく、分子の一部が電子受容性あるいは電子供与性等の性質を持つことにより相互作用を及ぼし合って形成される場合もある。
【0039】
従って、その組合せを見出すことにより、高輝度発光でかつさまざまな色調を容易に得ることができる。
【0040】
有機発光層に含まれる有機分子の内、少なくとも一種は有機金属錯化合物であることが好ましい。さらにはピラザボール構造を有することが好ましく、特には4,4,8,8−テトラキス(1H−ピラゾールー1−イル)ピラザボールが好ましい。2,4−ビス(5,6−ジフェニルー1,2,4−トリアジンー3−イル)ピリジン、3−(2−ピリジル)−5,6−ジフェニルー1,2,4−トリアジン、5,6−ジー2−フリルー3−(2−ピリジル)―1,2,4−トリアジン、3−(4−ビフェニリル)4−フェニルー5−(4−tert−ブチルフェニル)1,2,4−トリアゾール等の複素芳香環を有する有機分子は、単独では溶液中あるいは蒸着膜において青色領域の微弱な蛍光を発しながら、上記ピラザボール構造を有する有機分子との組み合わせにおいて、エキサイプレックスを形成し、橙〜赤色領域の高輝度発光を可能にする。
【0041】
本願請求項10の要部は、A−1〜4に代表される有機ホウ素錯化合物が芳香族置換アミン誘導体と共に有機発光層を形成することにある。芳香族置換アミン誘導体として、下記一般式(化3)及び(化4)が挙げられる。
【0042】
【化3】
Figure 0003575335
【0043】
(nは1〜6の整数。R1,R2,R3はベンゼン、ナフタレン、アントラセン、フェナントレンのいずれかで同一でも異なっていてもよい。またそれぞれアルキル基、アミノ基フェニル基で置換されていてもよい)。
【0044】
【化4】
Figure 0003575335
【0045】
(R1,R2,R3のうち少なくとも1つはスチリル、フェニルスチリル、ナフチルスチリルからなり、それぞれ、アルキル基、アミノ基、フェニル基で置換されていてもよい。また、上記以外のR1,R2,R3を構成するものとしては、アルキル基、アミノ基、フェニル基、アルキル置換ベンゼン、アミノ置換ベンゼンのいずれかが挙げられる)。
【0046】
(化3)の具体的な例としては、N,N‘−ジフェニル−N.N’−ビス(3−メチルフェニル)−1,1‘−ビフェニル−4,4’−ジアミン、N,N‘−ジフェニル−N.N’−ビナフチル−1,1‘−ビフェニル−4,4’−ジアミン、N,N′−ビス(4′−ジフェニルアミノ−4−ビフェニリル)−N,N′−ジフェニルベンジジン等が挙げられる。
【0047】
(化4)の具体的な例としては、4−N,N‘―ジフェニルアミノーα―フェニルスチルベン、4−N,N‘―ビス(p−メチルフェニル)アミノーα―フェニルスチルベン、4−N,N‘―ジフェニルアミノーα―ナフチルスチルベン、4,4’−ビス(α―フェニルスチリル)トリフェニルアミン、4,4’,4‘’−トリ(α―フェニルスチリル)トリフェニルアミン、4,4’−ビス(3―メチルフェニルスチリル)トリフェニルアミン、4,4’−ビス(2,4―ジメチルフェニルスチリル)トリフェニルアミン、4,4’−ビス(α―ビフェニルスチリル)トリフェニルアミン等が挙げられる。
【0048】
これらの化合物は、溶液中あるいは薄膜状態で発光極大波長430nm〜490nmの青色発光を有する。有機ホウ素錯化合物と芳香族置換アミン誘導体との混合割合としては、芳香族置換アミン誘導体が1〜50wt%で含まれることが好ましい。
【0049】
本願請求項11の要部は、A−1〜4に代表される有機ホウ素錯化合物がピレン誘導体と共に有機発光層を形成することにある。ピレン誘導体の具体的な例としては、ピレン、1−ピレンメチルアミン、フェニルスチリルピレン、N−(1−ピレニル)マレイミド等が挙げられる。
【0050】
ピレン誘導体は、溶液中あるいは薄膜状態で発光極大波長500nm付近の青みがかった緑色発光を有するが、有機ホウ素錯化合物と共存した場合、ピレン誘導体の発光色は観察されない。
【0051】
むしろ有機ホウ素錯体に励起錯体を形成せしめ、発光極大波長460nm付近の青色発光を呈することが明らかになった。
【0052】
さらに、発光効率は極めて高く、有機ホウ素錯化合物単独で発光層を形成したときの10倍にも及ぶ。ピレン誘導体についても従来のドーピング法では適したホスト材料がないために、発光材料としての性能を十分に引き出すことができなかった。
【0053】
本発明では、有機ホウ素錯化合物とピレン誘導体の組み合わせを見出したことにより、エキサイプレックスからの発光を得るに至った。有機ホウ素錯化合物とピレン誘導体との混合割合としては、ピレン誘導体が1〜50wt%で含まれることが好ましい。
【0054】
有機電子輸送層の膜厚は、10〜1000nmとすることが好ましい。
【0055】
有機発光層の膜厚は、色素が発光するに十分な膜厚があればよく、1〜100nmが好ましく、さらには5〜50nmが好ましい。
【0056】
次に、本発明におけるホール輸送層であるが、構成材料としてはトリフェニルアミンを基本骨格として持つ誘導体が好ましい。
【0057】
例えば、特開平7−126615号公報記載のテトラフェニルベンジジン化合物、トリフェニルアミン3量体、ベンジジン2量体が挙げられる。
【0058】
また、特開平8−48656号公報記載の種々のトリフェニルジアミン誘導体、あるいは特開平7−65958号公報記載のMTPD(通称TPD)でもよい。特には、特願平9−341238号記載のトリフェニルアミン4量体が好ましい。
【0059】
上述の有機発光層、電子輸送層、ホール輸送層の各有機層については、アモルファス状態の均質な膜を形成することが望ましく、真空蒸着法による成膜が好ましい。
【0060】
さらに、真空中で連続して各層を形成することにより、各層間の界面に不純物が付着するのを防ぐことによって、動作電圧の低下、高効率化、長寿命化といった特性の改善を図ることができる。
【0061】
また、これら各層を真空蒸着法により形成するにあたり、一層に複数の化合物を含有させる場合、化合物を入れた各ボートを個別に温度制御して共蒸着することが好ましいが、あらかじめ混合したものを蒸着しても良い。
【0062】
さらにこの他の成膜方法として、溶液塗布法、ラングミュア・ブロジェット(LB)法などを用いることもできる。溶液塗布法ではポリマー等のマトリクス物質中に各化合物を分散させる構成としても良い。
【0063】
有機発光素子は、少なくとも一方の電極を透明ないし半透明にすることにより、面発光を取り出すことが可能となる。通常、正孔注入電極としての陽極にはITO(インジウム錫酸化物)膜を用いることが多い。
【0064】
他に、酸化錫、Ni,Au,Pt,Pd等が挙げられる。
【0065】
ITO膜はその透明性を向上させ、あるいは抵抗率を低下させる目的で、スパッタ、エレクトロンビーム蒸着、イオンプレーティング等の成膜方法が採用されている。また、膜厚は必要とされるシート抵抗値と可視光透過率から決定されるが、有機発光素子では比較的駆動電流密度が高いため、シート抵抗値を小さくするため100nm以上の厚さで用いられることが多い。
【0066】
電子注入電極としての陰極には、Tangらの提案したMgAg合金あるいはAlLi合金など、仕事関数が低く電子注入障壁の低い金属と、比較的仕事関数が大きく安定な金属との合金が用いられることが多い。
【0067】
また、仕事関数の低い金属を有機層側に成膜し、この低仕事関数金属を保護する目的で、仕事関数の大きな金属を厚く積層してもよく、Li/Al、LiF/Alのような積層電極を用いることができる。これら陰極の形成には蒸着法やスパッタ法が好ましい。
【0068】
基板は、上述した薄膜を積層した有機発光素子を担持できるものであれば良く、また、有機層内で生じた発光を取り出せるように透明ないし半透明の材料であれば良く、コーニング1737等のガラス、あるいはポリエステルその他の樹脂フィルム等を用いる。
【0069】
次に具体的な実施例に基づいてさらに詳細に説明する。
【0070】
(実施例1)
ITOを成膜したガラス基板上に、N,N′−ビス(4′−ジフェニルアミノ−4−ビフェニリル)−N,N′−ジフェニルベンジジンからなる50nmの膜厚のホール輸送層を形成する。
【0071】
引き続き有機発光層としてAlqを20nm蒸着した後、有機電子輸送層としてA−4を40nm蒸着した。最後にAlLi合金からなる陰電極を形成した。
【0072】
この素子に直流電圧を印可して評価したところ、発光極大波長520nmのAlqからの緑色発光が得られた。効率は4.0cd/Aで、安定に光り続けた。
【0073】
A−4の代わりにA−1〜3を用いた場合も同様の結果を得た。
【0074】
(実施例2)
ITOを成膜したガラス基板上に、N,N′−ビス(4′−ジフェニルアミノ−4−ビフェニリル)−N,N′−ジフェニルベンジジンからなる50nmの膜厚のホール輸送層を形成する。
【0075】
引き続き有機電子輸送層としてA−4を40nm蒸着した。最後にAlLi合金からなる陰電極を形成した。
【0076】
この素子に直流電圧を印可して評価したところ、発光極大波長420nmのA―4からの青紫色発光が得られた。効率は、視感度が低いため0.5cd/Aであった。A−4の代わりにA−1〜3を用いた場合も同様の結果を得た。
【0077】
(実施例3)
ITOを成膜したガラス基板上に、A−2と10wt%のフェニルスチリルピレンからなる有機発光層を50nm形成し、引き続きA−4からなる有機電子輸送層を50nm蒸着した。最後にAlLi合金からなる陰電極を形成した。この素子に直流電圧を印可して評価したところ、発光極大波長470nmの青緑色発光が得られた。効率は2.0cd/Aで、安定に光り続けた。
【0078】
(実施例4)
ITOを成膜したガラス基板上に、N,N′−ビス(4′−ジフェニルアミノ−4−ビフェニリル)−N,N′−ジフェニルベンジジンからなる50nmの膜厚のホール輸送層を形成する。
【0079】
引き続き有機発光層としてA−4と20wt%の4−N,N‘―ビス(p−メチルフェニル)アミノーα―フェニルスチルベンからなる共蒸着膜を50nm蒸着した。
【0080】
最後にAlLi合金からなる陰電極を形成した。この素子に直流電圧を印可して評価したところ、発光極大波長460nmの青色発光が得られた。効率は、2.8cd/Aで、安定に光り続けた。
【0081】
(実施例5)
実施例4の有機発光層の形成において、20wt%の4−N,N‘―ビス(p−メチルフェニル)アミノーα―フェニルスチルベンの代わりに、20wt%の4,4’−ビス(α―フェニルスチリル)トリフェニルアミンを用いた以外は実施例4と同様にして有機発光素子を作製した。この素子に直流電圧を印可して評価したところ、有機発光層からの発光である発光極大波長460nmの青色発光が得られた。効率は、3.4cd/Aで、安定に光り続けた。
【0082】
(実施例6)
実施例4の有機発光層の形成において、20wt%の4−N,N‘―ビス(p−メチルフェニル)アミノーα―フェニルスチルベンの代わりに、20wt%のフェニルスチリルピレンを用いた以外は実施例4と同様にして有機発光素子を作製した。この素子に直流電圧を印可して評価したところ、有機発光層からの発光である発光極大波長480nmの水色発光が得られた。効率は、5.2cd/Aで、安定に光り続けた。
【0083】
(比較例1)
ITOを成膜したガラス基板上に、N,N′−ビス(4′−ジフェニルアミノ−4−ビフェニリル)−N,N′−ジフェニルベンジジンからなる50nmの膜厚のホール輸送層を形成する。
【0084】
引き続き有機電子輸送層としてAlqを50nm蒸着した。最後にAlLi合金からなる陰電極を形成した。この素子に直流電圧を印可して評価したところ、発光極大波長520nmのAlqからの緑色発光が得られた。効率は3.3cd/Aであった。
【0085】
(比較例2)
比較例1の有機電子輸送層の形成において、Alqの代わりにPBDを用いた以外は比較例1と同様にして有機発光素子を作製した。この素子に直流電圧を印可して評価したところ、発光極大波長460nmのTPDからの青色発光が得られた。効率は0.8cd/Aで、約1時間後には殆ど光らなくなった。
【0086】
【発明の効果】
以上のように本発明は、電子不足化合物からなる有機多核金属錯化合物を新規電子輸送材料として提案し適用することで、安定な有機発光素子を実現できる。さらに、エキサイプレックスの形成により、様々な発光色を可能にし、同時に高輝度発光も実現することができる。
【図面の簡単な説明】
【図1】SH−A型有機発光素子の断面図
【図2】SH−B型有機発光素子の断面図
【図3】DH型有機発光素子の断面図
【符号の説明】
1 陽極
2 ホール輸送層
3 有機発光層
4 電子輸送層
5 陰極[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a display element used as a light emitting display, a backlight for a liquid crystal display, and the like.
[0002]
[Prior art]
Electroluminescence (EL) panels have features of high visibility, excellent display capability, and high-speed response. In recent years, reports have been made on organic light-emitting devices using an organic compound as a constituent material (for example, a related paper Applied Physics Letters, Vol. 51, p. 913, 1987 (Applied Physics Letters, 51, 1987, P. 913.)). ). This report describes an organic light emitting device having a structure in which an organic light emitting layer and a charge transport layer are laminated.
[0003]
The organic light emitting device is divided into three types of laminated structures shown in FIGS. 1 are generally referred to as SH-A type, FIG. 2 is referred to as SH-B type, and FIG. 3 is referred to as DH type.
[0004]
The report by Tang et al. Has a configuration called SH-A type in FIG. As a light-emitting material, a tris (8-quinolinol) aluminum complex (hereinafter, Alq) is used, which is an excellent light-emitting substance having both high luminous efficiency and electron transport.
[0005]
Also, Journal of Applied Physics, Vol. 65, p. 36, 1989 (Journal of Applied Physics, 65, 1989, p. 3610.) discloses a fluorescent dye such as coumarin derivative or DCM1 on Alq which forms an organic light emitting layer. A device doped with was prepared, and it was found that the emission color was changed by appropriate selection of the dye. Furthermore, it was clarified that the luminous efficiency was higher than that of the undoped one. In this case, the DH type shown in FIG. 3 can be realized by doping only the recombination region of carriers in addition to the SH-A type shown in FIG. 1 and separating the functions of light emission and electron transport.
[0006]
On the other hand, the SH-B type in FIG. 2 is an oxadiazole derivative represented by 2- (4-biphenylyl) -5- (4-t-butylphenyl) -1,3,4-oxadiazole (PBD) Is often used as an electron transport material. However, oxadiazole derivatives such as PBD easily cause crystallization and are not suitable for practical use.
[0007]
Therefore, research and development has been focused on the SH-A type shown in FIG. 1 or the DH shown in FIG. 3, and new device materials corresponding to the functions of electron transport, hole transport and fluorescence have been developed and studied. ing. In particular, a large number of materials having a basic skeleton of triphenylamine as a hole transporting organic molecule have been developed, and fluorescent pigments, laser dyes, and the like have been actively applied and modified for fluorescent organic molecules.
[0008]
[Problems to be solved by the invention]
However, on the other hand, the number of electron-transporting organic molecules is very small, and only electron-transporting luminescent materials such as Alq, Alq derivatives, and chelate metal complexes of beryllium benzoquinoline are mentioned. Therefore, there is a problem that there is very little room for material selection.
[0009]
In addition, these complexes have been developed based on the element structure of the SH-A type or the DH type, and the emission color of the complex is from green to yellow. Emission color cannot be obtained in principle.
[0010]
The organic light emitting layer is generally formed by doping the above fluorescent pigment or laser dye as a guest material. In the doping method, since the doping concentration and the luminous efficiency are in inverse proportion, the efficiency is high when the doping concentration is low, and the efficiency decreases due to the concentration quenching as the doping concentration increases. Usually, the optimum concentration is in the range of 0.1 to 1%, so it is difficult to control.
[0011]
Further, the magnitude of the overlap between the absorption spectrum of the fluorescent dye as a dopant and the emission spectrum of the host material is a deciding factor of the luminous efficiency. However, as described above, the choice of the electron transporting luminescent material that can be the host material is narrow, There arises a problem that the range for selecting the dopant becomes narrow.
[0012]
In addition, the doping method shifts the wavelength longer than the emission of the host material, so that there is a problem that light emission on the short wavelength side cannot be obtained.
[0013]
Further, red light emission is a problem particularly in the organic light emitting device. To obtain red color, a compound having a narrow energy gap is required, but such a compound has a large spread of the pi-electron system and requires further consideration to concentration quenching.
[0014]
[Means for Solving the Problems]
Therefore, we have provided a novel electron-transporting organic material, and have realized a stable organic light-emitting device by using the same. In addition, by extracting light emitted from the exciplex, a high-luminance and novel light-emitting color can be given, and an organic light-emitting layer having high reproducibility can be formed even in terms of process. .
[0015]
Specifically, the first organic light-emitting device has at least an organic light-emitting layer and an organic electron-transport layer between a positive electrode and a negative electrode, and at least the organic electron-transport layer has the following general formula (Formula 2) An organic light-emitting device material comprising an electron-deficient compound represented by the formula:
[0016]
Embedded image
Figure 0003575335
[0017]
(R1 and R2 are a bridging ligand having a nitrogen-containing aromatic ring or a nitrogen-containing aromatic ring derivative containing at least two nitrogen atoms or a bridging ligand having a halogen or an alkyl having 1 to 3 carbon atoms. R 3, R 4, R 5 and R 6 are each selected from hydrogen, alkyl, aryl, aryl derivatives and nitrogen-containing aromatic rings containing at least one nitrogen atom or nitrogen-containing aromatic ring derivatives. And M is the central metal).
[0019]
In the second organic light-emitting device, the organic polynuclear metal complex compound contained in the organic electron transport layer of the first organic light-emitting device has a pyraza-ball structure.
[0020]
The third organic light-emitting device is configured such that the organic polynuclear metal complex compound contained in the organic electron transport layer of the first organic light-emitting device is composed of 4,4,8,8-tetrakis (1H-pyrazol-1-yl) pyraza ball. It was done.
[0021]
The fourth organic light emitting device is characterized in that it is an organic light emitting element composed of sequentially positive electrode, an organic emission layer, an organic electron transport layer and the negative electrode.
[0022]
The fifth organic light-emitting device is configured such that the organic polynuclear metal complex compound contained in the organic electron transport layer of the fourth organic light-emitting device is composed of 4,4,8,8-tetrakis (1H-pyrazol-1-yl) pyraza ball. It was done.
[0031]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0032]
The electron-deficient compound described in the present invention is a compound that has a smaller number of valence electrons than the number of valence orbitals and does not follow the octet rule. As a result of our study, it has been found that an organic polynuclear metal complex compound, which is an electron-deficient compound having a three-center two-electron bond, is suitable as an organic light-emitting device material, as in the general formula (Chemical Formula 1) of claim 1. Was found. As elements constituting the electron-deficient compound, Li, Be, Mg, B, and Al are well known. These compounds are stabilized by gaining electrons because they are literally short of electrons. In particular, as described in claims 2 to 6, the electron transport layer that transmits electrons by forming anion radicals has excellent thermal and film properties. Examples of useful compounds include:
A-1 Pilaza ball A-2 1,3,5,7-Tetramethyl pyraza ball A-3 4,4,8,8-Tetraethyl pyraza ball A-4 4,4,8,8-Tetrakis (1H- Among the compounds represented by the general formula (Chemical Formula 1), an organic polynuclear metal complex compound having a pyrazaball structure, including A-1 to A-4, has a thickness of 400 nm to 420 nm in a solution or in a thin film state. It has purple emission. This means that the band gap is wide and the ionization potential is large. At the same time, since it has an excellent electron transporting ability as described above, when it is used as an organic electron transporting layer, the energy moves to a lower side, that is, a light emission color on a longer wavelength side than purple becomes possible.
[0033]
The thin film composed of the organic polynuclear metal complex is very stable, does not crystallize unlike the PBD thin film, and does not crystallize even when left in the air. Therefore, the device configuration is not limited to the SH-A type or the DH type, but a hole transporting light emitting layer or a light emitting site composed of an exciplex is disposed on the layer on the anode side. And a stable SH-B type device configuration can be realized.
[0034]
Claims 7 to 12 of the present application relate to an organic light emitting layer which is a main part of an organic light emitting device. The exciplex formed in the organic light emitting layer is realized by an exciplex formed of a combination of different organic molecules.
[0035]
In this case, neither organic molecule is required to emit light necessary for itself, unlike ordinary dopants, so that the overlapping of spectra necessary for energy transfer, the interaction due to the spread of the pi-electron system, or the concentration quenching are caused. There is no danger.
[0036]
For example, in JP-A-10-159076, the wavelength of the dopant in the electron transport layer shifts from the emission color of the original dopant due to the interaction with the hole transport material. Although a blocking layer is provided in the present invention, in the present invention, such a complicated process is not required, a completely different molecule is formed in the light emitting layer, and light emission from the exciplex can be obtained.
[0037]
That is, even if the organic molecules are individually weak in fluorescence intensity, the formation of an exciplex generates a new electronic state, and it is possible to realize strong fluorescence emission.
[0038]
Exciplexes are formed not only when the whole molecule interacts with each other, but also when a part of the molecule interacts with each other due to electron accepting or electron donating properties. There is also.
[0039]
Therefore, by finding the combination, high-luminance light emission and various color tones can be easily obtained.
[0040]
At least one of the organic molecules contained in the organic light emitting layer is preferably an organometallic complex compound. Further, it preferably has a pyrazaball structure, particularly preferably 4,4,8,8-tetrakis (1H-pyrazol-1-yl) pyrazorball. 2,4-bis (5,6-diphenyl-1,2,4-triazin-3-yl) pyridine, 3- (2-pyridyl) -5,6-diphenyl-1,2,4-triazine, 5,6-di Heteroaromatics such as 2-furyl 3- (2-pyridyl) -1,2,4-triazine, 3- (4-biphenylyl) 4-phenyl-5- (4-tert-butylphenyl) 1,2,4-triazole The organic molecule having a ring alone emits weak fluorescence in a blue region in a solution or in a vapor-deposited film, and forms an exciplex in combination with the organic molecule having a pyrazaball structure, and has a high luminance in an orange to red region. Enables light emission.
[0041]
The essential part of claim 10 of the present application is that an organic boron complex compound represented by A-1 to A-4 forms an organic light emitting layer together with an aromatic substituted amine derivative. The following general formulas (Chem. 3) and (Chem. 4) can be given as the aromatic substituted amine derivatives.
[0042]
Embedded image
Figure 0003575335
[0043]
(N is an integer of 1 to 6. R1, R2, and R3 may be the same or different among benzene, naphthalene, anthracene, and phenanthrene. Alternatively, each of R1, R2, and R3 may be substituted with an alkyl group or an amino group phenyl group. ).
[0044]
Embedded image
Figure 0003575335
[0045]
(At least one of R1, R2, and R3 comprises styryl, phenylstyryl, and naphthylstyryl, each of which may be substituted with an alkyl group, an amino group, or a phenyl group. Is an alkyl group, an amino group, a phenyl group, an alkyl-substituted benzene, or an amino-substituted benzene).
[0046]
Specific examples of (Chemical Formula 3) include N, N'-diphenyl-N. N'-bis (3-methylphenyl) -1,1'-biphenyl-4,4'-diamine, N, N'-diphenyl-N. N'-binaphthyl-1,1'-biphenyl-4,4'-diamine; N, N'-bis (4'-diphenylamino-4-biphenylyl) -N, N'-diphenylbenzidine;
[0047]
Specific examples of (Formula 4) include 4-N, N′-diphenylamino-α-phenylstilbene, 4-N, N′-bis (p-methylphenyl) amino-α-phenylstilbene, 4-N , N′-diphenylamino-α-naphthylstilbene, 4,4′-bis (α-phenylstyryl) triphenylamine, 4,4 ′, 4 ″ -tri (α-phenylstyryl) triphenylamine, 4, 4'-bis (3-methylphenylstyryl) triphenylamine, 4,4'-bis (2,4-dimethylphenylstyryl) triphenylamine, 4,4'-bis (α-biphenylstyryl) triphenylamine, etc. Is mentioned.
[0048]
These compounds emit blue light having a maximum emission wavelength of 430 nm to 490 nm in a solution or in a thin film state. The mixing ratio of the organic boron complex compound and the aromatic substituted amine derivative is preferably such that the aromatic substituted amine derivative is contained at 1 to 50% by weight.
[0049]
The essential part of claim 11 of the present application is that an organic boron complex compound represented by A-1 to A-4 forms an organic light emitting layer together with a pyrene derivative. Specific examples of the pyrene derivative include pyrene, 1-pyrenemethylamine, phenylstyrylpyrene, N- (1-pyrenyl) maleimide, and the like.
[0050]
The pyrene derivative has a bluish green emission near a maximum emission wavelength of 500 nm in a solution or in a thin film state, but when coexisting with an organic boron complex compound, the emission color of the pyrene derivative is not observed.
[0051]
Rather, it was clarified that an exciplex was formed in the organic boron complex, and the organic boron complex emitted blue light having a light emission maximum wavelength of about 460 nm.
[0052]
Further, the luminous efficiency is extremely high, which is 10 times as high as that when the luminescent layer is formed of the organic boron complex compound alone. As for the pyrene derivative, the performance as a light emitting material could not be sufficiently brought out because there was no suitable host material in the conventional doping method.
[0053]
In the present invention, the discovery of a combination of an organoboron complex compound and a pyrene derivative has led to emission from an exciplex. The mixing ratio of the organoboron complex compound and the pyrene derivative is preferably such that the pyrene derivative is contained at 1 to 50 wt%.
[0054]
The thickness of the organic electron transporting layer is preferably from 10 to 1000 nm.
[0055]
The thickness of the organic light emitting layer may be a thickness sufficient for the dye to emit light, and is preferably 1 to 100 nm, and more preferably 5 to 50 nm.
[0056]
Next, for the hole transport layer in the present invention, a derivative having triphenylamine as a basic skeleton is preferable as a constituent material.
[0057]
Examples thereof include a tetraphenylbenzidine compound, triphenylamine trimer and benzidine dimer described in JP-A-7-126615.
[0058]
Also, various triphenyldiamine derivatives described in JP-A-8-48656 or MTPD (commonly known as TPD) described in JP-A-7-65958 may be used. In particular, a triphenylamine tetramer described in Japanese Patent Application No. 9-341238 is preferred.
[0059]
It is desirable to form a homogeneous film in an amorphous state for each of the organic light emitting layer, the electron transport layer, and the hole transport layer, and it is preferable to form the film by a vacuum evaporation method.
[0060]
Furthermore, by forming each layer continuously in a vacuum, by preventing impurities from adhering to the interface between each layer, it is possible to improve characteristics such as lowering of operating voltage, higher efficiency, and longer life. it can.
[0061]
Further, when forming each of these layers by a vacuum deposition method, when a plurality of compounds are contained in one layer, it is preferable to individually co-deposit each boat containing the compounds by controlling the temperature individually, but it is preferable to deposit a mixture in advance. You may.
[0062]
Further, as other film forming methods, a solution coating method, a Langmuir-Blodgett (LB) method, or the like can be used. In the solution coating method, each compound may be dispersed in a matrix material such as a polymer.
[0063]
The organic light emitting element can emit surface light by making at least one electrode transparent or translucent. Usually, an ITO (indium tin oxide) film is often used for the anode as a hole injection electrode.
[0064]
Other examples include tin oxide, Ni, Au, Pt, and Pd.
[0065]
For the purpose of improving the transparency or reducing the resistivity of the ITO film, a film forming method such as sputtering, electron beam evaporation, or ion plating is employed. The film thickness is determined from the required sheet resistance value and visible light transmittance. However, since the driving current density of the organic light emitting element is relatively high, the organic light emitting element is used at a thickness of 100 nm or more to reduce the sheet resistance value. Is often done.
[0066]
For the cathode as the electron injection electrode, an alloy of a metal having a low work function and a low electron injection barrier, such as a MgAg alloy or an AlLi alloy proposed by Tang et al., And a metal having a relatively large work function and being stable may be used. Many.
[0067]
Further, a metal having a low work function may be formed on the organic layer side, and a metal having a large work function may be thickly laminated for the purpose of protecting the metal having a low work function, such as Li / Al or LiF / Al. Stacked electrodes can be used. For forming these cathodes, a vapor deposition method or a sputtering method is preferable.
[0068]
The substrate may be any as long as it can support the organic light-emitting element in which the above-described thin films are stacked, and may be a transparent or translucent material so as to extract light emitted in the organic layer. Or a polyester or other resin film.
[0069]
Next, a more detailed description will be given based on specific examples.
[0070]
(Example 1)
A 50 nm-thick hole transport layer made of N, N'-bis (4'-diphenylamino-4-biphenylyl) -N, N'-diphenylbenzidine is formed on a glass substrate on which ITO is formed.
[0071]
Subsequently, Alq was deposited as an organic light emitting layer by 20 nm, and then A-4 was deposited as an organic electron transporting layer by 40 nm. Finally, a negative electrode made of an AlLi alloy was formed.
[0072]
When a DC voltage was applied to the device for evaluation, green light emission from Alq having a maximum emission wavelength of 520 nm was obtained. The efficiency was 4.0 cd / A, and the light continued to glow stably.
[0073]
Similar results were obtained when A-1 to A-3 were used instead of A-4.
[0074]
(Example 2)
A 50 nm-thick hole transport layer made of N, N'-bis (4'-diphenylamino-4-biphenylyl) -N, N'-diphenylbenzidine is formed on a glass substrate on which ITO is formed.
[0075]
Subsequently, 40 nm of A-4 was deposited as an organic electron transporting layer. Finally, a negative electrode made of an AlLi alloy was formed.
[0076]
When a DC voltage was applied to the device for evaluation, blue-violet emission from A-4 having a maximum emission wavelength of 420 nm was obtained. The efficiency was 0.5 cd / A due to low visibility. Similar results were obtained when A-1 to A-3 were used instead of A-4.
[0077]
(Example 3)
An organic light emitting layer made of A-2 and 10 wt% of phenylstyrylpyrene was formed to a thickness of 50 nm on a glass substrate on which an ITO film was formed. Finally, a negative electrode made of an AlLi alloy was formed. When a DC voltage was applied to the device and evaluated, blue-green light emission having a maximum emission wavelength of 470 nm was obtained. The efficiency was 2.0 cd / A, and the light continued to glow stably.
[0078]
(Example 4)
A 50 nm-thick hole transport layer made of N, N'-bis (4'-diphenylamino-4-biphenylyl) -N, N'-diphenylbenzidine is formed on a glass substrate on which ITO is formed.
[0079]
Subsequently, a co-evaporation film of A-4 and 20 wt% of 4-N, N'-bis (p-methylphenyl) amino-α-phenylstilbene was deposited as an organic light emitting layer to a thickness of 50 nm.
[0080]
Finally, a negative electrode made of an AlLi alloy was formed. When a DC voltage was applied to the device for evaluation, blue light emission having a maximum emission wavelength of 460 nm was obtained. The efficiency was 2.8 cd / A, and it continued to glow stably.
[0081]
(Example 5)
In forming the organic light emitting layer of Example 4, 20 wt% of 4,4′-bis (α-phenyl) was used instead of 20 wt% of 4-N, N′-bis (p-methylphenyl) amino-α-phenylstilbene. An organic light-emitting device was produced in the same manner as in Example 4, except that styryl) triphenylamine was used. When a DC voltage was applied to this device and evaluated, blue light emission having a maximum emission wavelength of 460 nm, which was light emission from the organic light emitting layer, was obtained. The efficiency was 3.4 cd / A, and it continued to glow stably.
[0082]
(Example 6)
Example 4 Except that 20 wt% of phenylstyrylpyrene was used instead of 20 wt% of 4-N, N′-bis (p-methylphenyl) amino-α-phenylstilbene in forming the organic light emitting layer of Example 4. An organic light-emitting device was produced in the same manner as in No. 4. When a DC voltage was applied to the device and evaluated, light blue emission having a maximum emission wavelength of 480 nm, which was emission from the organic light emitting layer, was obtained. The efficiency was 5.2 cd / A, and it continued to glow stably.
[0083]
(Comparative Example 1)
A 50 nm-thick hole transport layer made of N, N'-bis (4'-diphenylamino-4-biphenylyl) -N, N'-diphenylbenzidine is formed on a glass substrate on which ITO is formed.
[0084]
Subsequently, 50 nm of Alq was deposited as an organic electron transporting layer. Finally, a negative electrode made of an AlLi alloy was formed. When a DC voltage was applied to the device for evaluation, green light emission from Alq having a maximum emission wavelength of 520 nm was obtained. The efficiency was 3.3 cd / A.
[0085]
(Comparative Example 2)
An organic light-emitting device was manufactured in the same manner as in Comparative Example 1, except that PBD was used instead of Alq in forming the organic electron transport layer of Comparative Example 1. When a DC voltage was applied to the device for evaluation, blue light emission from the TPD having a maximum emission wavelength of 460 nm was obtained. The efficiency was 0.8 cd / A, and almost no light was emitted after about 1 hour.
[0086]
【The invention's effect】
As described above, the present invention can realize a stable organic light emitting device by proposing and applying an organic polynuclear metal complex compound composed of an electron-deficient compound as a novel electron transport material. Furthermore, by forming the exciplex, various emission colors can be achieved, and high-luminance emission can be realized at the same time.
[Brief description of the drawings]
FIG. 1 is a sectional view of an SH-A type organic light emitting device. FIG. 2 is a sectional view of an SH-B type organic light emitting device. FIG. 3 is a sectional view of a DH type organic light emitting device.
DESCRIPTION OF SYMBOLS 1 Anode 2 Hole transport layer 3 Organic light emitting layer 4 Electron transport layer 5 Cathode

Claims (5)

陽電極および陰電極間に、少なくとも有機発光層、有機電子輸送層を有する有機発光素子において、少なくとも前記有機電子輸送層が、有機多核金属錯化合物からなる下記一般式(化1)で表される電子不足化合物を含むことを特徴とする有機発光素子。
Figure 0003575335
(R1及びR2は少なくとも2つの窒素原子を含む含窒素芳香環もしくは含窒素芳香環誘導体を有する架橋配位子あるいはハロゲン、炭素数1〜3のアルキルを有する架橋配位子であり、含窒素芳香環中の窒素を配位原子とする。R3,R4,R5およびR6はそれぞれ水素、アルキル、アリール、アリール誘導体及び少なくとも1つの窒素原子を含む含窒素芳香環もしくは含窒素芳香環誘導体から選ばれる1つであり、Mは中心金属)。
In an organic light emitting device having at least an organic light emitting layer and an organic electron transporting layer between a positive electrode and a negative electrode, at least the organic electron transporting layer is represented by the following general formula (Formula 1) comprising an organic polynuclear metal complex compound. An organic light emitting device comprising an electron deficient compound.
Figure 0003575335
(R1 and R2 are a bridging ligand having a nitrogen-containing aromatic ring or a nitrogen-containing aromatic ring derivative containing at least two nitrogen atoms or a bridging ligand having a halogen or an alkyl having 1 to 3 carbon atoms. R 3, R 4, R 5 and R 6 are each selected from hydrogen, alkyl, aryl, aryl derivatives and nitrogen-containing aromatic rings containing at least one nitrogen atom or nitrogen-containing aromatic ring derivatives. And M is the central metal).
前記有機電子輸送層に含まれる有機多核金属錯化合物が、ピラザボール構造を有することを特徴とする請求項1記載の有機発光素子。The organic light emitting device according to claim 1, wherein the organic polynuclear metal complex compound contained in the organic electron transport layer has a pyrazaball structure. 前記有機電子輸送層に含まれる有機多核金属錯化合物が、4,4,8,8−テトラキス(1H−ピラゾールー1−イル)ピラザボールであることを特徴とする請求項1記載の有機発光素子。2. The organic light emitting device according to claim 1, wherein the organic polynuclear metal complex compound contained in the organic electron transport layer is 4,4,8,8-tetrakis (1H-pyrazol-1-yl) pyraza ball. 順次陽電極、有機発光層、有機電子輸送層および陰電極からなる有機発光素子であることを特徴とする請求項1記載の有機発光素子。2. The organic light emitting device according to claim 1, wherein the organic light emitting device is an organic light emitting device comprising a positive electrode, an organic light emitting layer, an organic electron transporting layer, and a negative electrode. 前記有機電子輸送層に含まれる有機多核金属錯化合物が、4,4,8,8−テトラキス(1H−ピラゾールー1−イル)ピラザボールであることを特徴とする請求項4記載の有機発光素子。The organic light emitting device according to claim 4, wherein the organic polynuclear metal complex compound contained in the organic electron transport layer is 4,4,8,8-tetrakis (1H-pyrazol-1-yl) pyraza ball.
JP17498799A 1999-02-04 1999-06-22 Organic light emitting device Expired - Fee Related JP3575335B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP17498799A JP3575335B2 (en) 1999-06-22 1999-06-22 Organic light emitting device
US09/495,654 US6391482B1 (en) 1999-02-04 2000-02-01 Organic material for electroluminescent device and electroluminescent device using the same
EP00102058A EP1026222B1 (en) 1999-02-04 2000-02-02 Organic material for electroluminescent device and electroluminescent device using the same
DE60000455T DE60000455T2 (en) 1999-02-04 2000-02-02 Organic material for electroluminescent device and electroluminescent device
KR10-2000-0005505A KR100360204B1 (en) 1999-02-04 2000-02-03 Organic Material For Electro-luminescent Device And Electro-luminescent Device Using The Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17498799A JP3575335B2 (en) 1999-06-22 1999-06-22 Organic light emitting device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003362513A Division JP3848646B2 (en) 2003-10-22 2003-10-22 Organic light emitting device

Publications (2)

Publication Number Publication Date
JP2001003044A JP2001003044A (en) 2001-01-09
JP3575335B2 true JP3575335B2 (en) 2004-10-13

Family

ID=15988245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17498799A Expired - Fee Related JP3575335B2 (en) 1999-02-04 1999-06-22 Organic light emitting device

Country Status (1)

Country Link
JP (1) JP3575335B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3450304B2 (en) * 2000-01-13 2003-09-22 松下電器産業株式会社 Electrode body, thin-film EL element provided therewith and method of manufacturing the same, and display device and lighting device provided with thin-film EL element
KR100759879B1 (en) * 2000-01-13 2007-09-18 마쯔시다덴기산교 가부시키가이샤 Electrode body, thin-film el device comprising the same, method for manufacturing the same, and display and illuminator comprising the thin-film el device
WO2002033021A1 (en) * 2000-10-17 2002-04-25 Matsushita Electric Industrial Co., Ltd. Luminescent material, luminescent element, and device
KR100424090B1 (en) * 2001-06-25 2004-03-22 삼성에스디아이 주식회사 A hole transport layer for electroluminescent device, an electrroluminescent device using the same, and the method thereof
JP3825344B2 (en) 2002-03-15 2006-09-27 富士写真フイルム株式会社 Organic EL element and organic EL display
KR101793880B1 (en) 2011-02-16 2017-11-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element
KR20210145854A (en) 2011-03-23 2021-12-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element
KR20130079900A (en) * 2012-01-03 2013-07-11 현대모비스 주식회사 Restriction method and device of using it terminal while driving
WO2013157591A1 (en) 2012-04-20 2013-10-24 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic appliance, and lighting device
US8994013B2 (en) * 2012-05-18 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
TWI733065B (en) * 2012-08-03 2021-07-11 日商半導體能源研究所股份有限公司 Light-emitting element, light-emitting device, display device, electronic appliance, and lighting device

Also Published As

Publication number Publication date
JP2001003044A (en) 2001-01-09

Similar Documents

Publication Publication Date Title
US7736758B2 (en) Light emitting device having dopants in a light emitting layer
KR100360204B1 (en) Organic Material For Electro-luminescent Device And Electro-luminescent Device Using The Same
JP3924648B2 (en) Organic electroluminescence device
US5779937A (en) Organic electroluminescent device
JP4195130B2 (en) Organic electroluminescent device
JPH0785972A (en) Organic el element
JPH0878163A (en) Organic electroluminescent element and its manufacture
JP2006303527A (en) Highly transparent non-metallic cathode
JP3575335B2 (en) Organic light emitting device
JP2010507224A (en) Cathode coating
JP2002367786A (en) Luminous element
JPH10284252A (en) Organic el element
JP3848646B2 (en) Organic light emitting device
JPH05320634A (en) Organic electroluminescent element
JP2002069427A (en) Exciton forming substance; luminescent material, luminescent method, and luminescent element using the same; and device using luminescent element
JP2002134274A (en) Light emitting device
KR100611850B1 (en) Phosphorescent iridium complex and organic electroluminescent device comprising same
JPH11307255A (en) Organic electroluminecence element
JP4214482B2 (en) Organic electroluminescence device
JP2002367785A (en) Luminous element
JPH11339966A (en) Organic luminescent element
KR100354861B1 (en) Organic electroluminescent device
KR19990078127A (en) Organic Electroluminescence Material and Device Using the Same
JP4798138B2 (en) Light emitting element
JP2000208273A (en) Light emitting element

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040628

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070716

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees