KR100250902B1 - Method of producing plants having resistance in cymv - Google Patents

Method of producing plants having resistance in cymv Download PDF

Info

Publication number
KR100250902B1
KR100250902B1 KR1019970056293A KR19970056293A KR100250902B1 KR 100250902 B1 KR100250902 B1 KR 100250902B1 KR 1019970056293 A KR1019970056293 A KR 1019970056293A KR 19970056293 A KR19970056293 A KR 19970056293A KR 100250902 B1 KR100250902 B1 KR 100250902B1
Authority
KR
South Korea
Prior art keywords
cymv
envelope protein
plant
vector
transformed
Prior art date
Application number
KR1019970056293A
Other languages
Korean (ko)
Other versions
KR19990034655A (en
Inventor
김병동
임선형
고문경
Original Assignee
김병동
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김병동 filed Critical 김병동
Priority to KR1019970056293A priority Critical patent/KR100250902B1/en
Publication of KR19990034655A publication Critical patent/KR19990034655A/en
Application granted granted Critical
Publication of KR100250902B1 publication Critical patent/KR100250902B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/06Processes for producing mutations, e.g. treatment with chemicals or with radiation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/12Processes for modifying agronomic input traits, e.g. crop yield
    • A01H1/122Processes for modifying agronomic input traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • A01H1/1245Processes for modifying agronomic input traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, e.g. pathogen, pest or disease resistance
    • A01H1/126Processes for modifying agronomic input traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, e.g. pathogen, pest or disease resistance for virus resistance
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8283Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for virus resistance

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Virology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Environmental Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Botany (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE: Provided is a method for manufacturing plants resistant against CyMV by inserting an expression vector containing genes of CyMV envelop protein into a targeted plant. CONSTITUTION: A method for manufacturing plants resistant against CyMV is comprised of the next steps of: i) separating the gene of CyMV envelop protein from Nicotiana occidentalis; ii) inserting the gene into Sma l-cut pGEM-7Z(+) vector; iii) transforming E. coli JM109 with the vector to obtain clones pCyCPS and pCyCPA; iv) inserting the clones into Xba l-cut pMB I; v) transforming Agrobacterium tumefaciens LBA 4404 with the vector; vi) checking the insertion direction of envelop proteins (pMBPCPS is in sense direction and pMBPCPA in antisense direction); and vii) transforming targeted plants with the vectors.

Description

CyMV에 내 저항성을 갖는 식물체를 생산하는 방법How to produce plants resistant to CyMV

본 발명은 바이러스 외피단백질 유전자도입을 통한 바이러스 저항성 난초, 담배등 식물체의 생산에 관한 것이다. 더욱 상세하게는 본 발명은 심비디움 모자이크 바이러스(cymbidium mosaic virus, CyMV)의 외피단백질(coat protein) 유전자를 순수분리하여 재조합 유전자를 제조한 후 식물 세포내로 도입하여 바이러스 저항성 형질전환 식물체를 생산하는 방법에 관한 것이다.The present invention relates to the production of plants such as virus-resistant orchids, tobacco through viral envelope protein transduction. More specifically, the present invention provides a method of producing a viral resistant transgenic plant by preparing a recombinant gene by purely separating coat protein genes of cymbidium mosaic virus (CyMV) and then introducing them into plant cells. It is about.

난은 꽃과 줄기를 관상의 주된 대상으로 하기 때문에 병충해에 한번 피해를 입으면 상품가치가 떨어져 폐기 처분해야 하므로 어느 작물보다도 병충해에 의한 경제적 손실이 심각하다. 병충해에 의한 피해에서도 난의 품질을 퇴화시키는 가장 중요한 요인은 각종 바이러스병에 의한 피해이며, 난식물체에서 CyMV에 의한 바이러스병은 피해가 세계적으로 가장 심각한 실정이다. 이 바이러스에 감염되었을 경우 증상은 꽃 생산량 감소, 기형화 생성 증가, 꽃 품질 저하, 화아의 소실 등이 일어나며 심한 경우 식물 자체가 고사한다. 또한 CyMV 바이러스는 널리 재배되고 있는 난 품종을 기주로 하고 있으며, 난의 상품가치를 저하 시키는 증상을 나타내는 것으로 알려져 있다(Zettler et. al., Plant Disease, 74, 621-625, 1990).Since eggs are the main object of ornamentals and stems, the economic value of pests is more serious than any other crops because once the insect pests are damaged, the commodity value falls and must be disposed of. In the damage caused by pests, the most important factor that degrades egg quality is damage caused by various viral diseases, and the viral disease caused by CyMV in egg plants is the most serious in the world. Symptoms of the virus include decreased flower production, increased malformation, decreased flower quality, and loss of flower buds. In severe cases, the plant dies. In addition, CyMV virus is based on egg cultivation, which is widely cultivated, and it is known to exhibit symptoms that lower the product value of eggs (Zettler et. Al., Plant Disease, 74, 621-625, 1990).

종래 난에 대한 바이러스의 감염 및 그 피해정도를 줄이려는 연구가 다방면으로 있어 왔으나 아직은 그 효과가 미미한 상태이다. 그 이유는 바이러스의 감염기작이 확실하게 밝혀진 것이 없고 전형적인 생활상을 보이지 않기 때문이며 또 곤충이나 곰팡이, 세균 등과 같은 미생물에 대한 화학적 방제가 바이러스에는 어렵다는 것이다. 그러나 최근 분자생물학과 유전자조작 기술의 비약적인 발달에 의해 바이러스의 식물체 감염기작에 관한 연구가 활발히 진행되고 있고(Fraser, Annu. Rev., 28, 179-200, 1990), 식물체로의 외부유전자 도입 기술의 발달로 쌍자엽식물 뿐만 아니라 electroporation, bombardment등을 이용한 단자엽 및 기타 작물의 형질전환도 가능하게 되었다(Songstad et. al., Plant Cell. Org. Cult, 40, 1-15, 1995). 바이러스 저항성식물체를 유전공학적인 기법으로 개발하기 위해서는 외피단백질유전자를 식물체에 삽입 하거나 위성(satellite) RNA를 이용하는 방법, antisense RNA를 이용하여 바이러스유전자의 발현을 억제함에 따라 바이러스 저항성을 가지는 식물체를 얻는 방법들이 알려져 있다(Scolthof et. al., Plant Physiol. 102, 7-12, 1993).Conventional research has been conducted to reduce the degree of virus infection and its damage to eggs, but the effect is still insignificant. The reason for this is that the mechanism of infection of the virus has not been clearly identified and typical life is not shown. Also, chemical control of microorganisms such as insects, fungi and bacteria is difficult for the virus. Recently, however, research on the viral infection mechanism has been actively conducted by the rapid development of molecular biology and genetic engineering techniques (Fraser, Annu. Rev., 28, 179-200, 1990). Development has made it possible to transform not only dicots but also monocots and other crops using electroporation and bombardment (Songstad et. Al., Plant Cell.Org.Cult, 40, 1-15, 1995). In order to develop virus-resistant plants by genetic engineering techniques, methods of inserting envelope protein genes into plants, using satellite RNA, and obtaining antiviral plants by inhibiting the expression of viral genes using antisense RNA Are known (Scolthof et. Al., Plant Physiol. 102, 7-12, 1993).

한편, CyMV는 Jensen(Phytopath, 41, 491-494, 1951)이 명명한 바이러스로서 모양은 구부러진 막대모양이며, 길이는 500nm, 폭은 18nm, 보존한계는 7일, 내열성은 65-75 C인 Potexvirus 그룹이다. 특히, CyMV의 RNA 제놈 크기는 6.8kb이고, 외피단백질의 크기는 25-26 kDa로 Ryu 등에 의하여 CyMV 외피단백질유전자의 염기서열이 결정되었으며(Gene, 156, 303-304, 1995), 상기의 유전자를 식물체서 발현시켜 형질전환체를 제조하고자 하는 시도가 진행되고 있다.CyMV is a virus named by Jensen (Phytopath, 41, 491-494, 1951), which has a curved rod shape, 500 nm in length, 18 nm in width, 7 days retention limit, and 65-75 C heat resistance. Group. In particular, the RNA genome size of CyMV is 6.8 kb, the size of the envelope protein is 25-26 kDa, and the base sequence of the CyMV envelope protein gene was determined by Ryu et al. (Gene, 156, 303-304, 1995). Attempts have been made to produce transformants by expressing in plants.

따라서 본 발명의 목적은 CyMV viral RNA로부터 cDNA 라이브러리를 제조하고, 이로부터 순수분리한 CyMV 외피단백질유전자를 식물세포로 유전자를 운반하는 적당한 벡터에 삽입하여 식물세포를 형질전환시키기에 적합한 재조합 벡터를 제공하는 데 있다.Accordingly, an object of the present invention is to prepare a cDNA library from CyMV viral RNA, and insert the CyMV envelope protein gene isolated therefrom into a suitable vector carrying genes to plant cells, thereby providing a recombinant vector suitable for transforming plant cells. There is.

본 발명의 또 다른 목적은 상기의 재조합 벡터로 형질전환되어 세포에서 CyMV 외피단백질 유전자를 생성하는 식물체의 생산방법을 제공하여, CyMV 내성이 약한 식물을 이 바이러스에 내성이 있는 식물로 형질전환하는 방법을 제공하는 데 있다.Still another object of the present invention is to provide a method for producing a plant transformed with the recombinant vector to generate a CyMV envelope protein gene in a cell, thereby transforming a plant having a low CyMV resistance into a plant resistant to the virus. To provide.

본 발명자들은 상기 목적을 달성하기 위하여 CyMV 외피단백질 유전자를 CyMV의 증식기주인 Nicotiana occidentalis에 증식시킨 다음 CyMV viral RNA를 분리하고, 1㎍의 viral RNA로부터 cDNA 라이브러리를 제조한 다음, CyMV에 특이적인 프라이머를 이용하여 CyMV 외피단백질 유전자를 순수분리하였다. 분리한 CyMV 외피단백질 유전자를 클로닝하여 이들에 대하여 생거(Sanger)의 디데옥시사슬 종결방법(dideoxy chain termination)으로 전체 염기서열을 결정하였다(Sanger, Science, 214, 1205-1210, 1981).In order to achieve the above object, the present inventors propagate the CyMV envelope protein gene to Nicotiana occidentalis, which is the growth host of CyMV, isolate CyMV viral RNA, prepare a cDNA library from 1 μg viral RNA, and then prepare a primer specific for CyMV CyMV envelope protein gene was purified purely. The isolated CyMV envelope protein genes were cloned and their entire sequences were determined by Sanger's dideoxy chain termination (Sanger, Science, 214, 1205-1210, 1981).

또 분리한 CyMV 외피단백질 유전자를 식물체에서 발현시키기 위하여 이원벡터(binary vector)인 pMBP1의 절편을 연결시켜 식물체의 형질전환에 사용할 벡터 pMBPCPS와 pMBPCPA를 완성하였다.In order to express the isolated CyMV envelope protein gene in plants, fragments of a binary vector pMBP1 were linked to complete vectors pMBPCPS and pMBPCPA for use in plant transformation.

그리고, CyMV 외피단백질 유전자를 식물체에서 발현시키기 위하여 pMBPCPS 와 pMBPCPA를 아그로박테리움 투메파시엔스(Agrobacterium tumefaciens LBA 4404)로 도입하고, 이 아그로박테리움으로 식물세포를 형질전환하였다. 상기의 벡터는 1997년 10월 17일 생명공학연구소에 기탁번호(KCTC 8839P)로 기탁하였다. 형질전환된 식물세포는 100㎍/㎖ 카나마이신(kanamycin)과 300㎍/㎖ 카베니실린(carbenicillin)이 함유된 슈트(shoot)유도 선택 배지에서 슈트를 유도한다. 유도된 슈트를 선택배지에 치상하여 뿌리를 유도하고, 뿌리가 유도된 식물을 포트에 옮겨 순화시키고 계속 생육시켰다. 식물세포로 도입된 CyMV 외피단백질 유전자가 발현되는지의 여부를 검정하기 위하여 PCR를 수행하여 CyMV 외피단백질 유전자가 식물체의 게놈(genome)에 도입되었는지 확인하였다. 또한, 노던 블롯 방법으로 유전자가 전사(transcription)되었는지의 여부를 확인하였다. 끝으로 형질전환된 식물체에 CyMV를 접종하여 바이러스에 대한 내성을 검정하였다.In addition, pMBPCPS and pMBPCPA were introduced into Agrobacterium tumefaciens LBA 4404 to express CyMV envelope protein genes in plants, and plant cells were transformed with Agrobacterium. The vector was deposited with the accession number (KCTC 8839P) at the Biotechnology Research Institute on October 17, 1997. Transformed plant cells induce a suit in a shoot induced selection medium containing 100 μg / ml kanamycin and 300 μg / ml carbenicillin. The induced chute was placed on a selection medium to induce roots, and the root-derived plants were transferred to pots to purify and continued to grow. In order to test whether the CyMV envelope protein gene introduced into the plant cell was expressed, PCR was performed to confirm that the CyMV envelope protein gene was introduced into the genome of the plant. In addition, the Northern blot method was used to determine whether the gene was transcription. Finally, CyMV was inoculated into the transformed plants to assay the resistance to the virus.

이하 본 발명을 구체적으로 구성과 작용을 실시예에 의거하여 설명한다. 하기 실시예는 본 발명의 설명을 위해 제공되는 것일 뿐, 본 발명의 권리범위는 이에만 제한되지 않는다.Hereinafter, the present invention will be described in detail with reference to examples. The following examples are merely provided to illustrate the present invention, the scope of the present invention is not limited thereto.

도1은 cDNA 라이브러리로부터 순수 분리한 CyMV 외피단백질 유전자의 완전한 염기서열을 나타내고,Figure 1 shows the complete nucleotide sequence of the CyMV envelope protein gene purely isolated from the cDNA library,

도2는 CyMV 외피단백질 유전자를 식물체에서 발현시키기 위하여 pMBPCPS와 pMBPCPA를 아그로박테리움 투메파시엔스(Agrobacterium tumefaciens LBA 4404)로 도입하는 일련의 순서를 도식화한 그림이며,2 is a diagram illustrating a sequence of introducing pMBPCPS and pMBPCPA into Agrobacterium tumefaciens LBA 4404 to express CyMV envelope protein genes in plants.

도3은 발현벡터와 pMBPCPS와 pMBPCPA를 이용한 담배세포의 형질전환 과정을 순서대로 보여주고 있으며,Figure 3 shows the transformation process of tobacco cells using the expression vector and pMBPCPS and pMBPCPA in order,

도4는 형질전환된 담배로부터 NPTII 특이적 프라이머를 이용해서 PCR한 결과를 나타내며,4 shows the results of PCR using NPTII specific primers from transformed tobacco,

도5는 CyMV 외피단백질 유전자를 도입시킨 담배로부터 분리한 전체 RNA를 분리하여 노던(Northern)분석을 수행한 결과를 나타내며,Figure 5 shows the results of performing Northern (Northern) analysis by separating the total RNA isolated from the tobacco to which the CyMV envelope protein gene was introduced,

도6은 형질전환된 담배의 접종 15일 후의 바이러스검정을 나타내며(상부잎은 증상이 없음)Figure 6 shows the viral test 15 days after inoculation of the transformed tobacco (top leaf has no symptoms)

도7은 형질전환되지 않은 담배의 접종 5주 후 2차엽이 바이러스에 감염된것을 나타내는 바이러스 검정결과이다.Figure 7 shows the results of virus assay showing that the secondary lobe is infected with the virus 5 weeks after inoculation of untransformed tobacco.

도8은 형질전환된 담배의 접종 5주 후, 2차엽의 바이러스 검정결과이다.Figure 8 shows the results of virus assay of the secondary lobe 5 weeks after inoculation of the transformed tobacco.

[실시예 1]Example 1

CyMV viral RNA로부터 cDNA 합성과 클로닝CDNA synthesis and cloning from CyMV viral RNA

CyMV viral RNA 분리는 PEG(polyethylene glycol) 침전법과 원심분리에 의하여 CyMV를 분리하고, viral RNA 정제는 두 번의 phenol 추출과 페놀/클로포름(1:1) 추출에 의하여 정제하였다.CyMV viral RNA was isolated by PEG (polyethylene glycol) precipitation and centrifugation, and viral RNA was purified by two phenol extraction and phenol / chloroform (1: 1) extraction.

정제한 1㎍의 viral RNA를 올리고(dT) 셀룰로스 컬럼을 이용하여 mRNA를 분리하고 정제하였으며, 분리한 5㎍의 mRMA를 취하여 ZAP-cDNA 합성 키트(Stratagene, U.K.)를 이용하여 cDNA을 합성하였다. 합성된 cDNA에 EcoRI 어댑터(adapter)를 붙인 후, 세파크릴(Sephacryl) S-400 스펀 컬럼으로 합성된 cDNA를 크기에 따라 분획하였다. 분획된 cDNA를 Uni-Zap XR 벡터(Stratagene, U.K.)와 결합한 후 패키징 익스트랙트(packaging extract)를 사용하여 실험실적 패키징(in-vitro packaging)을 수행하였다.Purified 1 μg of viral RNA was isolated and purified mRNA using oligo (dT) cellulose column, and 5 μg of mRMA was isolated to synthesize cDNA using ZAP-cDNA synthesis kit (Stratagene, U.K.). After attaching an EcoRI adapter to the synthesized cDNA, cDNA synthesized with Sephacryl S-400 spun column was fractionated according to size. Fractionated cDNA was combined with Uni-Zap XR vector (Stratagene, U.K.) and then subjected to in-vitro packaging using a packaging extract.

[실시예 2]Example 2

CyMV cDNA의 염기서열 결정Sequence determination of CyMV cDNA

CyMV cDNA의 염기서열 결정은 Amersham의 thermo sequenase cycle sequencing kit의 방법에 따라 수행하였다. CyMV 유전자를 분리하기 위하여 증폭된 PCR 반응산물의 절편을 DIG-Labeling & Detection 키트(Boehringer Mannheim, Germany)를 이용하여 표지하고 이를 프로브(probe)로 사용하였다. 먼저 82-mm 페트리디쉬(petri dish)에 약 6×105pfu의 프라크(plaque)가 형성되도록 대장균(E. coli) XL1-Blue에 파아지(phage)를 감염시켜, 37℃에서 12시간 배양하여 스크리닝을 수행하였다. 스크리닝으로부터 white colony만을 얻었고 재조합 Uni-ZAP XR 파아지들이 지니고 있는 파아지미드(phagemid)를 대장균인 XL1-blue로 옮기기 위하여 R408 헬퍼파지 (helper phage)를 이용하여 생체내 절단(in vivo excision)을 수행하였으며, 생성된 콜로니들을 각각 8개씩 선별하여 알칼리 용혈(alkaline detergent) 방법으로 플라스미드를 분리하고, EcoRI과 KpnI으로 이중절단하여 amarathin 유전자를 지니고 있는 클론들을 선별하였다.The sequencing of CyMV cDNA was performed according to the method of Amersham thermo sequenase cycle sequencing kit. In order to isolate the CyMV gene, fragments of the amplified PCR reaction products were labeled using a DIG-Labeling & Detection kit (Boehringer Mannheim, Germany) and used as probes. First, phages were infected with E. coli XL1-Blue to form a plaque of about 6 × 10 5 pfu in an 82-mm petri dish, and incubated at 37 ° C. for 12 hours. Screening was performed. Only white colonies were obtained from screening and in vivo excision was performed using R408 helper phage to transfer phagemids from recombinant Uni-ZAP XR phages to E. coli XL1-blue. Each of the generated colonies was selected to separate plasmids by alkaline hemolysis (alkaline detergent) method, and double-cut by EcoRI and KpnI to select clones with amarathin gene.

염기서열을 결정하기 위하여 분리한 클론을 pBlueScript SK(-) 벡터에 서브클로닝(subcloning)시켰다. 선발된 클론을 PstⅠ으로 절단한 후 자가연결(self ligation)을 수행하여 형질전환가능한 XL1-Blue에 형질전환시킨 다음, 50㎍/㎖ 앰피실린이 함유된 LB 배지(10g/ℓ Bactotrypton, 5g/ℓ Yeast exrtact, 5g/ℓ NaCl, pH 7.5)에서 생성된 콜로니들을 선별하여 알칼리 용혈 방법으로 플라스미드를 분리하여, HindⅢ+SmaⅠ으로 절단한 다음 적당한 서브클론들을 선발하였다. 각, 콜로니로부터 얻은 DNA를 정제하여 SK 프로모터 프라이머, T7 프로모터 프라이머를 사용하여 디데옥시 사슬 종결법으로 시쿼나제(Sequenase, USB)를 사용하여 CyMV cDNA 삽입체(insert)의 염기서열을 결정하였다.The clones isolated were subcloned into pBlueScript SK (-) vectors to determine sequencing. Selected clones were digested with PstI and subjected to self ligation to transform into transformable XL1-Blue, followed by LB medium (10 g / l Bactotrypton, 5 g / l) containing 50 μg / ml ampicillin. Colonies generated in Yeast exrtact, 5 g / L NaCl, pH 7.5) were selected, plasmids were isolated by alkaline hemolysis, digested with HindIII + SmaI, and appropriate subclones were selected. The DNA obtained from each colony was purified and the base sequence of the CyMV cDNA insert was determined by using a sequinase (USB) as a dideoxy chain termination method using SK promoter primer and T7 promoter primer.

도1에서 보는 바와 같이, pMBP1이 지니고 있는 CyMV cDNA 삽입체의 염기서열을 결정한 결과, 전체크기는 약 1.5kbp이며, 이 가운데 CyMV 외피단백질을 합성하는 구조유전자 부분은 660bp로 이루어진 하나의 개방 해독틀(open reading frame)로 되어 있으며, 다른 potexvirus와 마찬가지로 CyMV의 외피단백질 유전자가 3' 쪽에 위치한다는 것과 3'이 폴리아데닐 부위(polyadenylation site)가 있음을 볼 수 있었다. 도 1에서 (*)는 종결코돈을 나타내며, 아미노산 서열은 IUPAC 명명법에 따라 작성되었다. 도 1에 보듯이 CyMV 외피단백질은 아미노산 200개로 구성된 약 35kDa의 단백질로 구성되어 있음을 알 수 있었다.As shown in FIG. 1, as a result of determining the nucleotide sequence of the CyMV cDNA insert of pMBP1, the total size is about 1.5kbp, and one of the structural genes for synthesizing the CyMV envelope protein is one open reading frame consisting of 660bp. As with other potexviruses, the envelope protein gene of CyMV is located on the 3 'side and the 3' polyadenylation site. In FIG. 1, (*) represents a stop codon, and the amino acid sequence was prepared according to IUPAC nomenclature. As shown in FIG. 1, the CyMV envelope protein was composed of about 35 kDa protein consisting of 200 amino acids.

한편, 다른 CyMV 외피단백질유전자의 염기서열을 비교해 본 결과 CyMV-S(Chia et. al., Plant Mol. Biol., 18, 1901-1099, 1992)와 CyMV-K(Ryu et. al., Gene, 156,303-304, 1995)와 nucleotide sequences에서는 각각 93% 와 91%의 동일성이 있었다. 이들은 염기서열상에서 각각 44개와 59개의 염기가 치환되어 있었다.Meanwhile, comparing the nucleotide sequences of other CyMV envelope protein genes, CyMV-S (Chia et. Al., Plant Mol. Biol., 18, 1901-1099, 1992) and CyMV-K (Ryu et. Al., Gene) , 156,303-304, 1995) and nucleotide sequences showed 93% and 91% identity, respectively. These were 44 and 59 bases substituted in nucleotide sequence, respectively.

[실시예 3]Example 3

이원벡터(binary vector) pMBP1의 조작 및 pMBPCPS 와 pMBPCPA의 제작Manipulation of binary vector pMBP1 and construction of pMBPCPS and pMBPCPA

식물발현용 운반 벡터는 pMBP1을 사용하고 CyMV의 외피단백질이 역방향과 정방향으로 삽입된 발현벡터를 사용하였다(도2).As a transport vector for plant expression, pMBP1 was used and an expression vector in which the envelope protein of CyMV was inserted in the reverse direction and the forward direction was used (FIG. 2).

pCyMV1을 PstⅠ+EcoRⅠ으로 자르고 T4 DNA Polymerase를 처리하여 blunt end로 만든 후 0.8% gel에 전기 영동하여 외피단백질 유전자가 포함된 band를 잘라 elution하였다. 이것을 SmaⅠ-cut pGEM-7Z(+) vector에 ligationt시킨후 E. coli JM109에 transformation시킨 다음 12개의 white colony를 선발하여 DNA를 준비한 후 EcoRⅠ과 BamHⅠ으로 잘라 외피단백질 유전자와 삽입여부를 확인하였다.pCyMV1 was cut into PstI + EcoRⅠ and treated with T4 DNA Polymerase to make blunt end, followed by electrophoresis on 0.8% gel to cut and elution the band containing the envelope protein gene. After ligation of the SmaI-cut pGEM-7Z (+) vector, it was transformed into E. coli JM109, 12 white colonies were selected, DNA was prepared, and cut into EcoR I and BamH I to confirm the envelope protein gene and insertion.

또한 이 DNA들을 BamHⅠ과 PvuⅡ로 잘라 외피단백질 유전자와 삽입방향을 확인하였고, 이를 sequencing을 통하여 재차 확인한 결과 T7 promotor에 대하여 정방향(sense)으로 삽입된 것과 역방향(antisense)으로 삽입된 것으로 구분하여 이 클론들을 각각 pCyCPS와 pCyCPA라고 명명하였다.In addition, the DNA was cut into BamHI and PvuII to confirm the envelope protein gene and the insertion direction, and the result was confirmed again through sequencing. As a result, the clone was classified into one inserted into the T7 promotor and the other inserted into the antisense. These were named pCyCPS and pCyCPA, respectively.

한편, pMBP 1을 kanamycin(50㎍/㎖)이 첨가된 LB액체배지에 배양하여 DNA를 준비한 후 XbaⅠ으로 자른 다음 CIP를 처리한 후 전기 영동하여 elution하였다.Meanwhile, pMBP 1 was cultured in LB liquid medium to which kanamycin (50 µg / ml) was added to prepare DNA, which was then cut into Xba I and subjected to CIP, followed by electrophoresis.

이와 마찬가지로 pCyCPS를 XbaⅠ으로 잘라 CyMV외피단백질 유전자가 포함된 band를 elution하여 XbaⅠ-cut pMBⅠ에 ligation시키고 E. coli JM109에 transformation시켜 15개의 clone을 얻었다. Transformation 된 cell을 kanamycin(50㎍/㎖)이 포함된 LB고체배지에 도말하여 transformant 4개의 clone을 선발하였으며 이 클론들을 kanamycin(50㎍/㎖)이 첨가된 3㎖ LB액체배지에 배양하여 DNA를 준비한 뒤 XBaⅠ, HindⅢ+KpnⅠ으로 각각 잘라 외피단백질 유전자의 삽입여부와 삽입방향을 확인하였다. 여기에서 얻은 클론들을 각각 pMBPCPS와 pMBPCPA라 명명하였다.Likewise, pCyCPS was cut into Xba I to elution the band containing the CyMV envelope protein gene, ligation to Xba I-cut pMB I and transformed into E. coli JM109 to obtain 15 clones. The transformed cells were plated in LB solid medium containing kanamycin (50 µg / ml) and four transformant clones were selected. The clones were cultured in 3 ml LB liquid medium containing kanamycin (50 µg / ml). After preparation, cut each with XBaⅠ, HindIII + KpnⅠ and confirm the insertion and the direction of insertion of the envelope protein gene. The clones obtained were named pMBPCPS and pMBPCPA, respectively.

[실시예 4]Example 4

아그로박테리움(Agrobacterium) 매개에 의한 식물세포의 형질전환Agrobacterium-mediated transformation of plant cells

CyMV 외피단백질유전자가 CaMV 35S촉진유전자 하에서 발현이 조절되도록 제조한 실시예 3에서 수득한 식물체 형질전환용 이원벡터인 pMBPCPS 와 pMBPCPA를 아그로박테리움 투메파시엔스 LBA 4404로 형질전환하기 위하여 동결-용해(freeze-thawing) 방법을 사용하였다. 상기 벡터로 형질전환된 아그로박테리움 투메파시엔스 LBA 4404로 선별하기 위하여 아그로박테리움 프라스미드 퀵스크린(quick-screen) 방법으로 DNA를 분리하고 제한효소 HindⅢ+KpnⅠ로 절단하여 형질전환 여부를 확인하였다(Stanton et. al., Plant Molec. Biology Manual, Kluwer Academic Publishers, 1988).Plant-transformed binary vectors pMBPCPS and pMBPCPA obtained in Example 3 in which the CyMV envelope protein gene was regulated under the CaMV 35S promoter were freeze-dissolved for transformation with Agrobacterium tumefaciens LBA 4404 ( freeze-thawing) method was used. In order to select Agrobacterium tumefaciens LBA 4404 transformed with the vector, DNA was isolated by Agrobacterium plasmid quick-screen method and digested with restriction enzyme HindIII + Kpn I to confirm the transformation. (Stanton et. Al., Plant Molec.Biology Manual, Kluwer Academic Publishers, 1988).

pMBPCPS 및 pMBPCPA으로 형질전환된 아그로박테리움 투메파시엔스 LBA 4404는 1997년 10월 17일 생명공학연구소에 기탁번호(KCTC 8839P)로 기탁하였다.Agrobacterium tumefaciens LBA 4404 transformed with pMBPCPS and pMBPCPA was deposited with the Accession No. (KCTC 8839P) at the Biotechnology Institute on October 17, 1997.

담배세포의 형질전환에는 Nicotiana occidentalis를 사용하였다. 온실에서 자란 담배본엽을 70%(v/v) 에탄올에 30초간 처리한 후 2% sodium hypochloride로 15분간 소독하고 멸균수로 5-6회 세척 후, 사방 8mm로 잘라서 담배세포의 형질전환용 재료로 사용하였다. pMBPCPS 및 pMBPCPA으로 형질전환된 아그로박테리움 투메파시엔스 LBA 4404는 LB배지에서 28℃, 200rpm으로 18시간 진탕배양하였다. 배양 후 원심분리하여 균체를 회수하고 MS기본배지로 세포수가 ml당 약 1 내지 2 x 103이 되도록 현탁하여 담배세포의 형질전환에 사용하였다. 담배잎 절편을 pMBPCPS 및 pMBPCPA을 지니고 있는 아그로박테리움 투메파시엔스 LBA 4404 현탁액에 1일간 공조배양한 후, 2.0 mg/ℓ BAP(benzyl aminopurine), 100mg/ℓ kanmycin 그리고 300 mg/ℓ 카베니실린을 첨가한 MS 선발배지에서 슈트를 유도하였다. 배양조건은 온도가 25℃, 2500Lux, 일장은 16시간 주기로 하였으며, 잎절편에서 분화된 슈트는 잎절편의 배양 때와 같이 2주마다 계대 배양하였다. MS 선발배지에서 재분화된 형질 전환된 담배는 50mg/ℓ 카나마이신 그리고 300mg/ℓ 카베니실린을 첨가한 MS뿌리선발배지에 이식하여 뿌리형성을 유도하였으며, 뿌리가 형성된 형질전환 담배는 포트에 이식하여 순화시켜 다음 실험에 사용하였다. 담배 형질전환과정은 도3에 나타내었다.Nicotiana occidentalis was used for the transformation of tobacco cells. The tobacco leaf grown in the greenhouse was treated with 70% (v / v) ethanol for 30 seconds, then sterilized with 2% sodium hypochloride for 15 minutes, washed 5-6 times with sterile water, and cut into 8mm squares to transform tobacco cells. Used as. Agrobacterium tumefaciens LBA 4404 transformed with pMBPCPS and pMBPCPA was incubated for 18 hours at 28 ° C. and 200 rpm in LB medium. After incubation, the cells were recovered by centrifugation, and suspended in a cell number of about 1 to 2 x 10 3 per ml with MS basic medium, and used for transformation of tobacco cells. Tobacco leaf slices were co-cultured in agrobacterium tumefaciens LBA 4404 suspension with pMBPCPS and pMBPCPA for 1 day, followed by 2.0 mg / l benzyl aminopurine (BAP), 100 mg / l kanmycin and 300 mg / l carbenicillin. The chute was induced in the added MS selection medium. Cultivation conditions were 25 ℃, 2500Lux, the length of the 16-hour cycle was used, the chute differentiated from leaf slices were subcultured every two weeks as in the culture of leaf slices. Transgenic tobacco re-differentiated in MS selection medium was transplanted into MS root selection medium containing 50mg / l kanamycin and 300mg / l carbenicillin to induce root formation. It was used for the next experiment. Tobacco transformation process is shown in FIG.

[실시예 5]Example 5

형질전환된 담배에서 PCR 분석PCR analysis on transformed tobacco

pMBPCPS 및 pMBPCPA 벡터로 형질전환시킨 담배에서 CyMV의 외피단백질 유전자가 제놈내로 안정적으로 도입되었는지를 확인하기 위하여 NPT II 유전자를 PCR로 증폭하여 형질전환 여부를 간접적으로 확인하였다(도4). CyMV 외피단백질 유전자가 식물체의 제놈내로 안정적으로 도입되었는지를 확인하기 위하여 잠정적인 형질전환체로부터 genomic DNA를 분리한 후 PCR를 수행하였다. PCR은 100mM Tris-HCl, 500mM KCl, 1.0% Triton X-100, 25mM mgCl2, 각각의 0.1mM dNTP, 50 pmol 프라이머, 그리고 4 units의 Tag polymerase를 사용하였다. PCR에 사용된 프라이머는 NPTII 유전자에 특이적인 염기서열을 합성하여 사용하였다(Back et. al., Gene, 19, 327-326, 1982). PCR은 DNA 합성기(DNA synthesizer, ABI, USA)를 이용하여 합성하고, DNA 열순환기(Cetus/Perkin-Elmer, USA)를 사용하여 VenttmDNA 중합효소(NEB, USA)로 변성(denaturation)(94℃, 1분), 결합(annealing)(60℃, 1분), 연장(extention)(72℃, 2분)을 35회(cycle) 진행시켰다. 도4에서 보듯이 pMBPCPS(제4(a)) 및 pMBPCPA(제4(b)) 벡터와 동일하게 형질전환된 식물체에서도 같은 크기의 NPT II 유전자가 증폭되었음을 확인할 수 있었다(레인 각각: 3,4). 형질전환시키지 않는 식물체에서는 NPT II 유전자가 증폭되지 않았다(각 레인 2). 각 레인 1은 각각 pMBPCPS 벡터, pMBPCPA벡터를 나타내고, M레인은 Lamda HindIII로 절단한 사이즈 마커를 나타낸다.In order to confirm whether the envelope protein gene of CyMV was stably introduced into the genome in the tobacco transformed with the pMBPCPS and pMBPCPA vectors, the NPT II gene was amplified by PCR to confirm the transformation indirectly (FIG. 4). In order to confirm that CyMV envelope protein gene was stably introduced into the genome of the plant, genomic DNA was isolated from the potential transformant and PCR was performed. PCR was performed using 100 mM Tris-HCl, 500 mM KCl, 1.0% Triton X-100, 25 mM mgCl 2 , 0.1 mM dNTP, 50 pmol primer, and 4 units of Tag polymerase. Primers used for PCR synthesized the nucleotide sequence specific for the NPTII gene (Back et. Al., Gene, 19, 327-326, 1982). PCR was synthesized using a DNA synthesizer (ABI, USA) and denatured with Vent tm DNA polymerase (NEB, USA) using a DNA thermocycler (Cetus / Perkin-Elmer, USA) (94 35 ° C., 1 min), annealing (60 ° C., 1 min) and extension (72 ° C., 2 min) were performed. As shown in Figure 4 it was confirmed that the same size of the NPT II gene amplified in plants transformed in the same manner as the pMBPCPS (fourth (a)) and pMBPCPA (fourth (b)) vector (lanes each: 3,4 ). Plants that were not transformed did not amplify the NPT II gene (lanes 2). Each lane 1 shows a pMBPCPS vector and a pMBPCPA vector, and M lane shows the size marker cut | disconnected with Lamda HindIII.

[실시예 6]Example 6

형질전환된 담배의 노던 블롯(Northern blot) 분석Northern blot analysis of transformed tobacco

pMBPCPA 벡터로 형질전환시킨 담배에서 CyMV의 외피단백질 유전자의 전사도(transcription level)를 알아보기 위하여 실시예 5에서 형질전환이 간접확인된 담배로부터 전체 RNA를 추출하고 10%(v/v) 포름알데히드가 함유된 1%(v/v) 아가로스 겔에서 전기영동한 후 nylon membrane에 RNA를 옮기고 PCR로 합성한 CyMV의 외피단백질유전자 프로브을 사용하여 혼성화 반응을 수행하였다. 그 결과를 도 5에 나타내었는데 형질전환되지 않는 대조구(레인 N)에서는 밴드가 없고, 형질전환된 담배(레인 1,2)에서만 하나의 밴드가 나타남을 볼 수 있었다.In order to determine the transcription level of the envelope protein gene of CyMV in tobacco transformed with pMBPCPA vector, total RNA was extracted from tobacco indirectly transformed in Example 5 and 10% (v / v) formaldehyde was extracted. After electrophoresis on 1% (v / v) agarose gel containing the RNA was transferred to the nylon membrane and hybridization was carried out using the envelope protein gene probe of CyMV synthesized by PCR. The results are shown in Figure 5, there was no band in the non-transformed control (lane N), it can be seen that only one band appears only in the transformed tobacco (lane 1,2).

[실시예 7]Example 7

형질전환된 담배의 바이러스 검정Viral Assay of Transformed Tobacco

ATCC로부터 구입한 동결건조된 CyMV 이병조직을 인산완충액을 이용하여 마쇄한 후, 원심분리하여 상층액을 취하고 바이러스 접종액을 만들어 바이러스접종액을 형질전환 담배와 대조구에 (본엽 5-6엽기) 접종하였다. 접종 15일 후 bioassay한 결과 형질전환되지 않는 대조구에서는 CyMV의 전형적인 병징인 모자이크증상이 전체 식물체에 나타났으나 형질전환된 담배는 도6에서 보듯이, 상부잎에는 병징이 나타나지 않았음을 알 수 있었다. 또한 접종 5주 후 2차엽의 감염 여부를 관찰한 결과 도7에서 보듯이 형질전환되지 않는 대조구에서는 CyMV의 전형적인 병징인 모자이크증상이 나타났고 반면 형질전환된 담배는 병징이 나타나지 않음을 알 수 있었다(도 8).Lyophilized CyMV diseased tissue purchased from ATCC was crushed with phosphate buffer solution, centrifuged to obtain supernatant, virus inoculated solution was inoculated to transgenic tobacco and control (leaf 5-6 leaf) It was. Bioassay 15 days after inoculation showed that the mosaic of the typical symptom of CyMV was found in the whole plant, but the transformed tobacco showed no symptoms in the upper leaf, as shown in FIG. . As a result of observing the infection of the secondary lobe 5 weeks after inoculation, as shown in Fig. 7, the control group showed no mosaicism, which is a typical symptom of CyMV, while the transformed tobacco showed no symptoms (Fig. 7). 8).

이상에서 상세히 설명되고 입증되었듯이, 본 발명은 식물세포내에서 외래유전자의 발현을 가능하게 하는 벡터에 CyMV 외피단백질 유전자를 암호화하는 유전자를 삽입하여 제조한 CyMV 외피 단백질 유전자 발현벡터를 식물세포에 형질전환시키고 배양함으로써, CyMV 외피단백질을 생성하는 식물체를 생산하는 방법을 제공하기 때문에 본 발명의 방법에 의하여 CyMV 외피단백질을 생성하고 식물체를 제조함으로써 CyMV 내성이 강한 여러 가지 식물체를 개발할 수 있어 식물 육종산업상 매우 유용한 발명인 것이다.As described and demonstrated in detail above, the present invention transforms a plant cell into a CyMV coat protein gene expression vector prepared by inserting a gene encoding the CyMV coat protein gene into a vector enabling expression of a foreign gene in the plant cell. By converting and culturing, the present invention provides a method for producing a plant that produces CyMV envelope protein. Therefore, by producing the CyMV envelope protein and manufacturing a plant by the method of the present invention, various plants having strong CyMV resistance can be developed. It is a very useful invention.

Claims (3)

CyMV의 증식기주인 Nicotiana occidentalis에서 분리한 다음의 염기서열을 갖는 CyMV 외피단백질 유전자를 Sma I-cut pGEM-7Z(+) vector에 도입시킨후 E.coli JM109를 변형시킨 다음 선발한 클론인 pCyCPS와 pCyCPA을 Xba I-cut pMB I 에 도입시키고 E. coli JM109를 변형시켜 얻은 클론들 중 CyMV 외피단백질 유전자가 정방향으로 삽입된 pMBPCPS와, CyMV 외피단백질 유전자가 역방향으로 삽입된 pMBPCPA로 형질전환된 아그로박테리움 투메파시엔스 LBA 4404(균주 기탁번호 KCTC 8839P).CyMV envelope protein gene isolated from Nicotiana occidentalis, the growth host of CyMV, was introduced into Sma I-cut pGEM-7Z (+) vector, modified with E. coli JM109, and selected clones pCyCPS and pCyCPA. Of the clones obtained from Xba I-cut pMB I and modified E. coli JM109, agrobacterium transformed with pMBPCPS with CyMV envelope protein gene forwardly inserted and pMBPCPA with CyMV envelope protein gene reversely inserted Tumefaciens LBA 4404 (Strain Deposit No. KCTC 8839P).
Figure kpo00002
Figure kpo00002
제1항의 아그로박테리움 투메파시엔스 LBA 4404(균주 기탁번호 KCTC 8839P)를 매개로 동결-용해방법으로 형질전환된 식물체를 배양함으로써 CyMV에 내 저항성을 갖는 식물체를 생산하는 방법.A method of producing a plant having resistance to CyMV by culturing a plant transformed by a freeze-dissolution method via the Agrobacterium tumefaciens LBA 4404 (Strain Accession Number KCTC 8839P) of claim 1. 제2항에 있어서, CyMV에 대한 저항성을 생성하는 식물체가 Nicotiana occidentails인 CyMV에 내 저항성을 갖는 식물체를 생산하는 방법.The method of claim 2, wherein the plant producing resistance to CyMV is Nicotiana occidentails.
KR1019970056293A 1997-10-30 1997-10-30 Method of producing plants having resistance in cymv KR100250902B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970056293A KR100250902B1 (en) 1997-10-30 1997-10-30 Method of producing plants having resistance in cymv

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970056293A KR100250902B1 (en) 1997-10-30 1997-10-30 Method of producing plants having resistance in cymv

Publications (2)

Publication Number Publication Date
KR19990034655A KR19990034655A (en) 1999-05-15
KR100250902B1 true KR100250902B1 (en) 2000-04-01

Family

ID=19523744

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970056293A KR100250902B1 (en) 1997-10-30 1997-10-30 Method of producing plants having resistance in cymv

Country Status (1)

Country Link
KR (1) KR100250902B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117904161B (en) * 2024-01-24 2024-06-14 浙江大学 Cell surface display system constructed based on agrobacterium tumefaciens outer membrane protein Atuporin and application thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Mol Cells 1997 Feb 28 *
Plant Mol Biol 1992 Apr, *

Also Published As

Publication number Publication date
KR19990034655A (en) 1999-05-15

Similar Documents

Publication Publication Date Title
JP3281512B2 (en) Methods for producing virus-resistant plants
JPH10507913A (en) Promoter sequence from potato
JPS63500425A (en) molecular farming
KR20150085846A (en) Tal-Mediated Transfer DNA Insertion
JPH06502759A (en) Recombinant ACC synthase
JPH04500002A (en) Overexpression of phytochromes in transgenic plants
KR970007864B1 (en) Process of plant which expressing pip of phytolacca insularis nakai
US5418153A (en) Process for production of exogenous gene or its product in plant cells
JPH04229182A (en) Novel signal sequence
US5824856A (en) Process for production of exogenous gene or its product in plant cells
US5177011A (en) Plant elongation factor promoters, coding sequences and uses
JP2002512035A (en) Polynucleotide sequences and methods for producing plants with increased numbers of porosity and uses thereof
US6388068B1 (en) Method for producing foreign polypeptide in plant intercellular fluid
KR100250902B1 (en) Method of producing plants having resistance in cymv
US5633434A (en) Transgenic plants displaying virus and phosphinothricin resistance
CA2285465A1 (en) Strawberry fruit promoters for gene expression
EP0429538B1 (en) Plant elongation factor, promoters, coding sequences and uses
JPH10512451A (en) Deoxyribonucleic acid encoding glutathione S-transferase and use thereof
US20030177517A1 (en) Sweet potato sporamin gene promoter
JP3931997B2 (en) Plant promoter
KR20050027838A (en) Recombinant human growth hormone expressed in plants
US7411115B2 (en) Sweet potato sporamin gene promoter
JPH04126088A (en) Dna fragment having promoter activity
WO1996012813A1 (en) Promoter from a plant alpha-amylase gene
JPH10286034A (en) Production of transgenic rice and rice produced by the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120120

Year of fee payment: 13

LAPS Lapse due to unpaid annual fee