JPH04126285A - Seal and production thereof - Google Patents
Seal and production thereofInfo
- Publication number
- JPH04126285A JPH04126285A JP2103826A JP10382690A JPH04126285A JP H04126285 A JPH04126285 A JP H04126285A JP 2103826 A JP2103826 A JP 2103826A JP 10382690 A JP10382690 A JP 10382690A JP H04126285 A JPH04126285 A JP H04126285A
- Authority
- JP
- Japan
- Prior art keywords
- silicon carbide
- seal
- sintered body
- carbide powder
- stamp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims abstract description 73
- 238000005245 sintering Methods 0.000 claims abstract description 31
- 229910010271 silicon carbide Inorganic materials 0.000 claims abstract description 29
- 239000000463 material Substances 0.000 claims abstract description 28
- 238000000034 method Methods 0.000 claims abstract description 25
- 239000002245 particle Substances 0.000 claims abstract description 25
- -1 silane compound Chemical class 0.000 claims abstract description 12
- 238000013001 point bending Methods 0.000 claims abstract description 9
- 238000010438 heat treatment Methods 0.000 claims abstract description 8
- 230000001590 oxidative effect Effects 0.000 claims abstract description 7
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 6
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 6
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 6
- 239000000203 mixture Substances 0.000 claims abstract description 6
- 229910000077 silane Inorganic materials 0.000 claims abstract description 6
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 6
- 239000010703 silicon Substances 0.000 claims abstract description 6
- 238000006243 chemical reaction Methods 0.000 claims abstract description 5
- 238000010574 gas phase reaction Methods 0.000 claims abstract description 5
- 239000002994 raw material Substances 0.000 claims description 18
- 238000002156 mixing Methods 0.000 claims description 7
- 238000009760 electrical discharge machining Methods 0.000 claims description 6
- 238000003754 machining Methods 0.000 abstract description 10
- 230000007797 corrosion Effects 0.000 abstract description 6
- 238000005260 corrosion Methods 0.000 abstract description 6
- 238000007789 sealing Methods 0.000 abstract 2
- 239000000919 ceramic Substances 0.000 description 16
- 239000007789 gas Substances 0.000 description 9
- 239000000843 powder Substances 0.000 description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 4
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000012808 vapor phase Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 235000004415 Burchellia bubalina Nutrition 0.000 description 2
- 240000008537 Burchellia bubalina Species 0.000 description 2
- 241000208195 Buxaceae Species 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000012237 artificial material Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 1
- 238000000815 Acheson method Methods 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 208000006877 Insect Bites and Stings Diseases 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000001513 hot isostatic pressing Methods 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 239000002932 luster Substances 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000005049 silicon tetrachloride Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Landscapes
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
- Ceramic Products (AREA)
Abstract
Description
【発明の詳細な説明】
「産業上の利用分野」
本発明は、導電性を有する炭化珪素焼結体からなる印鑑
とその製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a seal made of a conductive silicon carbide sintered body and a method for manufacturing the same.
「従来の技術およびその課題」
従来印鑑の素材としては、象牙、水牛の角、水晶、つげ
等、非常に貴重な天然資源が使用されている。しかし、
近年では天然資源保護の要求が高まっており、例えば代
表的な素材である象牙については自然保護の立場より輸
入禁止となっている。"Conventional Technology and Its Problems" Conventional seals are made from extremely valuable natural resources such as ivory, buffalo horn, crystal, and boxwood. but,
In recent years, demands for the protection of natural resources have increased, and for example, the import of ivory, a typical material, is prohibited from the standpoint of nature protection.
したがって、これら天然資源製の印鑑から人工的な素材
からなる印鑑への転換が望まれており、これに伴って天
然資源材料の代替となる人工材料が強く求められている
。Therefore, there is a desire to switch from these seals made from natural resources to seals made from artificial materials, and along with this, there is a strong demand for artificial materials that can substitute for natural resource materials.
また、象牙、水牛の角、水晶、つげ等の天然資源材料は
強度的に弱く、したがってこれら材料からなる印鑑は落
下による破損や火災等による焼損、さらには長時間高温
中で保管された場合の変質や変形、虫食い等により、印
鑑としての機能を果たさなくなってしまうことがある。In addition, natural resource materials such as ivory, buffalo horn, crystal, and boxwood are weak in strength, so seals made of these materials may be damaged by falling, burned out by fire, or even stored at high temperatures for long periods of time. Due to deterioration, deformation, insect damage, etc., it may no longer function as a seal.
このような背景のもとに、以前より印鑑の素材として、
豊富な原料をもとに人工的に造ることができ、しかも軽
量で強く、腐食、変質、焼損等の心配がないといった優
れた特長を有するセラミックスの利用が考えられ、提案
されている(特開昭60−131861号)、(特開昭
62−212257号)。Against this background, it has been used as a material for seals for some time.
The use of ceramics, which can be artificially produced from abundant raw materials and has excellent features such as being lightweight, strong, and free from corrosion, deterioration, and burnout, has been considered and proposed (Unexamined Japanese Patent Publication No. No. 60-131861), (Japanese Patent Application Laid-Open No. 62-212257).
ところが、セラミックスは難加工性の材料であるため、
研削・加工性が悪いという課題を有している。そこで、
印形部を刻設するにあたりこの課題を解決するため、例
えば前記特開昭60−131861号では、焼結前のセ
ラミックス成形体に切削加工を施し、その後焼結、仕上
加工をするといった方法が、また前記特開昭62−21
2257号では、セラミックス成形体を焼結温度より低
い温度で仮焼し、切削加工を施した後に焼結するといっ
た方法がとられている。しかしながら、これらの方法で
は加工対象である成形体や仮焼体の強度が不十分である
ことにより、欠けが発生し易いなどの理由によって細部
の精密な加工が困難である。また、加工後本焼結を行う
ため、焼結時におけるセラミックスの収縮の影響が避け
られない。However, since ceramics are difficult-to-process materials,
It has the problem of poor grinding and workability. Therefore,
In order to solve this problem when engraving a stamp part, for example, in the above-mentioned Japanese Patent Application Laid-Open No. 60-131861, a method is proposed in which a ceramic molded body is cut before sintering, and then sintered and finished. , and the above-mentioned Japanese Patent Application Laid-Open No. 62-21
No. 2257 employs a method in which a ceramic molded body is calcined at a temperature lower than the sintering temperature, subjected to cutting, and then sintered. However, in these methods, it is difficult to process fine details because the strength of the molded body or calcined body to be processed is insufficient, and chipping is likely to occur. Furthermore, since main sintering is performed after processing, the influence of shrinkage of the ceramic during sintering cannot be avoided.
そして、印鑑の命である印形部の文字等のデザインがそ
の各所によって収縮率が異なることから、前記本焼結時
における収縮によって文字等のバランスなどが狂い、印
形部が所望する形状に精度よく維持されないといった不
満があり、場合によっては本焼結後再度切削などの加工
を要するといつた不都合がある。Since the shrinkage rate of the design of the characters, etc. on the stamp part, which is the life of the seal, differs depending on the part, the shrinkage during the main sintering process may cause the characters, etc. to become unbalanced, and the stamp part will not be able to form the desired shape. There are complaints that precision cannot be maintained, and in some cases, machining such as cutting is required again after main sintering.
また、このようにして得られた印鑑にあっては、落下等
の不測の事故によってその印字部を破損させてしまった
場合、前述したように印形部の加工が本焼結前に行われ
るため、焼結体である印形部が破損してしまった印鑑を
再加工することができず、よって印鑑としての寿命が短
いといった不満がある。In addition, if the stamp obtained in this way is damaged due to an unexpected accident such as falling, the stamp section must be processed as described above before main sintering. Therefore, it is impossible to reprocess a stamp whose stamp part, which is a sintered body, has been damaged, and there is a dissatisfaction that the life of the stamp is short.
本発明はこのような技術的背景に鑑みてなされたもので
、軽量で十分な強度を有し、しかも腐食、変質、焼損等
にも強いといった性質を有するのはもちろん、焼結後に
印形部の加工を行うようにした印鑑とその製造方法を提
供することを目的とするものである。The present invention was made in view of this technical background, and is lightweight, has sufficient strength, and is resistant to corrosion, deterioration, burnout, etc. The object of the present invention is to provide a seal that is processed by the above process and a method for manufacturing the same.
「課題前解決するための手段」
本発明における請求項1記載の印鑑では、焼結助剤無添
加で焼成されてなり、焼結体密度が3.Og/mm2以
上、室温での電気抵抗値が1Ω・C−以下、かつ室温時
の3点曲げの強度が50 、0 kg/ am”以上の
炭化珪素焼結体からなることを前記課題の解決手段とし
た。"Means for Solving the Problem" The seal stamp according to claim 1 of the present invention is fired without adding a sintering aid, and has a sintered body density of 3. The above-mentioned problem is solved by being made of a silicon carbide sintered body having an electrical resistance of 0 g/mm2 or more, an electrical resistance value of 1 Ω・C- or less at room temperature, and a three-point bending strength of 50,0 kg/am” or more at room temperature. It was used as a means.
また、請求項2記載の印鑑の製造方法では、平均粒子径
が0.1〜10μmの第1の炭化珪素粉末に、非酸化性
雰囲気のプラズマ中にシラン化合物、又はハロゲン化珪
素と炭化水素からなる原料ガスを導入し、反応系の圧力
を1気圧未満から0.1torrの範囲で制御しつつ気
相反応させることによって合成された平均粒子径が0.
1μ肩以下の第2の炭化珪素粉末を0.5fl置%以上
混合し、これを加熱、焼結することによって炭化珪素焼
結体を得、この焼結体に印形部設けて印鑑にすることを
前記課題の解決手段とした。In the method for producing a seal stamp according to claim 2, the first silicon carbide powder having an average particle size of 0.1 to 10 μm is mixed with a silane compound or a silicon halide and a hydrocarbon in plasma in a non-oxidizing atmosphere. The average particle diameter synthesized by introducing a source gas of
A silicon carbide sintered body is obtained by mixing 0.5 fl % or more of a second silicon carbide powder with a particle size of 1μ or less, heating and sintering this, and forming a stamp part on this sintered body to make a seal. This is the solution to the above problem.
請求項3記載の印鑑の製造方法では、非酸化性雰囲気の
プラズマ中にシラン化合物、又はハロゲン化珪素と炭化
水素からなる原料ガスを導入し、反応系の圧力を1気圧
未満から0 、1 torrの範囲で制御しつつ気相反
応させることによって合成された平均粒子径が0.1μ
m以下の炭化珪素粉末を加熱、焼結することによって炭
化珪素焼結体を得、この焼結体に印形部を設けて印鑑に
すること前記課題の解決手段とした。In the method for manufacturing a seal according to claim 3, a raw material gas consisting of a silane compound or a silicon halide and a hydrocarbon is introduced into plasma in a non-oxidizing atmosphere, and the pressure of the reaction system is increased from less than 1 atmosphere to 0.1 torr. The average particle diameter synthesized by controlling the gas phase reaction within the range of 0.1μ
A means for solving the above-mentioned problem is to obtain a silicon carbide sintered body by heating and sintering silicon carbide powder having a particle size of less than m, and to form a seal by providing a stamp part on this sintered body.
さらに請求項4記載の印鑑の製造方法では、前記焼結体
から得られる印鑑材の印形面を放電加工することにより
、印形部を刻設することを前記課題の解決手段とした。Furthermore, in the method for producing a seal stamp according to a fourth aspect of the present invention, a means for solving the above problem is to carve a stamp portion by electrical discharge machining the stamp surface of the stamp material obtained from the sintered body.
以下、本発明の詳細な説明する。The present invention will be explained in detail below.
第1図は本発明における請求項1記載の印鑑の一例を示
す図であって、第1図において符号lは印鑑である。こ
の印鑑1は、焼結助剤無添加で焼成されてなり、焼結体
密度が3 、0 g/ am’以上、室温での電気抵抗
値が1Ω・c1以下、かつ室温時の3点曲げの強度が5
0 、0 kg/ @11″100炭化珪素焼結体から
なる円柱状のものであって、その一方の端面に印形部2
を形成したものである。FIG. 1 is a diagram showing an example of a seal stamp according to claim 1 of the present invention, and in FIG. 1, reference numeral 1 indicates a seal stamp. This stamp 1 is fired without the addition of sintering aids, has a sintered body density of 3.0 g/am' or more, an electrical resistance value of 1 Ω・c1 or less at room temperature, and is 3-point bent at room temperature. The strength of
0,0 kg/@11″100 It is a cylindrical piece made of 100 silicon carbide sintered body, and has a stamped part 2 on one end surface.
was formed.
このような印鑑lを製造するには、まず、平均粒子径が
0.1〜10μ麓の第1の炭化珪素粉末と平均粒子径が
0.1μm以下の第2の炭化珪素粉末とを用意する。こ
こで、第1の炭化珪素粉末としては、一般に使用される
ものでよく、例えばシリカ還元法、アチソン法等の方法
によって製造されたものを用いることができる。炭化珪
素の結晶相としては、非晶質、α型、β型、あるいはこ
れらの混合相のいずれでもよい。また、この炭化珪素粉
末の平均粒子径としては、0.1−1μ鱈こするのが、
焼結性がよくなることから望ましい。To manufacture such a seal l, first, prepare a first silicon carbide powder with an average particle size of 0.1 to 10 μm and a second silicon carbide powder with an average particle size of 0.1 μm or less. . Here, the first silicon carbide powder may be one commonly used, and for example, one manufactured by a method such as a silica reduction method or an Acheson method can be used. The crystalline phase of silicon carbide may be amorphous, α-type, β-type, or a mixed phase thereof. In addition, the average particle diameter of this silicon carbide powder is 0.1-1μ.
This is desirable because it improves sinterability.
また、第2の炭化珪素粉末としては、非酸化性雰囲気の
プラズマ中にシラン化合物またはハロゲン化珪素と炭化
水素の原料ガスを導入し、反応系の圧力を1気圧未満か
らQ 、 l torrの範囲で制御しつつ気相反応さ
せることによって得られたものを使用する。例えば、モ
ノシランとメタンとからなる原料ガスを高周波により励
起されたアルゴンプラズマ中に導入して合成を行うと、
平均粒子径が0.02μ麓で、アスペクト比の小さいβ
型超微粉末が、また合成条件によってはα型とβ型との
混合相が得られる。In addition, as the second silicon carbide powder, a raw material gas of a silane compound or silicon halide and a hydrocarbon is introduced into plasma in a non-oxidizing atmosphere, and the pressure of the reaction system is set in a range from less than 1 atm to Q, l torr. The product obtained by controlling the gas phase reaction is used. For example, if a raw material gas consisting of monosilane and methane is introduced into an argon plasma excited by radio frequency and synthesized,
β with an average particle diameter of 0.02μ and a small aspect ratio
Depending on the synthesis conditions, a mixed phase of α-type and β-type can be obtained.
このようにして得られた超微粉末は焼結性が非常に優れ
ているため、上記第1の炭化珪素粉末と混合するのみで
、焼結助剤を添加することなく緻密質の炭化珪素焼結体
を得ることができるようになる。The ultrafine powder obtained in this way has very good sinterability, so it can be mixed with the first silicon carbide powder to produce dense silicon carbide sintered material without adding any sintering aid. You will be able to obtain a body.
次に、これらの粉末を用いて前記印鑑1の原料粉末を得
る。ここで原料粉末としては、第1の炭化珪素粉末と第
2の炭化珪素粉末とを混合してなる混合粉末を用いても
よく、また第2の炭化珪素粉末単独で用いてもよい。第
1の炭化珪素粉末と第2の炭化珪素粉末とを混合するに
あたっては、第2の炭化珪素粉末の配合量が0.5重量
%未満であると、この第2の炭化珪素粉末の特性である
優れた焼結性が得られず、また焼結体の緻密性が損なわ
れることなどから、これを配合したことによる効果が十
分に発揮されないので、配合量を0゜5重量%以上とし
なければならない。Next, raw material powder for the seal stamp 1 is obtained using these powders. Here, as the raw material powder, a mixed powder obtained by mixing the first silicon carbide powder and the second silicon carbide powder may be used, or the second silicon carbide powder may be used alone. When mixing the first silicon carbide powder and the second silicon carbide powder, if the blending amount of the second silicon carbide powder is less than 0.5% by weight, the characteristics of the second silicon carbide powder Since a certain excellent sinterability cannot be obtained and the density of the sintered body is impaired, the effect of blending it cannot be fully exhibited, so the blending amount must be 0.5% by weight or more. Must be.
次いで、上記混合粉末または第2の炭化珪素粉末を、印
鑑素材として所望する形状に成形し、得られた成形体を
1800℃〜2400℃の温度範囲で加熱し、さらに焼
結助剤無添加で焼結して炭化珪素を得る。炭化珪素粉末
の成形にあたっては、プレス成形法、押し出し成形法、
射出成形法などの従来から公知の方法を採用することが
できる。Next, the above-mentioned mixed powder or second silicon carbide powder is molded into a desired shape as a stamp material, and the obtained molded body is heated in a temperature range of 1800°C to 2400°C, and is further molded without the addition of a sintering aid. Sinter to obtain silicon carbide. When molding silicon carbide powder, press molding method, extrusion molding method,
Conventionally known methods such as injection molding can be used.
この場合、成形バインダーとしてはポリビニルアルコー
ルやポリビニルピロリドンなどを使用することができ、
必要に応じてステアリン酸塩などの分散剤を添加しても
よい。In this case, polyvinyl alcohol, polyvinylpyrrolidone, etc. can be used as the molding binder.
A dispersant such as stearate may be added if necessary.
また、焼結にあたっては、常圧焼結、雰囲気加圧焼結、
ホットプレス焼結、あるいは熱間静水圧焼結(HIP)
などの従来の方法が採用可能であるが、より高密度で導
電性に優れた炭化珪素を得るためには、ホットプレス等
の加圧焼結法を採用することが望ましい。焼結温度につ
いても特に限定されるものではないが、1800℃より
低い加熱温度では焼結不足が生じ、また2400℃より
高い加熱温度では炭化珪素の蒸発が起こり易(なり、粒
子の成長によって焼結体の強度や靭性が低下する恐れが
ある°ことから、1800℃〜2400℃の温度範囲で
焼結するのが好適とされる。In addition, for sintering, we use normal pressure sintering, atmospheric pressure sintering,
Hot press sintering or hot isostatic pressing (HIP)
Although conventional methods such as the above can be employed, in order to obtain silicon carbide with higher density and excellent conductivity, it is desirable to employ a pressure sintering method such as hot pressing. The sintering temperature is not particularly limited either, but heating temperatures lower than 1800°C will result in insufficient sintering, and heating temperatures higher than 2400°C will easily cause evaporation of silicon carbide (which may result in sintering due to particle growth). Since there is a possibility that the strength and toughness of the compact may decrease, it is preferable to sinter at a temperature range of 1800°C to 2400°C.
また、焼結時の雰囲気としては、真空雰囲気、不活性雰
囲気もしくは還元ガス雰囲気のいずれも採用可“能であ
る。Further, as the atmosphere during sintering, any of a vacuum atmosphere, an inert atmosphere, or a reducing gas atmosphere can be adopted.
このようにして得られた炭化珪素焼結体からなる印鑑素
材は、原料粉末がいずれの場合でも、耐食性、高強度等
の特性だけでなく、電気抵抗値がlΩ・cl以下の導電
性を有したものとなり、よって後述するような放電加工
が可能になる。また、この印鑑素材は、その焼結密度が
3− Og/ cgi”、3点曲げの強度が50 、0
kg/ as”以上となる。The seal material made of the silicon carbide sintered body obtained in this way has not only characteristics such as corrosion resistance and high strength, but also conductivity with an electrical resistance value of 1Ω・cl or less, regardless of the raw material powder. Therefore, electrical discharge machining as described later becomes possible. In addition, this stamp material has a sintered density of 3-Og/cgi" and a three-point bending strength of 50.0
kg/as” or more.
次いで、前記印鑑素材を円柱状に切りだし、さらに研削
、研磨加工することによって印鑑形状に仕上げる。Next, the stamp material is cut into a cylindrical shape, and further ground and polished to form a stamp shape.
その後、予め印形に対応させた電極を用い、印形部とな
る一方の端面に放電加工を施し、第1図に示した印形部
2を形成する。Thereafter, one end surface that will become the stamped portion is subjected to electric discharge machining using an electrode that has been previously matched to the stamped shape, thereby forming the stamped portion 2 shown in FIG. 1.
このようにして得られた印鑑1にあっては、炭化珪素焼
結体からなる素材自身が高耐食性、高強度を損なうこと
なく、電気抵抗値が19・ell以下と小さい導電性を
有するため、印形部2の加工を放電加工によって行うこ
とができる。そして、このように印形部2の加工が放電
加工によって行えるため、加工時において欠けの発生が
抑制され、しかも細部の精密な加工が容易になって印形
部2における文字等の形状や寸法精度が高まる。In the stamp 1 obtained in this way, the material itself made of silicon carbide sintered body has high corrosion resistance and high strength, and has low electrical conductivity with an electrical resistance value of 19・ell or less. The stamp portion 2 can be processed by electrical discharge machining. Since the stamping part 2 can be machined by electric discharge machining in this way, the occurrence of chipping during machining is suppressed, and precise machining of details is facilitated, so that the shape and size of letters etc. on the stamping part 2 can be improved. Increases accuracy.
また、原料粉末として用いる第2炭化珪素粉末の平均粒
子径が0.1μm以下と極めて微小であるため、これか
ら得られた焼結体はその強度が損なわれることな(、粒
界に微細なボアが存在するものとなり、よってこの焼結
体から得られた印鑑1は朱肉に対する濡れ性がよいもの
となる。In addition, since the average particle diameter of the second silicon carbide powder used as the raw material powder is extremely small at 0.1 μm or less, the strength of the sintered body obtained from it is not impaired (there are fine bores in the grain boundaries). Therefore, the stamp 1 obtained from this sintered body has good wettability to vermilion.
さらに、印鑑1の素材となる炭化珪素焼結体が、その焼
結密度が3 、0 g/ am’以上、3点曲げの強度
が50.0kg/−一!以上であるので、従来のものに
比べ落下等の不測の事故に起因して破損することが少な
くなる。Furthermore, the silicon carbide sintered body that is the material of the seal 1 has a sintered density of 3.0 g/am' or more and a three-point bending strength of 50.0 kg/-1! Because of the above, it is less likely to be damaged due to unforeseen accidents such as falling compared to conventional ones.
「実施例」 以下、実施例により本発明をさらに具体的に説明する。"Example" Hereinafter, the present invention will be explained in more detail with reference to Examples.
(実施−例1)
第1の炭化珪素粉末として平均粒子径が1.1μs、B
ET比表面積が1.7m”7gのβ型炭化珪素粉末を使
用した。次に、この第1炭化珪素粉末に、四塩化珪素と
ニレチンとを原料ガスとしてプラズマCVD法により気
相合成して得た平均粒子径0.01μ厘、比表面積96
m”7gの非晶質炭化珪素超微粉末(第2の炭化珪素粉
末)を5重量%添加し、これをメタノール中にて分散せ
しめ、さらにボールミル用いて12時間混合した。(Example 1) The first silicon carbide powder has an average particle diameter of 1.1 μs, B
A β-type silicon carbide powder with an ET specific surface area of 1.7 m'' and 7 g was used.Next, silicon tetrachloride and nyletine were added to this first silicon carbide powder by vapor phase synthesis using a plasma CVD method as raw material gases. Average particle size: 0.01 μm, specific surface area: 96
7 g of amorphous silicon carbide ultrafine powder (second silicon carbide powder) was added in an amount of 5% by weight, which was dispersed in methanol and further mixed for 12 hours using a ball mill.
次いで、この混合物を乾燥して得た乾燥混合物1500
gを、内径210m−の黒鉛製モールドに4充填し、ホ
ットプレス装置にて、アルゴン雰囲気下、プレス圧40
0 kg/ cm”、焼結温度2200℃の条件で90
分間焼結し、直径210 am、厚さ14mmの円板状
の焼結体を得た。Next, this mixture was dried to obtain a dry mixture of 1500
A graphite mold with an inner diameter of 210 m was filled with 4 g of
90 at a sintering temperature of 2200°C.
Sintering was performed for a minute to obtain a disk-shaped sintered body with a diameter of 210 am and a thickness of 14 mm.
得られた炭化珪素焼結体について、その焼結体密度、室
温時における3点曲げ強度、室温時の比抵抗値をそれぞ
れ調べ、その結果を第1表に示す。The obtained silicon carbide sintered body was examined for its sintered body density, three-point bending strength at room temperature, and specific resistance value at room temperature, and the results are shown in Table 1.
なお、3点曲げ強度についてはJ I S R−16
01に準拠して測定し、また抵抗値については四端子法
で測定した。In addition, regarding 3-point bending strength, JIS R-16
01, and the resistance value was measured using the four-terminal method.
次いで、この炭化珪素焼結体から直径10.511I1
15長さ60mmの円柱体を切り出し、さらにこれをバ
レル研摩機によって研摩した。Next, a diameter of 10.511I1 was made from this silicon carbide sintered body.
15 A cylindrical body having a length of 60 mm was cut out, and this was further polished using a barrel polisher.
その後、研磨が完了した素材を放電加工機にセットし、
予め印形に対応させた銅製の電極を用いて前記素材の印
形部となる一方の端面に放電加工を施し、印形部を形成
して印鑑を完成させた。After that, set the polished material in the electrical discharge machine,
Electric discharge machining was performed on one end surface of the material, which would become the stamp part, using a copper electrode which had been previously adapted to correspond to the stamp shape, thereby forming the stamp part and completing the stamp.
(実施例2)
実施例1と同一の炭化珪素粉末(第1の炭化珪素粉末)
に、モノシランとメタンとを原料ガスとしてプラズマC
VD法により気相合成した平均粒子径0.02.IZI
、BET比表面積値70m+”/gのβ型炭化珪素超微
粉末(第2の炭化珪素粉末)を15重量%添加し、実施
例1と同一の条件で焼結して炭化珪素焼結体を製造した
。(Example 2) Same silicon carbide powder as Example 1 (first silicon carbide powder)
Plasma C using monosilane and methane as raw material gases
Average particle diameter 0.02. synthesized in vapor phase by VD method. IZI
, 15% by weight of β-type ultrafine silicon carbide powder (second silicon carbide powder) with a BET specific surface area value of 70 m+”/g was added, and sintered under the same conditions as in Example 1 to obtain a silicon carbide sintered body. Manufactured.
得られた炭化珪素焼結体の焼結体密度、室温時の3点曲
げ強度、電気抵抗値を実施例1と同一の方法でそれぞれ
調べ、その結果を第1表に併記する。The sintered body density, three-point bending strength at room temperature, and electrical resistance value of the obtained silicon carbide sintered body were examined in the same manner as in Example 1, and the results are also listed in Table 1.
また、この焼結体から実施例1と同様にして印鑑を作製
した。Further, a seal was produced from this sintered body in the same manner as in Example 1.
(実施例3)
モノシランとメタンとを原料ガスとしてプラズマCVD
法により気相合成した平均粒子径0.02μm、BET
比表面積値70m”/gのβ型炭化珪素超微粉末をメタ
ノール中にて分散せしめ、さらにボールミルで12時間
混合し、得られた混合物を実施例1と同一の条件で焼結
して炭化珪素焼結体を得た。(Example 3) Plasma CVD using monosilane and methane as raw material gases
Average particle size 0.02 μm synthesized in vapor phase by method, BET
Ultrafine β-type silicon carbide powder with a specific surface area value of 70 m''/g was dispersed in methanol, further mixed in a ball mill for 12 hours, and the resulting mixture was sintered under the same conditions as in Example 1 to obtain silicon carbide. A sintered body was obtained.
得られた炭化珪素焼結体の焼結体密度、室温時の3点曲
げ強度、電気抵抗値を実施例1と同一の方法でそれぞれ
調べ、その結果を第1表に併記する。The sintered body density, three-point bending strength at room temperature, and electrical resistance value of the obtained silicon carbide sintered body were examined in the same manner as in Example 1, and the results are also listed in Table 1.
(実験例)
実施例1〜3で作製した印鑑と、従来の象牙製印鑑、及
び従来法に基づいて作製したセラミックス製印鑑を用い
、以下のテストを行った。(Experimental Example) The following tests were conducted using the seals prepared in Examples 1 to 3, a conventional ivory seal, and a ceramic seal prepared according to a conventional method.
■朱肉に対する濡れ性に関して
実施例1〜3の印鑑、象牙製印鑑及びセラミックス製印
鑑を用い、それぞれ1回朱肉をっけた後捺印を5回連続
して行った。(2) Regarding the wettability to vermilion ink, the stamps of Examples 1 to 3, ivory stamps, and ceramic stamps were each coated with vermilion once and then stamped five times in a row.
その結果、実施例1〜3の印鑑および象牙製印鑑につい
ては5回とも鮮明な印影が得られたか、セラミックス製
印鑑については、3回目ぐらいから印影の文字がかすれ
始め、5回目ではその文字の判読が困難になった。以上
の結果より、実施例1〜3の印鑑および象牙製印鑑は、
朱肉に対する濡れ性が十分にあり、またセラミックス製
印鑑に比べ濡れ性に優れていることが確認された。As a result, for the seals of Examples 1 to 3 and the ivory seals, clear impressions were obtained all five times, and for the ceramic seals, the characters in the seal impression started to fade after about the third time, and by the fifth time, the characters were It became difficult to decipher. From the above results, the seals of Examples 1 to 3 and the ivory seals are as follows:
It was confirmed that the seal had sufficient wettability to vermilion, and was superior in wettability compared to ceramic seals.
■文字のエツジ部に関して 実施例1〜3の印鑑、象牙製印鑑およびセラミ。■About the edges of characters Seals, ivory seals, and ceramics of Examples 1 to 3.
クス製印鑑をそれぞれ第2図に示すように半割りに切断
し、第3図に示した印形部2における文字断面のエツジ
部3を顕微鏡により観察した。Each stamp made of wax was cut in half as shown in FIG. 2, and the edge portion 3 of the cross section of the character in the stamp portion 2 shown in FIG. 3 was observed using a microscope.
その結果、実施例1〜3の印鑑は、象牙製印鑑及びセラ
ミックス製印鑑に比較して工、ジ部3がシャープであり
、また実施例1〜3のものについてはその違いが認めら
れなかった。As a result, the stamps of Examples 1 to 3 had sharper edges and edges 3 than the ivory stamps and the ceramic stamps, and no difference was observed in the stamps of Examples 1 to 3. .
■文字の輪郭に関して 実施例1〜3の印鑑、象牙製印鑑及びセラミ。■About the outline of characters Seals, ivory seals, and ceramics of Examples 1 to 3.
クス製印鑑における、印形部の文字の輪郭線をそれぞれ
顕微鏡にて観察した。The outlines of the characters in the stamped parts of the Kusu seals were observed using a microscope.
その結果、実施例1〜3の印鑑は、他の2種類の印鑑に
較して文字の輪郭線がスムーズできれいであることが確
認された。As a result, it was confirmed that the seals of Examples 1 to 3 had smoother and clearer character outlines than the other two types of seals.
■印字部の加工時における欠けに関して実施例1〜3の
印鑑をそれぞれその実施例に示した製造方法で10本ず
つ作製するとともに、セラミックス製印鑑を従来法によ
りlO本作製し、印形部の加工歩留まりを比較した。■ Concerning the chipping of the printed part during processing Ten stamps of Examples 1 to 3 were each produced using the manufacturing method shown in the example, and 10 ceramic stamps were produced using the conventional method. The processing yield was compared.
その結果、実施例1〜3の印鑑の歩留りはいずれも10
0%であったが、従来法によるセラミックス製印鑑につ
いては80%であった。As a result, the yield of the stamps of Examples 1 to 3 was 10
0%, but for ceramic seals made by the conventional method, it was 80%.
■耐熱性について
実施例1〜3の印鑑と象牙の印鑑を、酸化性雰囲気中に
て1000°Cで30時間加熱した。(2) Heat resistance The stamps of Examples 1 to 3 and the ivory stamps were heated at 1000° C. for 30 hours in an oxidizing atmosphere.
その結果、実施例1〜3の印鑑にはいずれも損傷が確認
されなかったが、象牙製印鑑では変形が生じ、この象牙
製印鑑は再使用ができないものとなった。As a result, no damage was observed in any of the seals of Examples 1 to 3, but deformation occurred in the ivory seals, and the ivory seals could not be reused.
以上の結果より、本発明の印鑑は象牙製印鑑および従来
法によるセラミックス製印鑑に比べ、いずれの性能につ
いても同等あるいはそれ以上の性質を有していることが
確認された。From the above results, it was confirmed that the seal of the present invention has properties equivalent to or better than the ivory seal and the conventional ceramic seal in all respects.
また、実施例2で示したごとく、異種原料ガスから合成
した炭化珪素超微粉末(第2の炭化珪素粉末)を使用し
て焼結体を作製しても、さらに炭化珪素超微粉末の添加
量を変えても、得られた印鑑は優れた性質を有している
ことが確認された。Furthermore, as shown in Example 2, even if a sintered body is produced using ultrafine silicon carbide powder (second silicon carbide powder) synthesized from different raw material gases, ultrafine silicon carbide powder is further added. It was confirmed that the obtained seal had excellent properties even when the amount was changed.
また、実・絶倒3で示したごとく、炭化珪素超微粉末(
第2の炭化珪素粉末)のみを用いて焼結体を作製しても
、得られた印鑑はやはり優れた性質を有していることが
確認された。In addition, as shown in Fruit/Zettai 3, ultrafine silicon carbide powder (
It was confirmed that even when a sintered body was produced using only the second silicon carbide powder, the obtained seal still had excellent properties.
「発明の効果」
以上説明したように、本発明における請求項1記載の印
鑑によれば、以下の優れた効果を奏する。"Effects of the Invention" As explained above, the seal stamp according to claim 1 of the present invention provides the following excellent effects.
■印鑑の素材が炭化珪素焼結体であるため、炭化珪素焼
結体独特の表面光沢を持ち、しかも強度、耐熱性、耐蝕
性に優れたものとなることから、火災等による焼損や変
形、薬品等による変色、変形及び虫食い等による損傷が
な(耐久性に侵たものとなる。■Since the material of the seal is silicon carbide sintered body, it has a surface luster unique to silicon carbide sintered body, and has excellent strength, heat resistance, and corrosion resistance, so it will not be burnt out or deformed due to fire etc. No discoloration or deformation caused by chemicals, damage caused by insect bite, etc. (durability will be compromised).
■印鑑の素−材となる炭化珪素焼結体の密度が3.0〜
3 、2 g/ cm’程度であり、従来法ニヨルセラ
ミノクス材料に比較して軽量であることから、従来の天
然材料製の印鑑に比べ使用時において違和感がない。■The density of the silicon carbide sintered body that is the material for the seal is 3.0~
3.2 g/cm', which is lighter than conventional Nyorceraminox materials, so it does not feel strange when used compared to conventional seals made of natural materials.
■印鑑の素材が炭化珪素焼結体であるため、その原料が
豊富であるとともにこれから人工的に製造することがで
き、よって従来印鑑の原料として使用されていた貴重な
天然資源を保護することができる。■Since the material for seals is silicon carbide sinter, the raw material is abundant and can be manufactured artificially from now on, making it possible to protect the valuable natural resources that were traditionally used as raw materials for seals. can.
また、請求項2および3記載の発明の印鑑の製造方法に
よれば、以下の優れた効果を奏する。Moreover, according to the seal manufacturing method of the invention described in claims 2 and 3, the following excellent effects are achieved.
■平均粒子径が0.1μ履以下であり焼結性に優れた第
2の炭化珪素粉末を原料粉末として用いることにより、
印鑑の素材となる炭化珪素焼結体が微小なボアを宵する
微細な組織構造となり、よって得られる印鑑は他の緻密
質なセラミック製印鑑に比較して朱肉の濡れ性がよく、
印影の文字輪郭等が鮮明なものになる。■By using a second silicon carbide powder with an average particle size of 0.1μ or less and excellent sinterability as a raw material powder,
The silicon carbide sintered body that is the material for the seal has a fine microstructure with microscopic bores, and the resulting seal has better wettability of the vermillion ink than other dense ceramic stamps.
The outline of characters on the seal impression becomes clearer.
■平均粒子径が0.1μm以下であり焼結性に優れた第
2の炭化珪素粉末を原料粉末として用いることにより、
印鑑の素材となる炭化珪素焼結体が極めて緻密質なもの
となり、よって得られる印鑑はその強度が高くなって落
下等による破損が従来の天然資源を使用したものに比べ
少なくなる。■By using a second silicon carbide powder with an average particle size of 0.1 μm or less and excellent sinterability as a raw material powder,
The silicon carbide sintered body that is the material for the seal is extremely dense, and the resulting seal has high strength and is less likely to be damaged by falling, etc., than conventional seals made from natural resources.
■焼結して素材を形成した後印形部を設けることにより
、印形部を破損してしまった場合でも、新たに印形部を
設けることによって印鑑を再生することができる。(2) By providing a stamp part after forming the material by sintering, even if the stamp part is damaged, the seal can be regenerated by providing a new stamp part.
さらに、請求項4記載の印鑑の製造方法によれば、以下
の優れた効果を奏する。Furthermore, according to the method for manufacturing a seal stamp according to claim 4, the following excellent effects are achieved.
■印形部を放電加工によって形成するため、加工時にお
いて欠は発生が抑制され、しかも細部の加工が容易にな
り、文字形状などの精度を向上せしめることができる。(2) Since the stamp part is formed by electric discharge machining, the occurrence of chips during machining is suppressed, and detailed machining becomes easier, improving the accuracy of character shapes, etc.
■印形部を放電加工によって形成するため、仕上がった
文字等のエツジが非常にシャープになり、よって得られ
た印鑑による印影の輪郭が非常にはっきりしたものとな
る。■Since the stamp part is formed by electrical discharge machining, the edges of the finished letters, etc. will be very sharp, and the outline of the resulting seal impression will be very clear.
■印形部を放電加工によって形成するため、印形部の文
字等を製造者かテザインしたとおりの寸法・形状に仕上
げることかでき、よって美麗かつ精密な印形部を形成す
ることができる。■Since the stamp part is formed by electrical discharge machining, the characters, etc. on the stamp part can be finished to the dimensions and shape specified by the manufacturer, making it possible to form a beautiful and precise stamp part.
第1図ないし第3図は本発明の印鑑およびその製造方法
に係る図であって、第1図は請求項1に記載した印鑑の
一例を示す斜視図、第2図は本発明の製造方法によって
得られた印鑑を軸方向に切断した状態を示す斜視図、第
3図は第2図の要部拡大図である。
1・・・・・・印鑑、2・・・・・・印形部、3・・・
・・・文字断面のエツジ部。1 to 3 are views relating to the seal stamp of the present invention and its manufacturing method, in which FIG. 1 is a perspective view showing an example of the seal stamp according to claim 1, and FIG. 2 is a diagram showing the manufacturing method of the present invention. FIG. 3 is an enlarged view of the main part of FIG. 2. 1...Seal stamp, 2...Seal impression part, 3...
・・・Edge part of character cross section.
Claims (4)
3.0g/cm^3以上、室温での電気抵抗値が1Ω・
cm以下、かつ室温時の3点曲げの強度が50.0kg
/mm^2以上の炭化珪素焼結体からなる印鑑。(1) Sintered without the addition of sintering aids, the sintered body density is 3.0 g/cm^3 or more, and the electrical resistance value at room temperature is 1 Ω.
cm or less, and the three-point bending strength at room temperature is 50.0 kg.
A seal made of sintered silicon carbide with a diameter of /mm^2 or more.
粉末に、非酸化性雰囲気のプラズマ中にシラン化合物、
又はハロゲン化珪素と炭化水素からなる原料ガスを導入
し、反応系の圧力を1気圧未満から0.1torrの範
囲で制御しつつ気相反応させることによって合成された
平均粒子径が0.1μm以下の第2の炭化珪素粉末を0
.5重量%以上混合し、これを加熱、焼結することによ
って炭化珪素焼結体を得、この焼結体に印形部を設けて
印鑑にすることを特徴とする印鑑の製造方法。(2) A silane compound is added to the first silicon carbide powder having an average particle size of 0.1 to 10 μm in a plasma in a non-oxidizing atmosphere,
Or particles with an average particle diameter of 0.1 μm or less synthesized by introducing a raw material gas consisting of silicon halide and hydrocarbon and performing a gas phase reaction while controlling the pressure of the reaction system in the range of less than 1 atmosphere to 0.1 torr. 0 second silicon carbide powder
.. A method for manufacturing a seal, which comprises mixing 5% by weight or more, heating and sintering the mixture to obtain a silicon carbide sintered body, and forming a seal by providing a stamp part on this sintered body.
はハロゲン化珪素と炭化水素からなる原料ガスを導入し
、反応系の圧力を1気圧未満から0.1torrの範囲
で制御しつつ気相反応させることによって合成された平
均粒子径が0.1μm以下の炭化珪素粉末を加熱、焼結
することによって炭化珪素焼結体を得、この焼結体に印
形部を設けて印鑑にすることを特徴とする印鑑の製造方
法。(3) Introducing a silane compound or a raw material gas consisting of silicon halide and hydrocarbon into plasma in a non-oxidizing atmosphere, and performing a gas phase reaction while controlling the pressure of the reaction system in the range of less than 1 atmosphere to 0.1 torr. A silicon carbide sintered body is obtained by heating and sintering silicon carbide powder with an average particle diameter of 0.1 μm or less synthesized by this process, and a stamp part is provided on this sintered body to make a seal. Characteristic seal manufacturing method.
前記焼結体から得られる印鑑材の印形面を放電加工する
ことにより、印形部を刻設することを特徴とする印鑑の
製造方法。(4) In the method for manufacturing a seal according to claim 2 or 3,
A method for producing a seal stamp, characterized in that a stamp portion is engraved by electrical discharge machining on a stamp surface of a stamp material obtained from the sintered body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2103826A JPH04126285A (en) | 1990-04-19 | 1990-04-19 | Seal and production thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2103826A JPH04126285A (en) | 1990-04-19 | 1990-04-19 | Seal and production thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04126285A true JPH04126285A (en) | 1992-04-27 |
Family
ID=14364221
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2103826A Pending JPH04126285A (en) | 1990-04-19 | 1990-04-19 | Seal and production thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04126285A (en) |
-
1990
- 1990-04-19 JP JP2103826A patent/JPH04126285A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS63185864A (en) | Composite ceramics and manufacture | |
JP6344844B2 (en) | Boron carbide / titanium boride composite ceramics and method for producing the same | |
US4300951A (en) | Liquid phase sintered dense composite bodies and method for producing the same | |
JP4186545B2 (en) | Mold for molding | |
EP0504441B1 (en) | High strength composite ceramic structure and process for producing the same | |
JPH04126285A (en) | Seal and production thereof | |
JPH08169755A (en) | Polycrystalline ceramic product and its production | |
JPH0688832B2 (en) | Polycrystalline ceramic product and manufacturing method thereof | |
JP2008087988A (en) | Conductive composite ceramic | |
JP3735397B2 (en) | Titanium nitride sintered body and method for producing the same | |
JPH025711B2 (en) | ||
JP3060473B2 (en) | Composite ceramic and method for producing the same | |
KR100503351B1 (en) | A method for preparing dense silicon carbide/titanium diboride composite | |
JP2003034577A (en) | Silicon nitride-based composite sintered body and method for producing the same | |
JPH06157142A (en) | Production of silicon nitride-silicon carbide composite sintered compact | |
JPH0489357A (en) | Precision-machined product made of silicon carbide and production thereof | |
JPH0455993B2 (en) | ||
JPH07126070A (en) | Production of silicon carbide sintered material | |
KR20160088170A (en) | TiC-FeAl HARD MATERIALS AND FABRICATING METHOD FOR THE SAME | |
JPH0687664A (en) | Production of silicon nitride sintered compact | |
JPH035370A (en) | Raw powder for silicon nitride sintered body, sintered body using the powder and its production | |
JP2000144201A (en) | Cermet powder for injection molding and production of cermet sintered body | |
JPS6395155A (en) | Composite sintered body comprising carbide and oxide | |
JPS5939395B2 (en) | Manufacturing method of silicon carbide sintered body | |
JPH10167833A (en) | Boride ceramics and its production |