JPH04125960A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH04125960A
JPH04125960A JP2248232A JP24823290A JPH04125960A JP H04125960 A JPH04125960 A JP H04125960A JP 2248232 A JP2248232 A JP 2248232A JP 24823290 A JP24823290 A JP 24823290A JP H04125960 A JPH04125960 A JP H04125960A
Authority
JP
Japan
Prior art keywords
potential
power supply
mos transistor
channel mos
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2248232A
Other languages
Japanese (ja)
Inventor
Toru Kume
徹 久米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2248232A priority Critical patent/JPH04125960A/en
Publication of JPH04125960A publication Critical patent/JPH04125960A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make the erroneous operation due to external noise to be hardly operated while cutting down the power consumption required for the maintenance of the normal state by a method wherein, during the normal operation time, the relative potentials similar to those of conventional semiconductor device are maintained while during the emergency operation time, the threshold value voltages of respective transistors are raised higher than those in the normal operation time by setting up the potentials of respective power supply lines. CONSTITUTION:During the normal operation time, the substrate potential of a P-channel MOS transistor 5 and the potential of a high potential power supply VDD are equalized while the substrate potential of an N-channel MOS transistor and the potential of low potential power supply are equalized. On the other hand, during the emergency operation time, the substrate potential of the P- channel MOS transistor 5, the potential of high potential power supply VDD, the potential of low potential power supply, the substrate potential of the N- channel MOS transistor 6 are made to be set up in this order. Through these procedures, the threshold values can be enhanced thereby enabling the power consumption to be cut down.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はCMOSディジタル半導体装置に関し、特に電
源および基板電位の印加構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a CMOS digital semiconductor device, and particularly to a structure for applying a power supply and a substrate potential.

〔従来の技術〕[Conventional technology]

従来のCMOSディジタル半導体装置は、第3図に示す
ようにPチャンネルMOSトランジスタ23の基板電位
を高電位電源ライン21の電位(VDD)と等しくし、
且つNチャンネルMOSトランジスタ24の基板電位を
低電位電源ライン22の電位(GND)と等しくするた
めにこれらを常時接続した構造をしている。MOSトラ
ンジスタは、ソース電極と基板の電位との電位差で閾値
電圧VTが決まるバックバイアス特性を持っているため
、この従来のCMOSディジタル半導体装置の構造では
、スタンバイ状態時等の回路動作をせずに動作状態を単
に維持しようとする場合も、各MOSトランジスタの閾
値電圧VTは動作時と同じ値であった。
In the conventional CMOS digital semiconductor device, as shown in FIG. 3, the substrate potential of the P-channel MOS transistor 23 is made equal to the potential (VDD) of the high potential power supply line 21, and
In addition, in order to make the substrate potential of the N-channel MOS transistor 24 equal to the potential (GND) of the low potential power supply line 22, these are always connected. Since a MOS transistor has a back bias characteristic in which the threshold voltage VT is determined by the potential difference between the source electrode and the substrate potential, in the structure of this conventional CMOS digital semiconductor device, the circuit operation is not performed during standby state etc. Even when the operating state was simply maintained, the threshold voltage VT of each MOS transistor was the same value as during operation.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このように、従来のディジタル半導体装置は、バッテリ
ーバックアップ等によるスタンバイ状態時等の回路的に
は非動作状態であるが単に動作状態を維持してその期間
電気的回路状態を保存しようとする場合もMOSトラン
ジスタの閾値電圧VTが回路的に動作状態時と同じ値で
あるため、外部からのノイズによって内部回路の電気的
状態が変化しやすく、維持しようとする電気的回路状態
の状態破壊を起こし易い構造となっていた。これは、動
作時の電源電圧より小さいバックアップ電圧を使用する
場合には特に問題になっていた。
In this way, conventional digital semiconductor devices are in a non-operating state in terms of their circuits, such as when in a standby state due to battery backup, etc., but there are cases in which they simply maintain an operating state and try to preserve the electrical circuit state during that period. Since the threshold voltage VT of the MOS transistor is the same value as in the operating state in terms of the circuit, the electrical state of the internal circuit is likely to change due to external noise, and the state of the electrical circuit that is intended to be maintained is likely to be destroyed. It had a structure. This has been a particular problem when using a backup voltage that is lower than the operating power supply voltage.

また動作時の閾値電圧VTより小さいゲート電位(VG
)でのドレイン電流(ID)は、MOSトランジスタの
閾値電圧VTとドレイン電圧(VD)と閾値電圧VTと
の差によってその値が決まるため、状態保存時には電源
電圧を低くして電流消費を少くしているが、状態保存時
のドレイン電圧VDを低くしても閾値電圧VTが大きく
ならないとドレイン電流IDを小さくできず、状態保存
時の消費電流を小さくできなかった。これは、特に1装
置内に多くのMOSトランジスタを集積している場合で
、保存電源として電池等の有限の電力量を持つ装置を使
用している場合に保存期間が短くなる等の問題を起こす
Also, the gate potential (VG
), the value of the drain current (ID) is determined by the difference between the threshold voltage VT of the MOS transistor, the drain voltage (VD), and the threshold voltage VT, so when saving the state, the power supply voltage is lowered to reduce current consumption. However, even if the drain voltage VD during state storage is lowered, unless the threshold voltage VT increases, the drain current ID cannot be reduced, and the current consumption during state storage cannot be reduced. This causes problems such as a shortened storage period, especially when a large number of MOS transistors are integrated in one device, and when a device with a finite amount of power such as a battery is used as a storage power source. .

〔課題を解決するための手段〕[Means to solve the problem]

本発明のディジタル半導体装置は、PチャンネルMOS
トランジスタの基板電位、NチャンネルMOSトランジ
スタの基板電位、高電位電源VDDの電位及び低電位電
源の電位をそれぞれ独立に供給できる構造を持ち、通常
動作時には、PチャンネルMOSトランジスタの基板電
位と高電位電源VDDの電位とを等しくするとともにN
チャンネルMOSトランジスタの基板電位と低電位電源
の電位とを等しくし、且つ非動作時にはPチャンネルM
OSトランジスタの基板電位、高電位電源VDDの電位
、低電位電源の電位、NチャンネルMOSトランジスタ
の基板電位の順に高電位から低電位となるようにする手
段を有している。
The digital semiconductor device of the present invention is a P-channel MOS
It has a structure that can independently supply the substrate potential of the transistor, the substrate potential of the N-channel MOS transistor, the potential of the high-potential power supply VDD, and the potential of the low-potential power supply. During normal operation, the substrate potential of the P-channel MOS transistor and the high-potential power supply are While making the potential of VDD equal to the potential of N
The substrate potential of the channel MOS transistor and the potential of the low potential power supply are made equal, and the P channel M
It has means for changing the substrate potential of the OS transistor, the potential of the high potential power supply VDD, the potential of the low potential power supply, and the substrate potential of the N-channel MOS transistor from high potential to low potential in this order.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は、本発明の一実施例のトランジスタレベルの等
価回路図である。半導体装置の一部分としてここでは、
インバータ回路を例として上げている。lはPチャンネ
ルMOSトランジスタの基板電位を供給する電源ライン
、2は半導体装置の高電位電源(VDD)ライン、3は
半導体装置の低電位電源(GND等)ライン、4はNチ
ャンネルMOSトランジスタの基板電位を供給する電源
ライン、5はPチャンネルMOSトランジスタ、6はN
チャンネルMOSトランジスタである。
FIG. 1 is a transistor-level equivalent circuit diagram of an embodiment of the present invention. Here, as part of the semiconductor device,
An inverter circuit is given as an example. 1 is a power supply line that supplies the substrate potential of the P-channel MOS transistor, 2 is a high-potential power supply (VDD) line of the semiconductor device, 3 is a low-potential power supply (GND, etc.) line of the semiconductor device, and 4 is the substrate of the N-channel MOS transistor. A power supply line that supplies potential, 5 is a P-channel MOS transistor, 6 is N
This is a channel MOS transistor.

PチャンネルMOSトランジスタ5の基板端子は、Pチ
ャンネルMOSトランジスタの基板電位を供給する電源
ライン1に接−続し、PチャンネルMOSトランジスタ
5のソース端子は、半導体装置の高電位電源ライン2に
接続している。NチャンネルMOSトランジスタロの基
板端子は、NチャンネルMOSトランジスタの基板電位
を供給する電源ライン4に接続し、NチャンネルMOS
トランジスタ6のソース端子は、半導体装置の低電位電
源ライン3に接続している。これにより、この半導体装
置は、各電源の電位を独立に設定できる構造となってい
る。
The substrate terminal of the P-channel MOS transistor 5 is connected to the power supply line 1 that supplies the substrate potential of the P-channel MOS transistor, and the source terminal of the P-channel MOS transistor 5 is connected to the high-potential power supply line 2 of the semiconductor device. ing. The substrate terminal of the N-channel MOS transistor is connected to a power supply line 4 that supplies the substrate potential of the N-channel MOS transistor.
A source terminal of the transistor 6 is connected to the low potential power supply line 3 of the semiconductor device. As a result, this semiconductor device has a structure in which the potential of each power supply can be set independently.

第2図は、本発明の一実施例全体のブロック図である。FIG. 2 is a block diagram of an entire embodiment of the present invention.

lOは第1図にその一部を示した半導体装置、11はオ
ペアンプ、12はオペアンプ、13は非動作時に半導体
装置10の電気的回路状態を保存するためのバックアッ
プバッテリー 14は主電源端子、15は主グランド端
子である。主電源端子14.主グランド端子15および
バックアップバッテリー13の各端子と半導体装置IO
の各電源−ラインVSP、VDD、GND、VSNとの
間には逆流防止用のダイオードが接続されている。
10 is a semiconductor device, a part of which is shown in FIG. 1, 11 is an operational amplifier, 12 is an operational amplifier, 13 is a backup battery for preserving the electrical circuit state of the semiconductor device 10 when not in operation, 14 is a main power terminal, 15 is the main ground terminal. Main power terminal 14. The main ground terminal 15 and each terminal of the backup battery 13 and the semiconductor device IO
A diode for preventing backflow is connected between each power supply line VSP, VDD, GND, and VSN.

通常動作時には主電源端子14と主グランド端子15に
外部から電力を供給する。半導体装置lOのVDD端子
には主電源端子14からダイオードを通して電位が与え
られる。そのとき半導体装置10のVSP端子にはオペ
アンプ11をボルテージホロアとして使用してVDD端
子と同じ電位が与えられる。半導体装置10のGND端
子には主グランド端子15からダイオードを通して電位
が与えられる。そのとき半導体装置10のVSN端子に
はオペアンプ12をボルテージホロアとして使用してG
ND端子と同じ電位が与えられる。
During normal operation, power is supplied to the main power supply terminal 14 and the main ground terminal 15 from the outside. A potential is applied to the VDD terminal of the semiconductor device IO from the main power supply terminal 14 through a diode. At this time, the same potential as the VDD terminal is applied to the VSP terminal of the semiconductor device 10 using the operational amplifier 11 as a voltage follower. A potential is applied to the GND terminal of the semiconductor device 10 from the main ground terminal 15 through a diode. At that time, the operational amplifier 12 is used as a voltage follower at the VSN terminal of the semiconductor device 10 to provide a G
The same potential as the ND terminal is applied.

バッテリーバックアップ時には、主電源端子14は解放
するかまたは主グランド端子15と等電位になる。この
時は、バックアップバッテリー13から半導体装置10
の各電源端子に電位が供給される。バックアップバッテ
リー13からは4種類の異なる電位が供給できるように
なっており、高い方から■SP端子、VDD端子、GN
D端子、VSN端子の順に高い電位から低い電位となる
様に設定されている。このバッテリーバックアップ時に
はPチャンネルMOSトランジスタの基板電位(VSP
端子の電位)が高電位電源ライン(VDD端子)の電位
より高くなるので、Pチャンネル間O8トランジスタの
閾値電圧は通常動作時より大きくなる。同様に、Nチャ
ンネルMOSトランジスタの基板電位(VSN端子)の
電位が低電位電源ライン(GND端子)の電位より低く
なるので、NチャンネルMOSトランジスタの閾値電圧
は通常動作時より大きくなる。このため、半導体装置1
0の内部回路の耐ノイズ性が増し、電気的回路状態が良
好に保たれる。末だ、この時主にドレイン領域から半導
体基板に漏洩するリーク電流に依存すると考えられる消
費電流は高電位電源VDDの電位と閾値電圧との差の関
数となるため、閾値電圧を高くすることによって消費電
流も小さくすることができる。
During battery backup, the main power terminal 14 is open or has the same potential as the main ground terminal 15. At this time, the backup battery 13 is connected to the semiconductor device 10.
A potential is supplied to each power supply terminal. The backup battery 13 can supply four different potentials, starting from the highest: SP terminal, VDD terminal, GN terminal.
The potentials of the D terminal and the VSN terminal are set from high to low in that order. During this battery backup, the substrate potential of the P-channel MOS transistor (VSP
Since the potential of the terminal) becomes higher than the potential of the high potential power supply line (VDD terminal), the threshold voltage of the P-channel inter-channel O8 transistor becomes higher than during normal operation. Similarly, since the substrate potential (VSN terminal) of the N-channel MOS transistor becomes lower than the potential of the low-potential power supply line (GND terminal), the threshold voltage of the N-channel MOS transistor becomes higher than during normal operation. For this reason, the semiconductor device 1
The noise resistance of the internal circuit of 0 is increased, and the electrical circuit condition is maintained in good condition. At this time, the current consumption, which is thought to depend mainly on the leakage current leaking from the drain region to the semiconductor substrate, is a function of the difference between the potential of the high potential power supply VDD and the threshold voltage, so by increasing the threshold voltage, Current consumption can also be reduced.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、Pチャンネル間O8トラ
ンジスタの基板電位、NチャンネルMOSトランジスタ
の基板電位、VDD電位及びGND電位をそれぞれ独立
に供給できる構造を持ち、通常動作時には、Pチャンネ
ル間O8トランジスタの基板電位と高電位電源VDDラ
インの電位及びNチャンネルMOSトランジスタの基板
電位と低電位電源ラインの電位とを同一にし、電気的回
路状態を単に維持する非動作時には高い方から順にPチ
ャンネル間O8トランジスタの基板電位、高電位電源V
DDラインの電位、低電位電源ライン電位、Nチャンネ
ルMOSトランジスタの基板電位となるように電位を供
給する構造を持つことにより、通常動作時には従来の半
導体装置と同じ電位関係を保ちながら、電気的回路状態
を単に保存する非動作時の場合には各電源ラインの電位
設定により各トランジスタの閾値電圧VTを動作時より
高くすることにより外部ノイズによる誤動作を起こしに
<<シ、また状態保持に必要な電流値を小さくすること
ができる。
As explained above, the present invention has a structure that can independently supply the substrate potential of the P-channel O8 transistor, the substrate potential of the N-channel MOS transistor, the VDD potential, and the GND potential, and in normal operation, the P-channel O8 transistor The substrate potential of the N-channel MOS transistor and the potential of the high-potential power supply VDD line are made the same, and the potential of the low-potential power supply line is made the same as the substrate potential of the N-channel MOS transistor and the potential of the low-potential power supply line is made the same.During non-operation, the electrical circuit state is simply maintained. Transistor substrate potential, high potential power supply V
By having a structure that supplies potentials such as the potential of the DD line, the low-potential power supply line potential, and the substrate potential of the N-channel MOS transistor, the electrical circuit can maintain the same potential relationship as conventional semiconductor devices during normal operation. When the state is simply saved during non-operation, the threshold voltage VT of each transistor is set higher than during operation by setting the potential of each power supply line to prevent malfunction due to external noise. Current value can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の一部分をトランジスタレベ
ルで表わした等価回路図、第2図は本発明の一実施例の
全体を表わすブロック図、第3図は従来例の一部分をト
ランジスタレベルで表わした等価回路図である。 l・・・・・・PチャンネルMOSトランジスタの基板
電源ライン、2・・・・・・半導体装置の高電位電源ラ
イン、3・・・・・・半導体装置の低電位電源ライン、
4・・・・・・NチャンネルMOSトランジスタの基板
電源ライン、5・・・・・・Pチャンネル間O8トラン
ジスタ、6・・・・・・NチャンネルMOSトランジス
タ、10・・・・・・半導体装置、11.12・・・・
・・オペアンプ、13・・・・・・バックアップバッチ
’)−14・・・・・・主電源端子、15・・・・・・
主グランド端子。 代理人 弁理士  内 原   晋 ギ 図 ギ 圀
Fig. 1 is an equivalent circuit diagram showing a part of an embodiment of the present invention at a transistor level, Fig. 2 is a block diagram showing an entire embodiment of the invention, and Fig. 3 shows a part of a conventional example at a transistor level. FIG. 1...Substrate power supply line of P-channel MOS transistor, 2...High potential power supply line of semiconductor device, 3...Low potential power supply line of semiconductor device,
4... N-channel MOS transistor substrate power supply line, 5... P-channel inter-channel O8 transistor, 6... N-channel MOS transistor, 10... semiconductor device , 11.12...
...Operational amplifier, 13...Backup batch') -14...Main power terminal, 15...
Main ground terminal. Agent Patent Attorney Shingi Uchihara

Claims (1)

【特許請求の範囲】[Claims] PチャンネルMOSトランジスタとNチャンネルMOS
トランジスタとを使用して半導体基板上に形成された論
理回路と、前記PチャンネルMOSトランジスタの基板
電位と前記NチャンネルMOSトランジスタの基板電位
と高電位電源(VDD)の電位と低電位電源(GND)
の電位とをそれぞれ供給する手段と、通常動作時には、
前記PチャンネルMOSトランジスタの基板電位と前記
高電位電源の電位とを等しくするとともに前記Nチャン
ネルMOSトランジスタの基板電位と前記低電位電源の
電位とを等しくし、且つ前記論理回路の電気的回路状態
を保存する非動作時には前記PチャンネルMOSトラン
ジスタの基板電位、前記高電位電源の電位、前記低電位
電源の電位、前記NチャンネルMOSトランジスタの基
板電位の順に高い電位から低い電位となるようにする手
段とを有することを特徴とする半導体装置。
P-channel MOS transistor and N-channel MOS
a logic circuit formed on a semiconductor substrate using a transistor, a substrate potential of the P-channel MOS transistor, a substrate potential of the N-channel MOS transistor, a potential of a high potential power supply (VDD), and a potential of a low potential power supply (GND);
and, during normal operation, means for supplying a potential of
The substrate potential of the P-channel MOS transistor and the potential of the high-potential power supply are made equal, the substrate potential of the N-channel MOS transistor and the potential of the low-potential power supply are made equal, and the electrical circuit state of the logic circuit is means for storing the substrate potential of the P-channel MOS transistor, the potential of the high-potential power supply, the potential of the low-potential power supply, and the substrate potential of the N-channel MOS transistor from a higher potential to a lower potential in the order of non-operation; A semiconductor device characterized by having:
JP2248232A 1990-09-18 1990-09-18 Semiconductor device Pending JPH04125960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2248232A JPH04125960A (en) 1990-09-18 1990-09-18 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2248232A JPH04125960A (en) 1990-09-18 1990-09-18 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH04125960A true JPH04125960A (en) 1992-04-27

Family

ID=17175133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2248232A Pending JPH04125960A (en) 1990-09-18 1990-09-18 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH04125960A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5914515A (en) * 1994-07-08 1999-06-22 Nippondenso Co., Ltd Semiconductor device
JP2004508950A (en) * 2000-09-11 2004-03-25 エービービー エービー Manipulator with three or more arms to move objects in space
US6774440B1 (en) 1997-05-30 2004-08-10 Sharp Kabushiki Kaisha Semiconductor device and method for driving the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5914515A (en) * 1994-07-08 1999-06-22 Nippondenso Co., Ltd Semiconductor device
US6774440B1 (en) 1997-05-30 2004-08-10 Sharp Kabushiki Kaisha Semiconductor device and method for driving the same
JP2004508950A (en) * 2000-09-11 2004-03-25 エービービー エービー Manipulator with three or more arms to move objects in space

Similar Documents

Publication Publication Date Title
US6031778A (en) Semiconductor integrated circuit
KR970010642B1 (en) Semiconductor device
US7830203B2 (en) System-on-a-chip and power gating circuit thereof
US7372765B2 (en) Power-gating system and method for integrated circuit devices
US6741098B2 (en) High speed semiconductor circuit having low power consumption
JPH08251014A (en) Device with dynamic logic circuit and manufacture of its device as well as processing of signal
US6759873B2 (en) Reverse biasing logic circuit
JPH08321763A (en) Logic circuit having power control function
US7795906B2 (en) Leakage power management with NDR isolation devices
JPH04125960A (en) Semiconductor device
JPH1032481A (en) Logic circuit
JP3554638B2 (en) Semiconductor circuit
JP2007531412A (en) Leakage current reduction method
US6891419B2 (en) Methods and apparatus for employing feedback body control in cross-coupled inverters
JP4469798B2 (en) Integrated circuit device and method for driving an output signal with the output of an inverter stage
JP2002231886A (en) Esd protection circuit and semiconductor integrated circuit device
US20060077002A1 (en) Apparatus and methods for saving power and reducing noise in integrated circuits
US8970190B2 (en) Using low voltage regulator to supply power to a source-biased power domain
US6348717B1 (en) Semiconductor integrated circuit having an improved voltage switching circuit
KR100914553B1 (en) Semiconductor integrated circuit
JPH08251004A (en) Output circuit
JP2000194432A (en) Power source circuit for cmos logic
JP3559750B2 (en) CMOS inverter circuit
JPH0349216B2 (en)
KR19980068699A (en) Power reduction circuit