JPH0412460A - High-temperature fuel cell - Google Patents

High-temperature fuel cell

Info

Publication number
JPH0412460A
JPH0412460A JP2114335A JP11433590A JPH0412460A JP H0412460 A JPH0412460 A JP H0412460A JP 2114335 A JP2114335 A JP 2114335A JP 11433590 A JP11433590 A JP 11433590A JP H0412460 A JPH0412460 A JP H0412460A
Authority
JP
Japan
Prior art keywords
gas
fuel cell
fuel
fed
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2114335A
Other languages
Japanese (ja)
Inventor
Toshihiko Yoshida
利彦 吉田
Atsushi Tsunoda
淳 角田
Isao Mukaisawa
向沢 功
Satoshi Sakurada
櫻田 智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKIYU SANGYO KASSEIKA CENTER
Tonen General Sekiyu KK
Japan Petroleum Energy Center JPEC
Original Assignee
SEKIYU SANGYO KASSEIKA CENTER
Petroleum Energy Center PEC
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKIYU SANGYO KASSEIKA CENTER, Petroleum Energy Center PEC, Tonen Corp filed Critical SEKIYU SANGYO KASSEIKA CENTER
Priority to JP2114335A priority Critical patent/JPH0412460A/en
Publication of JPH0412460A publication Critical patent/JPH0412460A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To unify the temperature distribution of a fuel cell by providing a gas feed path at the center section of a flat solid electrolyte plate forming an electrode, providing a dispersing means of gas from the feed path to the electrode, and controlling the temperature of the fed gas. CONSTITUTION:An oxidizer gas feed pipe 7 and a fuel gas feed pipe 8 are provided at the center section of a solid electrolyte plate 1 made of a flat plate of partially stabilized zirconia added with yttrium oxide, a positive electrode 2 is formed except a seal section 9, and a negative electrode is formed on the back face. The pipes 7, 8 are formed at the center section of an inter- connector 31 made of nichrome and electrically connecting unit fuel cells like for the plate 1, and oxidizer gas and fuel gas are fed to the electrodes through grooves 32, 33 for gas dispersion. They are stacked in three layers and heat- treated, then it is held at 1000 deg.C, and oxygen is fed to the positive electrode side and hydrogen is fed to the negative electrode side for power generation. The temperature of the fed gas is adjusted, and the temperature distribution of the fuel cell can be unified.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、燃料電池に関し特に平板状の固体酸化物の電
解質を使用する燃料電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to fuel cells, and more particularly to fuel cells using a flat solid oxide electrolyte.

[従来技術] 燃料電池は化学エネルギーを直接電気エネルギーへ高い
効率で変換可能であるので、現在行われている化石燃料
の燃焼によって発生した蒸気による発電方法に代わる発
電方法として開発が進めらている。
[Prior art] Fuel cells are capable of converting chemical energy directly into electrical energy with high efficiency, so they are being developed as a power generation method to replace the current power generation method using steam generated from the combustion of fossil fuels. .

燃料電池は、各種の燃料によって作動するが、電池反応
の生成物が水のみである水素を燃料とする電池が開発の
中心であるが、これらの水素を燃料とする燃料電池は、
使用する電解質の種類によって、アルカリ型、燐酸型、
溶融炭酸塩型、固体電解質型に分類される。
Fuel cells operate using various types of fuel, but the focus of development is on cells that use hydrogen as fuel, where the only product of the cell reaction is water.
Depending on the type of electrolyte used, there are alkaline type, phosphoric acid type,
Classified into molten carbonate type and solid electrolyte type.

アルカリ型は作動温度が低いという特徴を有しているが
炭酸ガスが混入した燃料は電解質の水酸化カリウムと反
応するために、アルカリ型ではこのような燃料を使用す
ることはできない。
The alkaline type has a feature of low operating temperature, but since fuel mixed with carbon dioxide reacts with the electrolyte potassium hydroxide, such fuel cannot be used in the alkaline type.

また、燐酸型の燃料電池は天然ガスやナフサを改質して
得られる炭酸ガスを含む水素ガスも問題なく使用するこ
とができるので電気事業用の燃料電池として開発が進め
られているが、電極触媒に白金族の金属を使用するとと
もに、使用する触媒が原料ガス中に含まれている微量の
一酸化炭素によって被毒するという問題点がある。
In addition, phosphoric acid fuel cells are being developed as fuel cells for electric utilities because they can use hydrogen gas containing carbon dioxide obtained by reforming natural gas and naphtha without any problems. There is a problem in that a platinum group metal is used as a catalyst, and the catalyst used is poisoned by trace amounts of carbon monoxide contained in the raw material gas.

比較的規模の大きな発電設備用として開発中である高温
で作動するために白金族の金属等の高価な触媒は必要と
せず、電池で発生する排熱を蒸気発生に利用可能である
溶融炭酸塩型の燃料電池は原料の水素中に一酸化炭素が
含まれていても問題なく利用できる。ところが、溶融炭
酸塩型の燃料電池では燃料電池反応に炭酸イオンが関与
しているためにその反応には炭酸ガスが不可欠であるの
で、酸化剤である空気に二酸化炭素を混合する必要性か
り、原料および排ガスの処理設備が複雑となる。
Molten carbonate, which is being developed for use in relatively large-scale power generation facilities, does not require expensive catalysts such as platinum group metals because it operates at high temperatures, and the waste heat generated by batteries can be used to generate steam. This type of fuel cell can be used without any problems even if the hydrogen raw material contains carbon monoxide. However, in molten carbonate fuel cells, since carbonate ions are involved in the fuel cell reaction, carbon dioxide gas is essential for the reaction, so it is necessary to mix carbon dioxide with air, which is an oxidizing agent. Processing equipment for raw materials and exhaust gas becomes complicated.

これらに対して、上記の燃料電池のような気体あるいは
溶融状の電解質を含まず高温で電解質として作動する固
体電解質を使用した燃料電池が第三世代の燃料電池とし
て開発が進められている。
In response to these, fuel cells that do not contain gaseous or molten electrolytes and use solid electrolytes that operate as electrolytes at high temperatures, such as the above-mentioned fuel cells, are being developed as third-generation fuel cells.

固体電解質型燃料電池は、高温で酸素イオン導電性の電
解質として作動する酸化ジルコニウムに酸化イツトリウ
ムあるいは酸化カルシウムなどを加えて安定化あるいは
一部安定化した安定化ジルコニアまたは部分安定化ジル
コニアを使用している。そして水素、−酸化炭素、炭化
水素などの各種の燃料を使用することができるとともに
、電解質が固体であるために液体または溶融塩を使用し
た燃料電池では避けられない電解質の蒸発や電解液によ
る腐食の問題がなく、また燃料電池の構造が簡単という
特徴を有している。
Solid electrolyte fuel cells use stabilized or partially stabilized zirconia, which is stabilized or partially stabilized by adding yttrium oxide or calcium oxide to zirconium oxide, which acts as an oxygen ion conductive electrolyte at high temperatures. There is. Various fuels such as hydrogen, carbon oxide, and hydrocarbons can be used, and since the electrolyte is solid, evaporation of the electrolyte and corrosion caused by the electrolyte are unavoidable in fuel cells using liquids or molten salts. There are no problems, and the structure of the fuel cell is simple.

そして作動温度が高いために白金族の金属のような高価
な触媒が必要ではなく排熱も高温であるために排熱をガ
スタービン発電または蒸気の発生に有効利用することが
できるので総合的なエネルギー効率が極めて大きく、最
も優れた燃料電池として期待されている。
In addition, because the operating temperature is high, expensive catalysts such as platinum group metals are not required, and the exhaust heat is also high temperature, so the exhaust heat can be effectively used for gas turbine power generation or steam generation. It has extremely high energy efficiency and is expected to be the most superior fuel cell.

固体電解質型の燃料電池は、製造方法および構造の違い
により、電解買上への電極の形成方法は大きく分けて次
の三種類の方法に分類される。
Depending on the manufacturing method and structure of solid electrolyte fuel cells, methods for forming electrodes during electrolysis can be roughly divided into the following three types.

(イ)アルミナ等の機械的強度の大きな多孔質のセラミ
ックスの基体上に一方の電極を形成し、その上にガスリ
ーク孔のないように溶射等の方法で酸化ジルコニウム層
を作成し、更に酸化ジルコニウム層の上に他方の電極を
形成する方法であり、円筒型の燃料電池の製造で用いら
れている。
(b) One electrode is formed on a porous ceramic substrate with high mechanical strength such as alumina, and a zirconium oxide layer is created on top of it by a method such as thermal spraying so that there are no gas leak holes, and then a zirconium oxide layer is formed. This method forms the other electrode on top of the layer, and is used in the manufacture of cylindrical fuel cells.

(ロ)焼結前の生の酸化ジルコニウムのシート上に焼結
により電極となる物質を塗布して酸化ジルコニウムの焼
結時に同時に電極を形成する方法であって、モノリシリ
ック型の燃料電池の製造で利用されている。
(b) A method in which an electrode material is applied by sintering onto a sheet of raw zirconium oxide to form an electrode at the same time as the zirconium oxide is sintered, and is used in the production of monolithic fuel cells. It's being used.

(ハ)焼結した酸化ジルコニウムの電解質上に電極を塗
布あるいは印刷の方法で形成する方法で。
(c) A method in which electrodes are formed on a sintered zirconium oxide electrolyte by coating or printing.

平板型の電池のユニットを積層した燃料電池で利用され
ている。
It is used in fuel cells that consist of stacked flat battery units.

ところが、固体電解質電池の製造においてあらかじめ焼
結した酸化ジルコニウムの固体電解質上に電極を形成す
る前記(ハ)の方法は、平板状であるために品質の安定
した酸化ジルコニウム電解質および電極が製造できるの
で大型の燃料電池の製造に適している。
However, in the production of solid electrolyte batteries, the method (c) above, in which electrodes are formed on a zirconium oxide solid electrolyte that has been sintered in advance, cannot produce zirconium oxide electrolytes and electrodes with stable quality because of the flat plate shape. Suitable for manufacturing large fuel cells.

一組の正極と負極で構成した燃料電池の発生電圧は開放
で1,2ボルト程度であり、また出力電流も電池の効率
の面から制限を受けるので、燃料電池を発電に利用する
には多数の単位燃料電池を電気的に直列および並列に接
続しなければならないが、平板型の燃料電池では一段当
りの厚みを小さくすることによって単位容積当りのエネ
ルギー密度を大きくすることが可能となるので、多数の
単位燃料電池を積層した大型の燃料電池の製造に適して
いる。
The voltage generated by a fuel cell consisting of a pair of positive and negative electrodes is about 1 to 2 volts when open, and the output current is also limited by the efficiency of the cell. unit fuel cells must be electrically connected in series and parallel, but with flat plate fuel cells, it is possible to increase the energy density per unit volume by reducing the thickness of each stage. Suitable for manufacturing large fuel cells in which many unit fuel cells are stacked.

第2図は、平板型の燃料電池の積層様式を示す図である
が、図中11は安定化あるいは部分安定化ジルコニアか
らなる固体電解質板、固体電解質板には正極12と負極
13を形成する多孔性物質を被覆している。電極を被覆
した固体電解質板はインターコネクタ14を介して積層
している。
FIG. 2 is a diagram showing the stacking style of a flat plate fuel cell. In the figure, 11 is a solid electrolyte plate made of stabilized or partially stabilized zirconia, and a positive electrode 12 and a negative electrode 13 are formed on the solid electrolyte plate. Covering a porous material. The solid electrolyte plates covering the electrodes are laminated via an interconnector 14.

また、インターコネクタには、空気あるいは酸素などの
酸化剤のガス通路17と水素などの燃料気体のガス通路
18を形成して電極に気体を供給するともに隣接する単
位燃料電池を電気的に接続する作用をする。両端には電
気を外部に取り出すための端板15および16を設けて
いる。端板15および16にも同様にガス通路19およ
び20が設けられている。
In addition, a gas passage 17 for an oxidizing agent such as air or oxygen and a gas passage 18 for a fuel gas such as hydrogen are formed in the interconnector to supply gas to the electrodes and to electrically connect adjacent unit fuel cells. act. End plates 15 and 16 are provided at both ends for extracting electricity to the outside. End plates 15 and 16 are similarly provided with gas passages 19 and 20.

また、インターコネクタには、空気あるいは酸素などの
酸化剤のガス通路17と水素などの燃料気体のガス通路
18を形成して電極に気体を供給するともに隣接する単
位燃料電池を電気的に接続する作用をする。両端には電
気を外部に取り出すための端板15および16を設けて
いる。端板15および16にも同様にガス通路19およ
び20が設けられている。この図では単位燃料電池は2
組のみであるが、多数の単位燃料電池を積層することに
よって所望の出力電圧を得る燃料電池を得ることが可能
であることは勿論である。
In addition, a gas passage 17 for an oxidizing agent such as air or oxygen and a gas passage 18 for a fuel gas such as hydrogen are formed in the interconnector to supply gas to the electrodes and to electrically connect adjacent unit fuel cells. act. End plates 15 and 16 are provided at both ends for extracting electricity to the outside. End plates 15 and 16 are similarly provided with gas passages 19 and 20. In this figure, the unit fuel cell is 2
Of course, it is possible to obtain a fuel cell that obtains a desired output voltage by stacking a large number of unit fuel cells.

このような構成の燃料電池において、ガス通路17およ
び19に酸素または空気を、ガス通路18および20に
は水素またはその他の燃料気体を流し、両端板には図示
しない外部回路を接続し、燃料電池の作動温度である8
50℃〜1000℃に保持すると、イオン化した酸素が
正極12側より固体電解質板11を透過して負極13で
燃料気体と反応する。この結果外部回路を電流が流れる
こととなる。
In a fuel cell having such a configuration, oxygen or air is supplied to the gas passages 17 and 19, hydrogen or other fuel gas is supplied to the gas passages 18 and 20, and an external circuit (not shown) is connected to both end plates. 8, which is the operating temperature of
When maintained at 50° C. to 1000° C., ionized oxygen permeates the solid electrolyte plate 11 from the positive electrode 12 side and reacts with the fuel gas at the negative electrode 13 . As a result, current flows through the external circuit.

燃料気体として水素を利用した場合を化学式で示すと、
次のようになる。
The chemical formula for using hydrogen as a fuel gas is:
It will look like this:

正極:  1 / 202+ 2 e−一02−負極:
  H2+02−+H3O+ 2 e−電池全体では 1 / 202 +H2→H20 で示される水素の酸化による水の生成反応が起こってい
る。
Positive electrode: 1/202+ 2 e-102- negative electrode:
H2+02-+H3O+ 2 e- In the entire battery, a water production reaction is occurring by oxidation of hydrogen as shown by 1/202 +H2→H20.

[発明が解決しようとする課題] 水素と酸素を利用する燃料電池における起電反応は、酸
素の還元反応と水素の酸化反応がそれぞれ正極と負極と
いう別の場所において進行しているために、水素と酸素
の燃焼エネルギーを熱としてではなく電気エネルギーと
して取り出すことができる。
[Problems to be Solved by the Invention] In the electromotive reaction in a fuel cell that uses hydrogen and oxygen, the reduction reaction of oxygen and the oxidation reaction of hydrogen proceed at different locations, the positive electrode and the negative electrode. The combustion energy of oxygen can be extracted not as heat but as electrical energy.

燃料電池における反応を熱力学的に表現すると、ギブス
の自由エネルギー変化であるΔGと発生する起電力Eの
間には 一ΔG=nFE の関係がある。ここでnは反応に関与する電子数であり
、Fはファラデ一定数である。
Expressing the reaction in a fuel cell thermodynamically, there is a relationship between ΔG, which is a Gibbs free energy change, and the generated electromotive force E, as follows: ΔG=nFE. Here, n is the number of electrons involved in the reaction, and F is a Faraday constant.

また、ΔGと反応のエンタルピー変化であるΔHとの間
には ΔG=ΔH−TΔSの関係がある。
Further, there is a relationship between ΔG and ΔH, which is the enthalpy change of the reaction, as ΔG=ΔH−TΔS.

ここで、Tは温度、ΔGは反応のエントロピー変化であ
る。一方、化学反応で発生する燃焼熱は反応のエンタル
ピー変化であるΔHと等しいので燃料電池による電力発
生の熱効率ηは燃料と酸化剤との化学反応による発熱量
に対する起電力の比であるが、 η=ΔG/ΔH と表現される。
Here, T is the temperature and ΔG is the entropy change of the reaction. On the other hand, since the heat of combustion generated in a chemical reaction is equal to ΔH, which is the enthalpy change of the reaction, the thermal efficiency η of electricity generation by a fuel cell is the ratio of the electromotive force to the calorific value due to the chemical reaction between the fuel and the oxidizer. It is expressed as =ΔG/ΔH.

したがって、燃料電池の発電においても、反応のエンタ
ルピー変化とギプスの自由エネルギーの差に相当する熱
エネルギーの発生は必然的に起こり、またこのような理
論的に発生が避けられない熱エネルギー以外にも電極あ
るいは電解質の電気抵抗や電極と集電体との接触抵抗が
燃料電池の起電力の損失となり、燃料電池においては熱
の発生となって表れる。
Therefore, even in the power generation of fuel cells, the generation of thermal energy corresponding to the difference between the enthalpy change of the reaction and the free energy of the cast will inevitably occur, and in addition to this theoretically unavoidable generation of thermal energy, The electrical resistance of the electrode or electrolyte and the contact resistance between the electrode and the current collector result in a loss of electromotive force in the fuel cell, which manifests itself in the generation of heat in the fuel cell.

このために、燃料電池で発生する熱エネルギーを除去し
て燃料電池の作動温度を保持するためには燃料電池の冷
却を行うことが必要となる。運転温度が200℃程度で
ある燐酸型の燃料電池では燃料電池のスタックに数セル
毎に液体または気体の冷却手段を設けて温度の保持とと
もに発生した熱エネルギーを回収して有効利用を図って
おり、また、溶融炭酸塩型の燃料電池の場合にも冷却の
手段を燃料電池のスタックに積層することが行われてい
る。
Therefore, in order to remove the thermal energy generated by the fuel cell and maintain the operating temperature of the fuel cell, it is necessary to cool the fuel cell. Phosphoric acid fuel cells, whose operating temperature is around 200°C, are equipped with liquid or gas cooling means for every few cells in the fuel cell stack to maintain temperature and recover the generated thermal energy for effective use. Also, in the case of molten carbonate type fuel cells, cooling means are stacked on the fuel cell stack.

固体電解質を使用した高温型の燃料電池は作動湿度が8
50℃〜1000℃と高いのでスタック中に冷却手段を
設けて電池の構造を複雑とすることは好ましくない。ま
た、作動温度が高いので燃料電池から周囲への放熱で燃
料電池からの発熱を制御することが可能となるが、周囲
への放熱のみでは中央部に発生した熱が蓄積することな
るので燃料電池の周辺部と内部との温度分布が大きくな
る。
High-temperature fuel cells using solid electrolytes have an operating humidity of 8
Since the temperature is as high as 50° C. to 1000° C., it is not preferable to provide a cooling means in the stack to complicate the structure of the battery. In addition, since the operating temperature is high, it is possible to control the heat generated from the fuel cell by dissipating heat from the fuel cell to the surroundings, but if the heat is only radiated to the surroundings, the heat generated in the center will accumulate, so the fuel cell The temperature distribution between the surrounding area and the inside becomes larger.

[y!、題を解決するための手段] 本発明者らは、固体電解質を用いた高温型の燃料電池の
冷却方法を鋭意検討し、燃料電池スタックからの周囲へ
の放熱を利用する際に、燃料電池のスタック内での温度
分布を均一化する目的で燃料電池の中心部から燃料気体
および酸化剤気体を供給し周囲から未反応の成分を含む
気体を取り出すために、燃料電池の固体電解質板の中心
部に気体の供給管路を設け、供給した気体を燃料電池の
固体電解質板とインターコネクタの間に設けた気体の通
路を通過させて、中心部から導入した温度の低い気体を
燃料電池反応をさせた後に周辺部から排出する。
[y! , Means for Solving the Problem] The present inventors have intensively studied a method for cooling a high-temperature fuel cell using a solid electrolyte, and found that when utilizing heat dissipation from a fuel cell stack to the surroundings, The center of the solid electrolyte plate of the fuel cell is used to supply fuel gas and oxidizer gas from the center of the fuel cell, and to extract gas containing unreacted components from the surrounding area, in order to equalize the temperature distribution within the fuel cell stack. A gas supply pipe is provided in the central part, and the supplied gas is passed through a gas passage provided between the solid electrolyte plate of the fuel cell and the interconnector, and the low temperature gas introduced from the center is used for the fuel cell reaction. After that, it is discharged from the surrounding area.

すなわち、第1図は本発明の固体電解質型燃料電池の構
成を示す図であり、1組の単位燃料電池からなる燃料電
池を展開して示したものである。
That is, FIG. 1 is a diagram showing the configuration of a solid oxide fuel cell according to the present invention, and is an exploded view of a fuel cell consisting of a set of unit fuel cells.

図中1は安定化あるいは部分安定化ジルコニアからなる
固体電解質仮 固体電解質板には正極2と負極3を形成
する多孔性物質を被覆しており、固体電解質仮に設けた
電極から発生した電力を集電するために、燃料電池の積
層体の両端には端板4および5を設けているが、単位燃
料電池を複数個積層する場合には隣接する単位燃料電池
を電気的に接続するインターコネクタを設けて積層する
In the figure, 1 is a temporary solid electrolyte made of stabilized or partially stabilized zirconia.The solid electrolyte plate is coated with a porous material that forms the positive electrode 2 and the negative electrode 3, and the electric power generated from the temporary solid electrolyte electrodes is collected. In order to conduct electricity, end plates 4 and 5 are provided at both ends of the fuel cell stack, but when multiple unit fuel cells are stacked, an interconnector is provided to electrically connect adjacent unit fuel cells. Provide and laminate.

端板と固体電解質板との間には気体を分散する分散板6
を設けて積層している。正極側に設けた分散板には中心
部に設けた酸化剤気体の供給管路7から正極に分散して
供給するための溝あるいは多孔状管路を有しており、ま
た負極側に設けた分散板には燃料気体の供給管路8から
負極に燃料気体を分散して供給する溝あるいは多孔状管
路を有している。
A dispersion plate 6 for dispersing gas is provided between the end plate and the solid electrolyte plate.
are installed and laminated. The dispersion plate provided on the positive electrode side has grooves or porous pipes for dispersing and supplying the oxidant gas from the supply pipe 7 provided in the center to the positive electrode, and the dispersion plate provided on the negative electrode side The distribution plate has grooves or porous pipes for dispersing and supplying fuel gas from the fuel gas supply pipe 8 to the negative electrode.

第3図(A)は中心部から周辺部への気体の通路を設け
たインターコネクタの一方の面の平面図せあり、・同図
(B)は他方の面の平面図、同図(C)はA−A線での
インターコネクタの断面図、同図(D)はB−B線での
インターコネクタの断面図を示している。
Figure 3 (A) is a plan view of one side of the interconnector providing a gas passage from the center to the periphery; Figure 3 (B) is a plan view of the other side; ) shows a sectional view of the interconnector along the line AA, and (D) shows a sectional view of the interconnector along the line BB.

インターコネクタ31の中心部に設けた酸化剤気体の供
給管路7および燃料気体の供給管路8がらインターコネ
クタに形成した溝32を通じて電極に供給される。溝の
形状および溝のパターンはこの図で示したものに限らず
供給管路がら放射状のもの、環状のもの等の任意の形状
のものを設けることができる。
The oxidant gas supply conduit 7 and the fuel gas supply conduit 8 provided in the center of the interconnector 31 are supplied to the electrodes through a groove 32 formed in the interconnector. The shape and pattern of the grooves are not limited to those shown in this figure, but any arbitrary shape such as a radial shape or an annular shape can be provided in the supply pipe.

また、第4図は固体電解質板1を正極側がら見た平面図
であり中央部に酸化剤気体の供給管路7および燃料気体
の供給管路8を設けており、気体の供給管路の周辺部分
にはガラスペーストを塗布して封止する封止部9を除い
て正極2を形成している。
FIG. 4 is a plan view of the solid electrolyte plate 1 viewed from the positive electrode side, in which an oxidant gas supply pipe 7 and a fuel gas supply pipe 8 are provided in the center. The positive electrode 2 is formed except for a sealing part 9 which is sealed by applying glass paste to the peripheral part.

[作用コ 電極を形成した平板状の固体電解質板の中央部に気体の
供給路を設けるともに該供給路から電極への気体の分散
手段を設けたので、供給する気体の温度を制御すること
により燃料電池の温度分布を均一化することができる。
[Since a gas supply path was provided in the center of the flat solid electrolyte plate that formed the working co-electrode, and a means for dispersing gas from the supply path to the electrode was provided, the temperature of the gas to be supplied could be controlled. The temperature distribution of the fuel cell can be made uniform.

[実施例コ 固体電解質として酸化イツトリウムを3モル%添加した
部分安定化ジルコニアの50X50+w+の厚さ0.2
w+mの板を用いた。この固体電解質板の中央部に第4
図で示すような縦5− 横2Hの酸化剤および燃料の気
体供給用の穴を超音波加工機によって設けた。そして、
固体電解質の酸素通路側には気体供給用の穴の周辺部を
除いて平均粒子径5μmのL a @、@ S r L
IM n O3粉末を刷毛塗り法で厚さ0..3+a+
nに塗布して正極とした。また水素通路側にも気体供給
路の周辺部を除いてニッケル/二酸化ジルコニウム(重
量比で9対1)のサーメット混合粉末を正極と同様に刷
毛塗り法で0.2mmの厚さに塗布して負極とした。
[Example 50x50+w+ thickness 0.2 of partially stabilized zirconia with 3 mol% of yttrium oxide added as solid electrolyte]
A w+m plate was used. A fourth electrode is placed in the center of this solid electrolyte plate.
As shown in the figure, holes measuring 5 by 2 H for supplying oxidizer and fuel gases were formed using an ultrasonic machining machine. and,
On the oxygen passage side of the solid electrolyte, there are L a @ and S r L with an average particle size of 5 μm, excluding the area around the gas supply hole.
IM n O3 powder was applied by brushing to a thickness of 0. .. 3+a+
The positive electrode was prepared by applying the same to the positive electrode. Also, on the hydrogen passage side, except for the peripheral area of the gas supply passage, a cermet mixed powder of nickel/zirconium dioxide (9:1 by weight) was applied to a thickness of 0.2 mm using the same brush coating method as on the positive electrode. It was used as a negative electrode.

インターコネクタにはニクロムを用い、インターコネク
タには気体の分散用の溝を設けた。
Nichrome was used for the interconnector, and grooves were provided in the interconnector for gas dispersion.

気体供給路の周辺部およびインターコネクタの外周部分
に対応した部分の固体電解質板には気体の漏洩防止をす
るためにガラスペーストを塗布した。
Glass paste was applied to the solid electrolyte plate at the portions corresponding to the periphery of the gas supply path and the outer periphery of the interconnector to prevent gas leakage.

インターコネクタの外周部分の一部分にはマニホールド
と接続する気体の排出口が形成されるように周辺部の一
部には切り欠き部を設けた。このようにして3段に積層
した燃料電池スタックを加熱した。加熱は室温から15
0 ℃までは1分間に1℃で加熱し、ガラスペーストの
溶媒を蒸発させた。150℃〜300 ’Cまでは1分
間に5℃、300℃以上では水素通路側に電極の酸化を
防止するために窒素を流し、 1分間に5℃で1000
 ”Cまで昇温した。
A notch was provided in a portion of the outer periphery of the interconnector so that a gas outlet connected to the manifold was formed in a portion of the outer periphery of the interconnector. In this way, the fuel cell stack stacked in three stages was heated. Heating is from room temperature to 15
The glass paste was heated at 1°C per minute to 0°C to evaporate the solvent of the glass paste. From 150°C to 300'C, 5°C per minute, and above 300°C, nitrogen is flowed on the hydrogen path side to prevent oxidation of the electrode, and the temperature is 1000°C at 5°C per minute.
``The temperature rose to C.

その後1000℃に保持して正極側に酸素、負極側に水
素を供給して発電を開始したところ開放電圧は3.7ボ
ルトあり、−段当り最大で4Wの出力が得られた。
Thereafter, when the temperature was maintained at 1000° C. and oxygen was supplied to the positive electrode side and hydrogen was supplied to the negative electrode side, power generation was started, the open circuit voltage was 3.7 volts, and a maximum output of 4 W per -stage was obtained.

[発明の効果コ 平板型の電解質板を有する固体電解質型の燃料電池にお
いて、電解室板の中央部に気体の供給用の管路を設は各
燃料電池の電極へ供給するようにしたので、供給気体の
温度を調整することによって、燃料電池の温度分布を均
一化することができる。
[Effects of the Invention] In a solid electrolyte fuel cell having a flat electrolyte plate, a conduit for supplying gas is provided in the center of the electrolytic chamber plate to supply gas to the electrodes of each fuel cell. By adjusting the temperature of the supply gas, the temperature distribution of the fuel cell can be made uniform.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の固体電解質を使用した高温型燃料電池
の構成を示す図。第2図は、平板型の燃料電池の積層様
式を示す図。第3図は中心部から周辺部への気体の通路
を設けたインターコネクタ。 第4図は固体電解質板の中央部に気体の供給管路を設け
たに
FIG. 1 is a diagram showing the configuration of a high-temperature fuel cell using the solid electrolyte of the present invention. FIG. 2 is a diagram showing the stacking style of a flat plate fuel cell. Figure 3 shows an interconnector with a gas passage from the center to the periphery. Figure 4 shows a gas supply pipe installed in the center of the solid electrolyte plate.

Claims (1)

【特許請求の範囲】[Claims] 電極を形成した平板状の固体電解質板の中央部に気体の
供給路を設けるともに該供給路から電極への気体の分散
手段を設けたことを特徴とする高温型燃料電池。
A high-temperature fuel cell characterized in that a gas supply path is provided in the center of a flat solid electrolyte plate on which electrodes are formed, and a means for dispersing gas from the supply path to the electrodes is provided.
JP2114335A 1990-04-28 1990-04-28 High-temperature fuel cell Pending JPH0412460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2114335A JPH0412460A (en) 1990-04-28 1990-04-28 High-temperature fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2114335A JPH0412460A (en) 1990-04-28 1990-04-28 High-temperature fuel cell

Publications (1)

Publication Number Publication Date
JPH0412460A true JPH0412460A (en) 1992-01-17

Family

ID=14635220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2114335A Pending JPH0412460A (en) 1990-04-28 1990-04-28 High-temperature fuel cell

Country Status (1)

Country Link
JP (1) JPH0412460A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313367A (en) * 2001-04-12 2002-10-25 Sony Corp Fuel cell separator and fuel cell
JP2006302658A (en) * 2005-04-20 2006-11-02 Daikin Ind Ltd Solid oxide type fuel cell
JP2009123520A (en) * 2007-11-15 2009-06-04 Nissan Motor Co Ltd Solid electrolyte fuel cell
CN112838235A (en) * 2020-12-31 2021-05-25 新源动力股份有限公司 Hydrogen fuel cell stick structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313367A (en) * 2001-04-12 2002-10-25 Sony Corp Fuel cell separator and fuel cell
JP2006302658A (en) * 2005-04-20 2006-11-02 Daikin Ind Ltd Solid oxide type fuel cell
WO2006114920A1 (en) * 2005-04-20 2006-11-02 Daikin Industries, Ltd. Solid oxide fuel cell
JP2009123520A (en) * 2007-11-15 2009-06-04 Nissan Motor Co Ltd Solid electrolyte fuel cell
CN112838235A (en) * 2020-12-31 2021-05-25 新源动力股份有限公司 Hydrogen fuel cell stick structure

Similar Documents

Publication Publication Date Title
US4853100A (en) High performance electrochemical energy conversion systems
US6811913B2 (en) Multipurpose reversible electrochemical system
US20070248867A1 (en) Etched interconnect for fuel cell elements
US5501781A (en) Electrochemical converter having internal thermal integration
AU2002219941A1 (en) Multipurpose reversible electrochemical system
JP2007523443A (en) Fuel cells for hydrogen production, power generation, and co-production
US8304136B2 (en) Solid oxide fuel cell and solid oxide fuel cell bundle
JPH04237962A (en) Flat type solid electrolyte fuel cell
JP2005513721A (en) Metal current collector protected by oxide film
JP2009520315A (en) Electrochemical battery holder and stack
US5976721A (en) Chemical cogeneration process
TWI750185B (en) Soec system with heating ability
JPH11509361A (en) High temperature fuel cell, high temperature fuel cell stack, and method of manufacturing high temperature fuel cell
RU2417488C1 (en) Planar element of electrochemical devices, battery and method of production
JP2936001B2 (en) High temperature fuel cell and method of manufacturing the same
JPH0412460A (en) High-temperature fuel cell
US20110053045A1 (en) Solid oxide fuel cell and method of manufacturing the same
RU196629U1 (en) MEMBRANE ELECTRODE BLOCK OF A SOLID-OXIDE FUEL CELL WITH CONTACT LAYERS
JP3363985B2 (en) Substrate tube for internal reforming of solid oxide fuel cell
JPH0722058A (en) Flat solid electrolyte fuel cell
JPH0412470A (en) High-temperature type fuel cell
JPH06150958A (en) Solid electrolyte fuel cell
Brown Solid oxide fuel cells
JP6982586B2 (en) Fuel cell cartridges, fuel cell modules and combined cycle systems
Kalra et al. Design of a High Temperature Solid Oxide Fuel Cell: A Review