JPH04126088A - Dna fragment having promoter activity - Google Patents

Dna fragment having promoter activity

Info

Publication number
JPH04126088A
JPH04126088A JP2244779A JP24477990A JPH04126088A JP H04126088 A JPH04126088 A JP H04126088A JP 2244779 A JP2244779 A JP 2244779A JP 24477990 A JP24477990 A JP 24477990A JP H04126088 A JPH04126088 A JP H04126088A
Authority
JP
Japan
Prior art keywords
gene
base sequence
dna fragment
promoter activity
promoter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2244779A
Other languages
Japanese (ja)
Other versions
JP3259178B2 (en
Inventor
Atsuhiko Niina
惇彦 新名
Mitsuo Takano
高野 光男
Naosuke Okada
岡田 尚輔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP24477990A priority Critical patent/JP3259178B2/en
Publication of JPH04126088A publication Critical patent/JPH04126088A/en
Application granted granted Critical
Publication of JP3259178B2 publication Critical patent/JP3259178B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE:To make the subject fragment to be efficiently manifested by imparting promoter activity to a specific base sequence. CONSTITUTION:Cultured cell obtained by inducing a stalk of horseradish is extracted and separated to obtain peroxidase isozyme gene prxC2 (A). Next, the component A is cut with restrictive enzyme XbaI (base sequence-527) and NsiI (base sequence + 5) to obtain DNA fragment (B). Then, promoter activity in 5'-non-translated region of the component B is detected with beta-glucroninase (GUS) gene to produce DNA fragment having a base sequence expressed by whole or a part of the formula, or a base sequence equivalent to said sequences and having promoter activity. Said DNA fragment is inserted into a vector, as necessary, and host such as plant cell is transformed by resultant vector, thus resultant transformed cell is cultured to manifest gene such as beta- glucroninase.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、植物細胞内等で異種蛋白遺伝子を発現させる
時、好適に使用されるプロモーター活性を保持するDN
A断片、該DNA断片か導入されたベクター及び該ベク
ターにより形質転換された宿主に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention provides a DNA that retains promoter activity and is suitably used when expressing a heterologous protein gene in plant cells.
The present invention relates to a fragment A, a vector into which the DNA fragment has been introduced, and a host transformed with the vector.

〔従来技術及び発明が解決しようとする課題〕遺伝子組
換え技術の分野では、遺伝子の発現量を増大させるため
に強力なプロモーターにより、産生mRNA量を増大さ
せることが行われている。
[Prior Art and Problems to be Solved by the Invention] In the field of genetic recombination technology, in order to increase the amount of gene expression, strong promoters are used to increase the amount of mRNA produced.

植物においては、その様な例としてカルフラワーモザイ
クウィルス35 s (CaMV35 s)プロモータ
ーが多用されている。しかしながら、このプロモーター
を使用して異種蛋白遺伝子を発現させた場合、必ずしも
期待通りの発現量か得られないことが多い。そこで、更
に強力なプロモーターの開発か望まれていた。
In plants, the caulflower mosaic virus 35s (CaMV35s) promoter is frequently used as such an example. However, when a heterologous protein gene is expressed using this promoter, the expected expression level is often not always obtained. Therefore, there was a desire to develop an even more powerful promoter.

ところで、ペルオキシダーゼには、多くのアイソザイム
が存在すると言われ、ペルオキシダーゼを高生産する西
洋ワサビの培養細胞か既に獲得されている[ Yama
da、 Y、、 et al、、 J、Chem、Te
ch、Bioch、、38.31(1987)]。また
、この西洋ワサビ培養細胞から得たベルオキシダーゼア
イソサイムのゲノム遺伝子の構造か決定され、その5°
上流にプロモーター配列が存在することか確認されてい
る(昭和62年度日本醗酵工学会講演要旨集、 p2+
)。
By the way, it is said that there are many isozymes of peroxidase, and cultured horseradish cells that produce high peroxidase have already been obtained [Yama
da, Y., et al., J. Chem. Te.
ch, Bioch, 38.31 (1987)]. In addition, the structure of the genome gene of peroxidase isocyme obtained from cultured horseradish cells was determined, and its 5°
It has been confirmed that there is a promoter sequence upstream (Collection of abstracts from the 1985 Japanese Society of Fermentation Engineering, p2+
).

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、これらの事情に鑑み、各種研究を重ねた
結果、この西洋ワサビの培養細胞から、多種のペルオキ
シダーゼアイソザイム遺伝子のクローンを取得し、各ク
ローンのプロモーターを検索したところ、高いプロモー
ター活性を有するDNA断片を見い出し、本発明の完成
に至った。
In view of these circumstances, the present inventors conducted various studies and obtained clones of various peroxidase isozyme genes from cultured cells of this horseradish, and searched for the promoter of each clone, and found that the promoter activity was high. A DNA fragment having the following was discovered, leading to the completion of the present invention.

即ち、本発明の特徴は、第1図に示す全部もしくは一部
の塩基配列、またはそれらと均等な塩基配列を有し、プ
ロモーター活性を有するDNA断片、該DNAが挿入さ
れたベクター及び該ベクターにより形質転換された宿主
に存する。
That is, the features of the present invention include a DNA fragment having all or a part of the base sequence shown in FIG. 1 or a base sequence equivalent thereto and having promoter activity, a vector into which the DNA has been inserted, and present in the transformed host.

以下にこれを詳述する。This will be explained in detail below.

本発明のDNA断片は次のようにして調製できる。The DNA fragment of the present invention can be prepared as follows.

まず、本発明の出発遺伝子である各種ペルオキシダーゼ
アイソザイム遺伝子は西洋ワサビの培養細胞から常法に
従い、例えば、Mo1ecular Cloning。
First, various peroxidase isozyme genes, which are the starting genes of the present invention, are obtained from cultured horseradish cells according to conventional methods, for example, Molecular Cloning.

(1989)、 p、8.3.(Cold Sprin
g Harbor Labs、)に記載の方法に従い、
cDNAライブラリーを調製し、Wel 1nderの
報告したFEBS Letters、 (1976)。
(1989), p, 8.3. (Cold Spring
According to the method described in G Harbor Labs, )
A cDNA library was prepared and the FEBS Letters reported by Wel 1nder (1976).

72、19記載の西洋ワサビのペルオキシダーゼのアミ
ノ酸配列に基づき調製したDNAプローブを用いて、遺
伝子を選択することができる。また、例えば、Mo1e
cular Cloning、 (1989)、 p、
9.4.(ColdSpring Harbor La
bs、)に記載の方法に従い、西洋ワサビの培養細胞か
らゲノムライブラリーを調製し、既に得られているアイ
ソザイム遺伝子をプローブにして、更に多くのペルオキ
シダーゼアイソザイム遺伝子を選択することができる。
Genes can be selected using a DNA probe prepared based on the amino acid sequence of horseradish peroxidase described in 72 and 19. Also, for example, Mo1e
cular Cloning, (1989), p.
9.4. (ColdSpring Harbor La
A genomic library is prepared from cultured horseradish cells according to the method described in BS, ), and more peroxidase isozyme genes can be selected by using already obtained isozyme genes as probes.

なお、これらのペルオキシダーゼアイソザイム遺伝子の
選択方法は、既に本発明者等により発表されている。
The method for selecting these peroxidase isozyme genes has already been published by the present inventors.

すなわち、Fujiyama et al、、 Eur
、J、Biochem、 173゜(1988)、 6
81−687において、prXcla及びprxclb
と命名されたペルオキシダーゼアイソザイム遺伝子が単
離されたことが記載されており、またFujiyama
 et al、、 Gene、 89. (1990)
、  163−169において、prxC2及びprx
c3と命名されたペルオキシダーゼアイソザイム遺伝子
か単離されたことが記載されている。
Namely, Fujiyama et al.
, J.Biochem, 173° (1988), 6
81-687, prXcla and prxclb
It has been described that a peroxidase isozyme gene named
et al., Gene, 89. (1990)
, 163-169, prxC2 and prx
It has been described that a peroxidase isozyme gene named c3 was isolated.

本発明のDNA断片は、この様にして単離しただprx
C!a、prxclb、prxC2及びprxC3等の
クローンを種々の制限酵素によって切断し、異種蛋白を
発現させ、その量を測定することによって、最も高いプ
ロモーター活性を示した5′非翻訳領域の一部である。
The DNA fragment of the present invention was isolated in this way, and
C! This is the part of the 5' untranslated region that showed the highest promoter activity by cutting clones such as a, prxclb, prxC2, and prxC3 with various restriction enzymes, expressing heterologous proteins, and measuring the amount. .

prxclaの5′非翻訳領域については、制限酵素X
baI(塩基配列−525)と制限酵素EcoR1(塩
基配列−5)で切断した断片を調製した。
For the 5' untranslated region of prxcla, restriction enzyme
A fragment was prepared by cutting with baI (base sequence -525) and restriction enzyme EcoR1 (base sequence -5).

prxclbについては、制限酵素EcoRI (塩基
配列−533)と制限酵素N5iI(塩基配列+1)で
切断した断片を調製した。
For prxclb, a fragment was prepared by cutting with restriction enzyme EcoRI (base sequence -533) and restriction enzyme N5iI (base sequence +1).

prxC2については、制限酵素XbaI(塩基配列−
527)と制限酵素N5iI(塩基配列+5)で切断し
た断片を調製した。
For prxC2, restriction enzyme XbaI (nucleotide sequence -
527) and restriction enzyme N5iI (base sequence +5) to prepare a fragment.

prxC3については、制限酵素EcoR[(塩基配列
−484)と制限酵素Hindl[I (塩基配列+6
3)で切断し、更に修飾酵素Exonuculease
I[[でHindn[サイトから−5の位置まで分解し
た断片を調製した。
For prxC3, restriction enzyme EcoR [(base sequence -484) and restriction enzyme Hindl[I (base sequence +6
3), and further modified with the modification enzyme Exonuclease.
A fragment digested from the Hindn[ site to the -5 position was prepared with I[[.

これらの各遺伝子の5“非翻訳領域のプロモーター活性
の検索は、レポータ遺伝子としてベーターグルクロニナ
ーゼ(GUS)遺伝子を用い、それと5′非翻訳領域と
のキメラ遺伝子を作製し、それらとpUC系プラスミド
またはpBI系プラスミドとから発現プラスミドを構築
し、これらを植物プロトプラストに導入することにより
、または、植物形質転換体を作製し、GUS遺伝子の発
現量を測定することにより行うことができる。その結果
、第1図に示すprxC2の5′非翻訳領域がCaMV
35sプロモーターよりも高い活性を示し、更にprx
cla、prxclb、prxC3の5′非翻訳領域よ
りも高い活性を示すことが見出された。
To search for the promoter activity of the 5' untranslated region of each of these genes, we used the beta-glucuroninase (GUS) gene as a reporter gene, created a chimera gene between it and the 5' untranslated region, and inserted them into a pUC-based plasmid. Alternatively, it can be carried out by constructing an expression plasmid from the pBI-based plasmid and introducing these into plant protoplasts, or by producing a plant transformant and measuring the expression level of the GUS gene.As a result, The 5' untranslated region of prxC2 shown in Figure 1 is CaMV
It shows higher activity than the 35s promoter and also prx
It was found that it exhibited higher activity than the 5' untranslated regions of cla, prxclb, and prxC3.

本発明では、第1図に示すDNA塩基配列は、プロモー
ター活性を損なわない範囲内で一部を削除あるいは改変
してもよい。
In the present invention, a portion of the DNA base sequence shown in FIG. 1 may be deleted or modified within a range that does not impair promoter activity.

本発明のプロモーター活性を有するDNA断片はpUC
系プラスミド、pBI系プラスミド等のプラスミドベク
ター中に挿入され、異種蛋白遺伝子を発現させるための
ベクターとして使用される。
The DNA fragment having promoter activity of the present invention is pUC
It is inserted into a plasmid vector such as a pBI-based plasmid or a pBI-based plasmid, and used as a vector for expressing a heterologous protein gene.

プロモーター活性を有するDNA断片の各種プラスミド
への挿入は、DNA組換えの一般的方法、例えば、Mo
1ecular Cloning、 (1989)、(
Cold Spring Harbor Labs、)
に記載の方法に従って行うことができる。例えばprx
C2の5°非翻訳領域を含むXba I /Nsi I
断片はpUc18のXba IとPstIで切断したマ
ルチクローニングサイトとライゲーションすれば、プラ
スミドpUc18に挿入することができる。
Insertion of DNA fragments with promoter activity into various plasmids can be carried out using common methods of DNA recombination, such as Mo
1ecular Cloning, (1989), (
Cold Spring Harbor Labs,)
It can be carried out according to the method described in . For example prx
Xba I/Nsi I containing the 5° untranslated region of C2
The fragment can be inserted into plasmid pUc18 by ligating it with the multiple cloning site of pUc18 cut with Xba I and Pst I.

本発明のDNA断片を含有するベクターは、ベーターグ
ルクロニナーゼ(GUS) 、ペルオキシダーゼ、アス
コルビン酸オキシダーゼ、ルシフェラーゼ等各種動植物
、酵母等真核生物由来の遺伝子を発現させるのに好適で
ある。
Vectors containing the DNA fragments of the present invention are suitable for expressing genes derived from various animals and plants, yeast, and other eukaryotes, such as beta-glucuroninase (GUS), peroxidase, ascorbate oxidase, and luciferase.

また、本発明のベクターは、植物細胞または、酵母細胞
等の宿主を形質転換するのに好適に用いられる。
Furthermore, the vector of the present invention is suitably used to transform hosts such as plant cells or yeast cells.

〔実施例〕〔Example〕

以下に実施例を示し、本発明を更に詳しく説明するが、
本発明はその要旨を越えない限り以下の実施例に於いて
限定されるものではない。
Examples will be shown below to explain the present invention in more detail.
The present invention is not limited to the following examples unless it exceeds the gist thereof.

実施例1 [1]ペルオキシダーゼアイソザイム遺伝子の調製■ 
西洋ワサビゲノムDNAライブラリーの調製西洋ワサビ
の茎から誘導された細胞培養(Fujiyama et
 al、、 5tructure of the ho
rseradishperoxidase isozy
me c genes、 Eur、、J、Bioche
m。
Example 1 [1] Preparation of peroxidase isozyme gene■
Preparation of horseradish genomic DNA library Cell culture derived from horseradish stems (Fujiyama et al.
al,, 5structure of the ho
rseradishperoxidase isozy
me c genes, Eur,, J, Bioche
m.

173、 (1988)、 68]−687)から[B
11n and 5taffordNucleic A
c1ds Res、3. (1976)、 2303−
2308]の方法で全DNAを調製した。次にこれらを
Maniatisの方法で制限酵素5au3A Iで部
分分解した。この部分分解断片を10〜40%シュクロ
ース密度勾配遠心分離(33,000rpm、 16時
間)で分画し、10〜20kbの長さのDNA断片を回
収した。これを更にアルカリフォスファターゼで処理し
、脱リン化した後、あらかじめBamHIと5alIで
処理したλEMBL4(プロメガ製)とライゲーション
し、Horn(1979)の方法によりパッケージング
した。組換えファージで感染のためE、coli NM
539を使用した。
173, (1988), 68]-687) to [B
11n and 5taffordNucleic A
c1ds Res, 3. (1976), 2303-
Total DNA was prepared using the method described in [2308]. Next, these were partially digested with restriction enzyme 5au3A I according to the method of Maniatis. This partially degraded fragment was fractionated by 10-40% sucrose density gradient centrifugation (33,000 rpm, 16 hours), and DNA fragments with a length of 10-20 kb were recovered. This was further treated with alkaline phosphatase to dephosphorylate, and then ligated with λEMBL4 (manufactured by Promega) that had been previously treated with BamHI and 5alI, and packaged by the method of Horn (1979). E. coli NM for infection with recombinant phages
539 was used.

■ 西洋ワサビペルオキシダーゼゲノムの選択西洋ワサ
ビペルオキシダーゼのcDNAクローンをpsKl (
上記の文献の、Pstlで切り出した1、3kbのDN
A)をマルチプライムDNAラベリング系(Amers
ham)を使用して0Pでラベルした。
■ Selection of the horseradish peroxidase genome A cDNA clone of horseradish peroxidase was extracted from psKl (
1.3 kb DN of the above document extracted with Pstl
A) using the multi-prime DNA labeling system (Amers
ham) and labeled with 0P.

E、colj NM539に感染させて生じたプラーク
をナイロン膜に移した後、上記のラベルしたcDNAプ
ローブでプラークハイブリダイゼーションを行った。ポ
ジティブクローンを精製後、ファージDNAの制限酵素
切断断片をサザーンブロツティングを行い、cDNAと
ハイブリダイズするDNA断片をpUc19にサブクロ
ーンした。
After the plaques generated by infection with E. colj NM539 were transferred to a nylon membrane, plaque hybridization was performed using the labeled cDNA probe described above. After purifying the positive clone, the restriction enzyme-cleaved fragment of the phage DNA was subjected to Southern blotting, and the DNA fragment that hybridized with the cDNA was subcloned into pUc19.

psKlに挿入されている″!P−ラベルcDNAとハ
イブリダイズする9個の組換えλEMB L4ファージ
を6X10’の組換えファージの中から分離した。これ
らのファージのハイブリダイゼーションの強度は、3ク
ラスに分離された。
Nine recombinant λEMB L4 phages that hybridized with the ``!P-labeled cDNA inserted into psKl were isolated from among 6 x 10'' recombinant phages.The hybridization intensities of these phages were divided into three classes. Separated.

ハイブリダイゼーションの強度が最も強いクローン(ク
ラスl)のうち、lクローンがprxCla、prxc
Ib遺伝子をランダムに含んでいることがわかった。ハ
イブリダイゼーションの強度が余り強くないクローン(
クラス2)の4個の組換えクローンはcDNAプローブ
とハイブリダイズするEcoRI制限断片(4kb)を
含んでいた。
Among the clones with the strongest hybridization intensity (class I), the l clones are prxCla and prxc.
It was found that the Ib gene was randomly included. Clones with less intense hybridization (
Four recombinant clones of class 2) contained an EcoRI restriction fragment (4 kb) that hybridized with the cDNA probe.

また、ハイブリダイゼーション強度が最も弱いクラス(
クラス3)は、プローブとハイブリダイズするEcoR
I (1,5kb、 0.8 kb)を含んでいた。こ
れらのEcoRI断片及びクラス2、クラス3のクロー
ンから得られる他の制限酵素切断断片とオーバーラツプ
する断片をpuc I 9にサブクローンし、塩基配列
を決定した。
Also, the class with the weakest hybridization intensity (
Class 3) is EcoR that hybridizes with the probe.
I (1.5 kb, 0.8 kb). These EcoRI fragments and fragments overlapping with other restriction enzyme-cleaved fragments obtained from class 2 and class 3 clones were subcloned into puc I 9 and their nucleotide sequences were determined.

これらの塩基配列をprxcla及びprxClbの塩
基配列とそれから予測されるアミノ酸配列比較した結果
、ペルオキシダーゼアイソザイム遺伝子prxC2及び
prxC3と命名した[2] DNA断片ノwR製 前記[1]で得たprxC2を制限酵素Xba I(塩
基配列−527)とNsi!(塩基配列+5)で切断し
、第1図に示すDNA断片を得た。
As a result of comparing these nucleotide sequences with the nucleotide sequences of prxcla and prxClb and the amino acid sequences predicted therefrom, the peroxidase isozyme genes were named prxC2 and prxC3. Xba I (base sequence -527) and Nsi! (nucleotide sequence +5) to obtain the DNA fragment shown in FIG.

[3]タバコプロトプラストでのprxC2の5′非翻
訳領域のプロモーター活性の確認 DNA組換えの為の一連の遺伝子操作は、基本的には、
Mo1ecular Cloning、 (1989)
、(Cold Spring Harbor Labs
、)に従って行った。前記[2]で得たprxC2の5
′非翻訳領域532bp (第1図)とGUS遺伝子と
のキメラ遺伝子を作製し、更にそれらをpUclBにつ
なぎ、発現プラスミドを構築した。比較のために、pr
xC2の5′非翻訳領域Xba I / Nsi I断
片の代わりに、CaMV35sプロモーターを用いた発
現プラスミドも構築した。これらの発現プラスミドをエ
レクトロポレーション法によりタバコプロトプラストに
導入し、24時間後のGUS活性を測定した。GUS活
性は以下のようにして測定した。酵素抽出液300μl
に、2IIIMメチルウンベリフェリルグルクロライド
を含む抽出液(50mMリン酸緩衝液。
[3] Confirmation of the promoter activity of the 5' untranslated region of prxC2 in tobacco protoplasts A series of genetic manipulations for DNA recombination basically consists of:
Molecular Cloning, (1989)
, (Cold Spring Harbor Labs
,) was followed. 5 of prxC2 obtained in [2] above
A chimeric gene consisting of a 532 bp untranslated region (Fig. 1) and the GUS gene was constructed, and this was further ligated to pUclB to construct an expression plasmid. For comparison, pr
An expression plasmid was also constructed using the CaMV35s promoter in place of the 5′ untranslated region Xba I/Nsi I fragment of xC2. These expression plasmids were introduced into tobacco protoplasts by electroporation, and GUS activity was measured 24 hours later. GUS activity was measured as follows. Enzyme extract 300μl
An extract containing 2IIIM methylumbelliferyl gluchloride (50 mM phosphate buffer).

pH7,0,10mM EDTA SO,1%トリトン
X−1000,1%ラウリザルコシン、IOIIIM 
 β−メルヵブトエ名ノール)を300μ!加え、37
℃、1時間酵素反応を行った。0.2 M NatCO
* 2.4−を加えて反応を停止させ、生成物4−メチ
ルウンベリフェロンの蛍光量を蛍光光度計を用いて測定
(EX、 365nm、 Em、 455nm)した。
pH 7, 0, 10mM EDTA SO, 1% Triton X-1000, 1% laurisarcosine, IOIIIM
300μ of β-mercabutenol! In addition, 37
The enzyme reaction was carried out at ℃ for 1 hour. 0.2M NatCO
*2.4- was added to stop the reaction, and the amount of fluorescence of the product 4-methylumbelliferone was measured using a fluorometer (EX, 365 nm, Em, 455 nm).

4−メチルウンベリフェロン量は4−メチルウンベリフ
ェロンを用いて作製した標準曲線より求め、それを基に
GUS活性を算出した。蛋白質濃度はBio−Rad社
のプロティンアッセイキットを用いて測定した。その結
果を第1表に示す。この結果より、prxC2の5°非
翻訳領域にはプロモーター活性があり、しかも汎用され
ているCaMV35sプロモーターよりも約4倍以上の
強い活性を存することかわかる。
The amount of 4-methylumbelliferone was determined from a standard curve prepared using 4-methylumbelliferone, and the GUS activity was calculated based on it. Protein concentration was measured using a protein assay kit from Bio-Rad. The results are shown in Table 1. From this result, it can be seen that the 5° untranslated region of prxC2 has promoter activity, and the activity is about 4 times or more stronger than that of the widely used CaMV35s promoter.

第1表 プロモーター領域     GUS 比活性 なし            8 CaMV35 s        100”prxC2
444 す27.9 pmol/min ■  蛋白[41トラ
ンスジエニツクタバコ細胞でのprxC2の非翻訳領域
のプロモーター活性の確認prxC2の5′非翻訳領域
とGUS遺伝子とのキメラ遺伝子のプラスミドpB11
01へのつなぎ換えは第2図に示した。即ち、prxC
2の5゛非翻訳領域、GUS遺伝子、及びpUclBか
ら成る組換プラスミドからprxC2の5′非翻訳領域
とGUS遺伝子部分を含むPvuI[/ Ec。
Table 1 Promoter region GUS No specific activity 8 CaMV35 s 100”prxC2
444 27.9 pmol/min ■ Protein [41 Confirmation of promoter activity of untranslated region of prxC2 in transgenic tobacco cells Plasmid pB11 of chimeric gene of 5' untranslated region of prxC2 and GUS gene
The connection to 01 is shown in Figure 2. That is, prxC
A recombinant plasmid consisting of the 5' untranslated region of prxC2, the GUS gene, and pUclB was used to generate PvuI[/Ec] containing the 5' untranslated region of prxC2 and the GUS gene portion.

R[断片を切り出した。一方、pBIIOIはHi’n
d1[[/ EcoRIで切断後、HindI[[切断
末端をクレノー酵素で修復し平滑末端とし、PvulI
/ EcoRI断片を挿入した。
R [The fragment was cut out. On the other hand, pBIIOI is Hi'n
d1[[/ After cutting with EcoRI, the cut ends were repaired with Klenow enzyme to make blunt ends, and PvulI
/EcoRI fragment was inserted.

トランスジェニックタバコの作製は、目的のキメラ遺伝
子をTriparental Maiting法により
アグロバクテリウム(Agrobacterium)に
導入し、このキメラ遺伝子の入ったアグロバクテリウム
(Agrobacterium)を用いてLeaf D
isc法によりタバコ細胞を形質転換した。
To produce transgenic tobacco, a chimeric gene of interest is introduced into Agrobacterium using the Triparental Mating method, and the Agrobacterium containing this chimeric gene is used to incubate Leaf D.
Tobacco cells were transformed by the isc method.

■ キメラ遺伝子のアグロバクテリウム(Agroba
cterium)への導入 prxC2の5°非翻訳領域とGUS遺伝子及びpBT
+01から構築された組換プラスミドで形質転換された
E、coliC600(ドナーと称する)、pRK20
13を保持するE、coliHB 101 (ヘルパー
と称する)をそれぞれ50μg/dカナマイシン含有L
B培地で37°C1−夜培養した。アグロバクテリウム
ツメファシェンス(AgrobacteriumTum
efaciens)LBA 4404株は、LB培地5
−で25〜28°C1約36時間培養した。
■ Chimeric gene Agrobacterium (Agroba
5° untranslated region of prxC2, GUS gene and pBT
E. coli C600 (referred to as donor), pRK20 transformed with the recombinant plasmid constructed from +01
E. coli HB 101 (referred to as helper) containing 50 μg/d kanamycin, respectively.
Cultured in medium B at 37°C for 1 night. Agrobacterium tumefaciens
efaciens) LBA 4404 strain, LB medium 5
- Cultured at 25-28°C for about 36 hours.

各培養液は、1.5mt’容エッペンドルフチューブに
とり、遠心により集菌した。菌体は0.5〜ldの10
mM Mg5O,で3回はと洗浄した後、約soμpの
10mM Mg5O,に懸濁した。各菌体懸濁液は、ド
ナー、ヘルパー、アグロバクテリウムツメファシェンス
(A、 Tumefaciens)の順でLBプレート
上にスポットし、25℃、−夜混合培養した。混合培養
菌体は、白金耳等でかき取り、l−の10mM Mg5
O,に懸濁し、10!〜lO″倍に希釈し、その50μ
lを400μg/d  カナマイシン含有Mi nAプ
レー) [MinA培地(第2表参照)の入ったシャー
レ〕に蒔き、25〜28°C12〜3日培養し、キメラ
遺伝子が導入されたアグロバクテリウムツメファシェン
ス(A、 Tumefaciens)の単一コロニーを
取得した。
Each culture solution was placed in a 1.5 mt' volume Eppendorf tube, and bacteria were collected by centrifugation. Bacterial cells are 0.5 to 10 ld
After washing three times with mM Mg5O, it was suspended in approximately sop of 10mM Mg5O. Each bacterial cell suspension was spotted on an LB plate in the order of donor, helper, and Agrobacterium tumefaciens (A, Tumefaciens), and mixed culture was carried out at 25° C. overnight. The mixed culture bacterial cells were scraped off with a platinum loop, etc., and added with l-10mM Mg5.
Suspended in O, 10! Dilute to ~lO'' times and 50μ
Agrobacterium tumefacia into which the chimeric gene had been introduced was sown in a Petri dish containing MinA medium (see Table 2)] and cultured at 25-28°C for 12-3 days. A single colony of Tumefaciens (A, Tumefaciens) was obtained.

第2表 ^、  MinA培地 に、HPO。Table 2 ^, MinA medium In, HPO.

KH,PO。K.H., P.O.

(NH4)*504 Mg5Oa・78.0” 10.5 g/1 4.5g/1 1.0g/1 0.2g/l クエン酸ナトリウム 0.5g/l グルコースリ    2.0g/l 寒天       12  g/1 0′別途殺菌 B、 除菌用培地 LS培地(pH5,6〜5.8) クラフオラン    0.5g/l カナマイシン    0.1g/I C0シュート形成用培地 LS培地(pH5,6〜5.8) ベンジルアデニン  1 ■/1 ナフタレン酢酸   0.1■/1 クラフオラン    0.5 g/l カナマイシン    0.1g/I D、 カルス誘導培地 LS培地(pH5,6〜5.8) ベンジルアデニン  0.8■/l ナフタレン酢酸   0.5■/1 カナマイシン    0.1g/l ■Leaf Disc法によるタバコの形質転換キメラ
遺伝子を保持するアグロバクテリウムツメファシェンス
(A、 Tumefaciens)を50μg/rdカ
ナマイシン含有LB培地5rd中、25〜28°C1夜
培養したものを、シャーレに移し、そこに5111m角
に切った無菌タバコの葉を表皮を下に、気孔を上にして
3分間浸汐した。余分の菌液をキムワイブで除き、LS
培地プレートに置床し、25°Cで培養した。2日後、
除菌用培地プレート(第2表)に移植、3日後、シュー
ト形成用培地(第2表)へ移植した。その後、5〜7日
間隔でシュート形成用培地へ移植し続けた。茎葉部の発
達したシュートが出てきたら切取り、除菌用培地に移植
した。
(NH4)*504 Mg5Oa・78.0” 10.5 g/1 4.5 g/1 1.0 g/1 0.2 g/l Sodium citrate 0.5 g/l Glucose 2.0 g/l Agar 12 g /1 0' Separate sterilization B, sterilization medium LS medium (pH 5,6-5.8) Clafuolan 0.5 g/l Kanamycin 0.1 g/I C0 shoot formation medium LS medium (pH 5,6-5.8 ) Benzyl adenine 1 ■/1 Naphthalene acetic acid 0.1 ■/1 Clafuoran 0.5 g/l Kanamycin 0.1 g/ID, Callus induction medium LS medium (pH 5,6-5.8) Benzyl adenine 0.8 ■ /l Naphthaleneacetic acid 0.5■/1 Kanamycin 0.1g/l ■Transformation of tobacco by Leaf Disc method LB medium containing Agrobacterium tumefaciens (A, Tumefaciens) carrying chimeric gene at 50 μg/rd kanamycin 5rd, cultured at 25-28°C for 1 night was transferred to a petri dish, and sterile tobacco leaves cut into 5111 m squares were soaked there for 3 minutes with the epidermis facing down and the stomata facing up.Excess bacterial solution is removed by Kimwaibu, LS
It was placed on a medium plate and cultured at 25°C. 2 days later,
The cells were transplanted to a sterilization medium plate (Table 2), and 3 days later, they were transplanted to a shoot formation medium (Table 2). Thereafter, transplantation into medium for shoot formation was continued at intervals of 5 to 7 days. When shoots with developed stems and leaves appeared, they were cut and transplanted to a sterilization medium.

成育した幼植物体は、バーミキュライトとピートモスを
1=1に混合し、これに約1 g/lのハイボネックス
溶液を充分混合したものを含む植木鉢へ移し、−日の内
14時間は10.000ルツクスの光を照射し、25°
Cで栽培した。なお、水は毎日与え、ハイボネックス等
の肥料は週に一回与えた。
The grown seedlings were transferred to a flower pot containing a 1:1 mixture of vermiculite and peat moss, mixed well with a Hyvonex solution of approximately 1 g/l, and heated to 10,000 g/l for 14 hours during the day. Irradiate Lux light, 25°
Cultivated in C. In addition, water was given every day, and fertilizer such as Hyvonex was given once a week.

■ トランスジェニックタバコの各器官でのGU活性 丈が約10cmまで成長した形質転換タバコを葉、茎、
根に分けて液体窒素で凍結させ、300〜1000■を
エッペンドルフチューブに分取した。抽出緩衝液(50
mMリン酸緩衝液、 pH7,0,10mM EDTA
、0.1%トリトンX−100,0,1%ラウリルザル
コン、10mM  β−メルカプトエタノール)300
〜600μlと海砂を加え、ガラス棒で粉砕し、遠心分
離により上溝を回収した。GUS活性及び蛋白量の測定
は前述(3)記載の方法に従った。その結果を第3表に
示した。プロモーターが存在しないとGUS遺伝子の発
現はほとんど認められないが、prxC2のプロモータ
ーが存在すると葉、茎、根、いずれの器官でも高いGU
S活性が認められ、prxC2のプロモーターがいずれ
の器官でも高く発現しうることが示された。またprx
C2のプロモーターは、同様に測定したprXclaお
よびprxctbのプロモーターよりも高いGUS活性
を示した。
■ GU activity in each organ of transgenic tobacco Transgenic tobacco that has grown to a height of approximately 10 cm is processed into leaves, stems,
The roots were divided and frozen in liquid nitrogen, and 300 to 1000 square centimeters were aliquoted into Eppendorf tubes. Extraction buffer (50
mM phosphate buffer, pH 7,0, 10mM EDTA
, 0.1% Triton X-100, 0.1% lauryl sarcone, 10mM β-mercaptoethanol) 300
~600 μl and sea sand were added, crushed with a glass rod, and the upper groove was collected by centrifugation. GUS activity and protein amount were measured according to the method described in (3) above. The results are shown in Table 3. In the absence of the promoter, almost no GUS gene expression is observed, but in the presence of the prxC2 promoter, high GU expression is observed in all organs, including leaves, stems, and roots.
S activity was observed, indicating that the prxC2 promoter can be highly expressed in any organ. Also prx
The C2 promoter showed higher GUS activity than the prXcla and prxctb promoters, which were similarly measured.

〔以下余白〕[Margin below]

第3表 野性型     <20   <20   <20なし
  1    <20  21   262     
 <20    <20    <20CaMV35s
 1     380   170  1100prx
c1a  l      <20   240   3
302      <20    45    28p
rxc1b  1      < 20    75 
  680prxC2153011002800 (” pmol/min  ■  蛋白)[5]  )
−ランスジェニックタバコ植物体のカルス化によるGU
S活性の誘導 各種形質転換タバコ植物体の東部を5M〜1 cm角に
切取り、これをカルス誘導培地(第2表)に置床し、2
5°C1暗所下で2〜3週間培養し形成された各カルス
のGUS活性を前述[3]記載の方法に従い測定した。
Third surface wild type <20 <20 <20 none 1 <20 21 262
<20 <20 <20CaMV35s
1 380 170 1100prx
c1a l <20 240 3
302 <20 45 28p
rxc1b 1 < 20 75
680prxC2153011002800 (" pmol/min ■ Protein) [5] )
-GU by callus formation of transgenic tobacco plants
Induction of S activity The eastern part of various transformed tobacco plants was cut into 5M to 1 cm squares, placed on a callus induction medium (Table 2), and
The GUS activity of each callus formed by culturing in the dark at 5° C. for 2 to 3 weeks was measured according to the method described in [3] above.

その結果を第4表に示した。CaMV35sプロモータ
ーを導入したものではカルス化してもGUS活性は誘導
されず、比活性はむしろ低下した。他方、prxC2の
プロモーターを導入したものではカルス化により更に約
40倍活性が上昇し、prXC2のプロモーターがカル
ス化に伴い、より誘導的に強く発現することが示された
。また、prxC2のプロモーターは、同様に測定した
prxclaおよびprxclbのプロモーターよりも
カルス化に伴い、より誘導的に強く発現することが示さ
れた。
The results are shown in Table 4. In the cells into which the CaMV35s promoter was introduced, GUS activity was not induced even after callus formation, and the specific activity was rather reduced. On the other hand, in those into which the prxC2 promoter was introduced, the activity further increased by about 40 times due to callus formation, indicating that the prXC2 promoter was more strongly expressed in an inducible manner with callus formation. Furthermore, it was shown that the promoter of prxC2 was more strongly expressed in an inducible manner with callus formation than the promoters of prxcla and prxclb, which were similarly measured.

第4表 プロモーター  GUS活性1  誘導性葉  カルス なし      6   10   1.7CaMV3
5s    475   104   0.22prx
c1a      16   257   16prx
clb      9   250   28prxC
2220970044 (” pmol/ll1in wg  蛋白)〔発明の
効果〕 本発明のDNA断片は、植物細胞内等で良好なプロモー
ター活性を有するので、各種異種遺伝子を発現し得る発
現ベクターに有利に使用し得る。
Table 4 Promoter GUS activity 1 Inducible leaf No callus 6 10 1.7CaMV3
5s 475 104 0.22prx
c1a 16 257 16prx
clb 9 250 28prxC
2220970044 ("pmol/ll1in wg protein) [Effects of the Invention] Since the DNA fragment of the present invention has good promoter activity in plant cells, etc., it can be advantageously used in expression vectors capable of expressing various heterologous genes.

本発明のベクターは、種々の有用なポリペプチドを宿主
内で効率よく発現させることができる。
The vector of the present invention can efficiently express various useful polypeptides in a host.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のDNA断片の塩基配列を示す。 第2図は、prxC2の5′非翻訳領域をGUS遺伝子
のpBllolへの組換えの方法を示す。 なお、図中において、C2はprxC2を、GUSはベ
ーターグルクロニナーゼを、NPTIIはネオマイシン
リン酸転移酵素の遺伝子を表わしている。
FIG. 1 shows the base sequence of the DNA fragment of the present invention. FIG. 2 shows a method for recombining the 5' untranslated region of prxC2 into the GUS gene pBllol. In the figure, C2 represents prxC2, GUS represents beta-glucuroninase, and NPTII represents the neomycin phosphotransferase gene.

Claims (9)

【特許請求の範囲】[Claims] (1)下記に示す全部もしくは一部の塩基配列、または
それらと均等な塩基配列を有し、プロモーター活性を有
するDNA断片。 【遺伝子配列があります】
(1) A DNA fragment having all or part of the base sequence shown below, or a base sequence equivalent thereto, and having promoter activity. [There is a gene sequence]
(2)DNA断片が西洋ワサビのペルオキシダーゼアイ
ソザイムの遺伝子に由来する請求項(1)記載のDNA
断片。
(2) The DNA according to claim (1), wherein the DNA fragment is derived from a horseradish peroxidase isozyme gene.
piece.
(3)植物または酵母において、プロモーター活性を有
する請求項(1)または(2)記載のDNA断片。
(3) The DNA fragment according to claim (1) or (2), which has promoter activity in plants or yeast.
(4)請求項(1)記載のDNA断片が挿入されたベク
ター。
(4) A vector into which the DNA fragment according to claim (1) is inserted.
(5)異種遺伝子がプロモーターの転写制御下にある請
求項(4)記載のベクター。
(5) The vector according to claim (4), wherein the heterologous gene is under the transcriptional control of a promoter.
(6)異種遺伝子が生理活性を有するポリペプチドをコ
ードする遺伝子である請求項(5)記載のベクター。
(6) The vector according to claim (5), wherein the heterologous gene is a gene encoding a physiologically active polypeptide.
(7)異種遺伝子がベーターグルクロニナーゼ、ペルオ
キダーゼ、アスコルビル酸オキシダーゼ、ルシフェラー
ゼの少なくとも一種から選ばれる遺伝子である請求項(
5)記載のベクター。
(7) A claim in which the heterologous gene is a gene selected from at least one of beta-glucuroninase, peroxidase, ascorbyl oxidase, and luciferase (
5) Vectors described.
(8)請求項(4)記載のベクターにより形質転換され
た宿主。
(8) A host transformed with the vector according to claim (4).
(9)宿主が植物または酵母である請求項(8)記載の
宿主。
(9) The host according to claim (8), wherein the host is a plant or yeast.
JP24477990A 1990-09-14 1990-09-14 DNA fragment having promoter activity Expired - Fee Related JP3259178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24477990A JP3259178B2 (en) 1990-09-14 1990-09-14 DNA fragment having promoter activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24477990A JP3259178B2 (en) 1990-09-14 1990-09-14 DNA fragment having promoter activity

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP11196728A Division JP2000041688A (en) 1999-07-09 1999-07-09 Dna fragment having promoter activity

Publications (2)

Publication Number Publication Date
JPH04126088A true JPH04126088A (en) 1992-04-27
JP3259178B2 JP3259178B2 (en) 2002-02-25

Family

ID=17123797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24477990A Expired - Fee Related JP3259178B2 (en) 1990-09-14 1990-09-14 DNA fragment having promoter activity

Country Status (1)

Country Link
JP (1) JP3259178B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998056921A1 (en) * 1997-06-12 1998-12-17 Dow Agrosciences Llc Regulatory sequences for transgenic plants
US7354390B1 (en) 1996-09-30 2008-04-08 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Agriculture And Agri-Food Seed coat specific nucleotide sequence encoding peroxidase

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7354390B1 (en) 1996-09-30 2008-04-08 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Agriculture And Agri-Food Seed coat specific nucleotide sequence encoding peroxidase
WO1998056921A1 (en) * 1997-06-12 1998-12-17 Dow Agrosciences Llc Regulatory sequences for transgenic plants

Also Published As

Publication number Publication date
JP3259178B2 (en) 2002-02-25

Similar Documents

Publication Publication Date Title
JP3098238B2 (en) DNA assembly, method for inhibiting production of fruit softening enzyme using the same, plant cell containing the DNA assembly, and plant comprising such plant cell
AU657276B2 (en) Recombinant ACC synthase
JPH06504668A (en) Control of fruit ripening and plant senescence
JP2005516589A (en) Plant polypeptide and polynucleotide encoding the same
JPH06504439A (en) Low temperature tolerant plants and their production method
CN113788886B (en) Application of cucumber photosynthetic system II oxygen evolution enhancement protein CsPSII-OEEP in resistance to melon epidemic diseases
CN113444734B (en) Preparation method and application of salt-tolerant transgenic poplar
CN110358776A (en) A kind of Rhizoctonia solani Kuhn pathogenic related gene and its application
CN116064573B (en) MdTCP17 gene and protein for inhibiting adventitious root development and application thereof
CN116064572B (en) MdWOX11 gene and protein for promoting adventitious root development and application thereof
CN114085854B (en) Drought-resistant and salt-tolerant gene OsSKL2 for rice and application thereof
JPH04126088A (en) Dna fragment having promoter activity
JP2009005684A (en) Method for modifying form of plant
CN113215186B (en) Application of light respiration branch protein in regulation and control of plant traits
BRPI0708694A2 (en) methods for increasing sprout-to-root ratio, seed yield and disease resistance
CN113788887B (en) Cucumber photosynthetic system II reaction center protein CsPSII-CP47 and application thereof in resisting melon epidemic disease
CN112048490B (en) Cotton silk/threonine protein phosphatase GhTPOPP 6 and coding gene and application thereof
CN115197307B (en) Protein IbGER5 for regulating stress resistance of plants, coding gene and application thereof
CN110628778B (en) Gene, protein, vector, recombinant gene engineering bacterium for accelerating fruit maturation and application thereof
CN111454987B (en) Application of GhNAC091 gene in improving plant photosynthesis efficiency and strong light tolerance
KR100545619B1 (en) MITEs-Like Element and Transcriptional Activation Element
JPWO2003004649A1 (en) Promoters that express foreign genes at the root and shoot apex
KR100250902B1 (en) Method of producing plants having resistance in cymv
JP2000041688A (en) Dna fragment having promoter activity
CN117683781A (en) Application of OsCSLE6 gene in regulation and control of drought resistance of rice

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091214

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees