JPH04124467A - Self-control type glow plug - Google Patents

Self-control type glow plug

Info

Publication number
JPH04124467A
JPH04124467A JP24514190A JP24514190A JPH04124467A JP H04124467 A JPH04124467 A JP H04124467A JP 24514190 A JP24514190 A JP 24514190A JP 24514190 A JP24514190 A JP 24514190A JP H04124467 A JPH04124467 A JP H04124467A
Authority
JP
Japan
Prior art keywords
self
glow plug
control
pattern
exothermic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24514190A
Other languages
Japanese (ja)
Inventor
Norio Okuda
奥田 憲男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP24514190A priority Critical patent/JPH04124467A/en
Publication of JPH04124467A publication Critical patent/JPH04124467A/en
Pending legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)

Abstract

PURPOSE:To obtain a self-control type glow plug excellent in durability and rapid temperature rising characteristic so as to further heighten its reliability by burying control resistors, series-connected to an exothermic pattern, into a ceramic body, or forming an exothermic part of a ceramic heater with a part of the exothermic pattern exposed on a ceramic body. CONSTITUTION:A self-control type glow plug is provided with an exothermic pattern formed at least one kind of the carbide, nitride, silicide and boride of the periodic table No. IVa, Va, VIa group metal so as to have a small resistance temperature coefficient from the normal temperature to 1000 deg.C being not more than four times as an exothermic body. A control resistor 3 having a larger positive resistance temperature coefficient compared to the exothermic pattern 2 is formed of such a high fusing point metal wire that the resistance value of the control resistor 3 per unit volume of a ceramic heater 1 corresponding to the buried part of the current control resistor 3 is smaller than the same resistance value of the exothermic pattern 2. Such control resistors 3 are series- connected to the exothermic pattern 2 and buried into a ceramic body 4. The self-control glow plug can be also formed of a ceramic heater 1 with a part of the exothermic pattern 2 exposed on the surface of the ceramic body 4.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明はディーゼル機関に装着して始動時に副燃焼室内
を急速に予熱する自己制御型グロープラグに関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention relates to a self-control glow plug that is installed in a diesel engine and rapidly preheats the inside of a sub-combustion chamber at the time of startup.

[従来の技術1 従来よりディーゼル機関の始動補助用として、そのシリ
ンダーヘッド内の副燃焼室にはグロープラグが装着され
ており、ディーゼル機関の始動に際し、グロープラグに
通電して発熱させ、副燃焼室内を予熱して特に低温時の
始動をより確実なものにしている。近年、とりわけディ
ーゼルエンジンの操作性をガソリンエンジン並みに向上
させるため、グロープラグはディーゼルエンジンの始動
時においても燃焼安定化のためのアフターグローとして
長時間通電して安定加熱する傾向にあり、急速昇温後、
一定の温度で飽和すべく通電制御できる自己制御型グロ
ープラグが要求され、その耐久性の向上がますます要望
されてきている。
[Conventional technology 1] Conventionally, a glow plug has been installed in the auxiliary combustion chamber in the cylinder head as a starting aid for diesel engines.When starting the diesel engine, the glow plug is energized to generate heat and start the auxiliary combustion. Preheats the interior of the vehicle to ensure starting, especially at low temperatures. In recent years, in order to improve the operability of diesel engines to the same level as gasoline engines, glow plugs have tended to be energized for a long time to provide stable heating even when starting a diesel engine as an afterglow to stabilize combustion. After warming,
There is a need for a self-control glow plug that can control the energization so that it saturates at a constant temperature, and there is an increasing demand for improved durability.

従来の自己制御型グロープラグには、高融点金該発熱体
より大きい正の抵抗温度係数を有する線材からなる抵抗
体を前記発熱体に直列に接続し、その接続部分はガラス
により封着して構成され、通電昇温時における発熱体の
加熱電流を制御するようにしたものがある。
Conventional self-regulating glow plugs include a resistor made of high melting point gold wire having a higher positive temperature coefficient of resistance than the heating element, connected in series to the heating element, and the connected portion sealed with glass. There is one in which the heating current of the heating element is controlled when the temperature is increased by energization.

か・る構造の自己制御型グロープラグは、発熱と冷却の
繰り返しにより抵抗体と封着のガラスとの熱膨張率の差
によりガラスにクランクを生して封着性が損なわれ、グ
ロープラグの耐久性を低下させるという欠点があった。
Self-regulating glow plugs with a curved structure are characterized by repeated heat generation and cooling, which creates a crank in the glass due to the difference in thermal expansion coefficient between the resistor and the sealing glass, which impairs the sealing properties of the glow plug. This had the disadvantage of decreasing durability.

そこで上記の如き欠点を解消し、耐久性を向上せんとし
て、第4図に示す如く発熱体22を埋設したセラミック
ヒータ21と抵抗体23の接続部分24を金属チューブ
25中に内挿し、その内部に耐熱絶縁材料の粉末26を
充填して一体化した組立体よりなる自己制御型グロープ
ラグが特公平1−55369号公報等に開示されている
Therefore, in an attempt to eliminate the above-mentioned drawbacks and improve durability, the connecting portion 24 between the ceramic heater 21 in which the heating element 22 is buried and the resistor 23 is inserted into the metal tube 25, as shown in FIG. A self-control glow plug is disclosed in Japanese Patent Publication No. 1-55369, etc., which is an integral assembly in which a powder 26 of a heat-resistant insulating material is filled and integrated.

I発明が解決しようとする課B1 しかしながら、上記自己制御型グロープラグでは発熱体
22と抵抗体23の接続部分24が、耐熱絶縁材料の粉
末26中に埋設され、しかも要所のシール部27.27
゛ が有機材料で構成されていることから、100O℃
を越える温度に達するまでの発熱と冷却が長時間にわた
り繰り返されると、前記有機材料が劣化して封着性が阻
害され、外気が侵入して耐熱絶縁材料の粉末26が吸水
し、前記接続部分24を腐蝕させ、長時間にわたる耐久
性に欠けるという課題の他に、急速昇温特性が未だ不充
分であると本発明の自己制御型グロープラグは、発熱体
として常温から1000°Cまでの抵抗温度係数が4倍
以下と小なる周期律表第rVa 、 Va 、Vla族
金属の炭化物、窒化物、珪化物及び硼化物の少なくとも
一種からなる発熱パターンと、該発熱パターンより大き
い正の抵抗温度係数を有し、電流の制御用抵抗体の埋設
部に相当するセラミックヒータの単位体積当りの前記制
御用抵抗体の抵抗値が、発熱パターンの前記同様の抵抗
値より小なる高融点金属線からなる制御用抵抗体とを直
列に接続してセラミック体に埋設されるか、もしくは前
記発熱パターンの一部をセラミック体の表面に露出させ
た状態のセラミックヒータで構成されたことを特徴とす
るものである。
Problem B1 to be Solved by the Invention However, in the self-regulating glow plug, the connecting portion 24 between the heating element 22 and the resistor 23 is buried in the powder 26 of the heat-resistant insulating material, and sealing portions 27. 27
Since ゛ is composed of organic materials, the temperature of 100℃
If heat generation and cooling are repeated over a long period of time until reaching a temperature exceeding In addition to the problem of corrosion of the 24 and lack of long-term durability, the self-regulating glow plug of the present invention has insufficient rapid temperature rise characteristics. A heating pattern made of at least one of carbides, nitrides, silicides, and borides of metals in groups rVa, Va, and Vla of the periodic table with a temperature coefficient as small as 4 times or less, and a positive temperature coefficient of resistance larger than the heating pattern. The resistance value of the control resistor per unit volume of the ceramic heater corresponding to the buried portion of the current control resistor is smaller than the similar resistance value of the heat generating pattern. The heating element is characterized by comprising a ceramic heater connected in series with a control resistor and embedded in the ceramic body, or with a part of the heating pattern exposed on the surface of the ceramic body. be.

[作用1 グロープラグの先端部、すなわちセラミックヒータの先
端部に、4倍以下と比較的小さな抵抗温度係数を有する
前記発熱パターンを設け、該発熱パターンに抵抗温度係
数が5倍以上の大きなタングステン(W)、モリブデン
(Mo)等の高融点金属線よりなる電流制御用抵抗体を
直列に接続することから、通電により前記単位体積当り
の抵抗値が大きい発熱パターンがグロープラグの先端で
急速に発熱する。
[Effect 1] The heating pattern having a relatively small temperature coefficient of resistance of 4 times or less is provided at the tip of the glow plug, that is, the tip of the ceramic heater, and the heating pattern is made of tungsten (with a large temperature coefficient of resistance of 5 times or more). Since current control resistors made of high-melting point metal wires such as W) and molybdenum (Mo) are connected in series, the heating pattern with the large resistance value per unit volume rapidly generates heat at the tip of the glow plug when energized. do.

一方、発熱パターンと制御用抵抗体はセラミック体中に
埋設されるか、もしくは発熱パターンの一部をセラミッ
ク体の表面に露出させた状態であることから、通電によ
り制御用抵抗体自身の昇温に加えて、発熱パターンから
のセラミック体への熱伝導により制御用抵抗体の温度が
更に上昇し、抵抗温度係数が大きいため制御用抵抗体の
抵抗値が高くなり、他方、抵抗温度係数が小さい発熱パ
ターンは、温度が高くなっても抵抗上昇率は小さいため
発熱パターンに加わる電圧が低下するように作用し、自
己制御機能を示すこととなる。
On the other hand, since the heat generating pattern and the control resistor are either embedded in the ceramic body or a part of the heat generating pattern is exposed on the surface of the ceramic body, the temperature of the control resistor itself increases when energized. In addition, the temperature of the control resistor further increases due to heat conduction from the heating pattern to the ceramic body, and the resistance value of the control resistor increases due to the large temperature coefficient of resistance.On the other hand, the temperature coefficient of resistance is small. Since the resistance increase rate of the heat generating pattern is small even when the temperature increases, the voltage applied to the heat generating pattern decreases, thereby exhibiting a self-control function.

また、発熱パターンおよび電流制御用抵抗体をともにセ
ラミック体中に埋設することにより封着性を保持する。
Furthermore, sealing properties are maintained by embedding both the heating pattern and the current control resistor in the ceramic body.

[実施例1 以下、本発明の自己制御型グロープラグを図面に基づき
詳細に説明する。
[Example 1] Hereinafter, a self-regulating glow plug of the present invention will be explained in detail based on the drawings.

第1図は本願発明の自己制御型グロープラグの要部を示
す縦断面図であり、第2図は第1図のセラミックヒータ
の要部を拡大した断面図であり、第3図は発熱パターン
をセラミック体表面に露出させた本願発明の自己制御型
グロープラグのセラミックヒータの要部を拡大した断面
図である。
FIG. 1 is a vertical cross-sectional view showing the main parts of the self-regulating glow plug of the present invention, FIG. 2 is an enlarged cross-sectional view of the main parts of the ceramic heater shown in FIG. 1, and FIG. 3 is a heat generation pattern. FIG. 2 is an enlarged cross-sectional view of a main part of the ceramic heater of the self-regulating glow plug of the present invention in which the glow plug is exposed on the surface of the ceramic body.

第1図乃至第3図において、1はグロープラグの取付金
具5の内孔6に装着したセラミ・ンクヒータであり、セ
ラミックヒータ1は直列に接続した発熱パターン2と制
御用抵抗体3をセラミック体4中に埋設するか、もしく
は発熱パターン2”の−部を露出して構成されており、
セラミックヒータ1を金属パイプ7の内孔8にろう接す
るとともに、制御用抵抗体3のリード1s9の一端が電
気的に接続されて一方の電極を形成し、他端は取付金具
5にろう接されたセラミックヒータ1の後端部10に接
合した金属キャップ11を経てリード軸12から電極軸
13に電気的に接続され、他方の電極を形成して自己制
御型グロープラグを構成している。
1 to 3, reference numeral 1 is a ceramic heater installed in the inner hole 6 of the mounting bracket 5 of the glow plug. 4, or by exposing the - part of the heating pattern 2".
The ceramic heater 1 is brazed to the inner hole 8 of the metal pipe 7, and one end of the lead 1s9 of the control resistor 3 is electrically connected to form one electrode, and the other end is brazed to the mounting bracket 5. A lead shaft 12 is electrically connected to an electrode shaft 13 via a metal cap 11 joined to a rear end portion 10 of the ceramic heater 1, forming the other electrode to constitute a self-control glow plug.

上記セラミックヒータ1は平板状に成形した窒化珪素質
成形体上に、発熱パターン2.2”を所定位置にスクリ
ーン印刷法により厚膜印刷した後、発熱パターン2.2
゛の端部とコイル状の制御用抵抗体3の先端が直列に接
続するように、コイル状の制御用抵抗体3と制御用抵抗
体3に接続したリード線9とを載置し、その上面に別の
窒化珪素質成形体を重ねて加圧焼成して一体化したもの
である。
The above-mentioned ceramic heater 1 is manufactured by printing a heat generating pattern 2.2" in a thick film at a predetermined position using a screen printing method on a silicon nitride molded body formed into a flat plate shape.
Place the coiled control resistor 3 and the lead wire 9 connected to the control resistor 3 so that the end of the coil and the tip of the coiled control resistor 3 are connected in series. Another silicon nitride molded body is stacked on the top surface and then baked under pressure to be integrated.

なお、発熱パターン2.2”を厚膜印刷する窒化珪素質
成形体には、成形時もしくは成形後に制御用抵抗体3と
リード線9とが入り込む溝を形成しておくことが望まし
い。
Note that it is desirable to form grooves into which the control resistor 3 and the lead wire 9 enter during or after molding in the silicon nitride molded body into which the heat generating pattern 2.2'' is thickly printed.

一方、発熱パターン2.2′の厚膜印刷には、常温から
1ooo°Cまでの抵抗温度係数が4倍以下の周期律表
第rVa 、 Va 、VIa族金属の炭化物、窒化物
、珪化物及び硼化物の少なくとも一種からなる、例えば
タングステンカーバイド(WC)、窒化チタン(TiN
) 、モリブデンシリサイド(MoSiz)や硼化ジル
コニウム(ZrBz)を導電体とし、残部を窒化珪素に
使用できる。
On the other hand, for the thick film printing of the heating pattern 2.2', carbides, nitrides, silicides, and metals of groups rVa, Va, and VIa of the periodic table whose temperature coefficient of resistance from room temperature to 100°C is four times or less are used. Made of at least one type of boride, such as tungsten carbide (WC), titanium nitride (TiN)
), molybdenum silicide (MoSiz) or zirconium boride (ZrBz) can be used as the conductor, and the remainder can be used as silicon nitride.

また、コイル状の電流の制御用抵抗体3は、発熱パター
ン2.2゛と直列に接続する制御用抵抗体3の前記単位
体積当りの抵抗値が、発熱パターン2.2′の前記単位
体積当りの抵抗値より小となるように設計した抵抗温度
係数が5倍以上の比較的大きなタングステンやモリブデ
ンを主体とする高融点金属の線材からなるものが望まし
い。
Further, the coil-shaped current control resistor 3 has a resistance value per unit volume of the control resistor 3 connected in series with the heat generating pattern 2.2', which is equal to or greater than the unit volume of the heat generating pattern 2.2'. It is preferable to use a wire made of a high-melting point metal mainly composed of tungsten or molybdenum, which has a relatively large resistance temperature coefficient of 5 times or more, which is designed to be smaller than the normal resistance value.

(実験例) 窒化珪素Si3N4、酸化イツトリウムYz03及びア
ルミナAlz03を主成分とする平板状に成形した窒化
珪素質成形体の一方の先端部寄りの表面上に、第1表に
示す発熱パターン用材料に窒化珪素5i3Naと酸化イ
ツトリウムY2O3を添加したものを主成分とする発熱
パターン用ペーストを用いて、同表に示す制御用抵抗体
材料とのセラミックヒータの単位体積当りのそれぞれの
抵抗値の比ρが、目標として0.02乃至1゜0となる
ように設定した発熱パターンを、スクリーン印刷法によ
り厚膜印刷する。
(Experiment example) The heating pattern material shown in Table 1 was applied on the surface of a silicon nitride molded body formed into a flat plate shape, which mainly contains silicon nitride Si3N4, yttrium oxide Yz03, and alumina Alz03, near one tip. Using a heating pattern paste containing silicon nitride 5i3Na and yttrium oxide Y2O3 as its main components, the ratio ρ of the respective resistance values per unit volume of the ceramic heater with the control resistor material shown in the same table was calculated. A heat generation pattern set to a target of 0.02 to 1°0 is thick-film printed using a screen printing method.

次に、前記発熱パターンに直列に接続するように、予め
形成された溝中に第工表に示す制御用抵抗体材料からな
るコイル状の制御用抵抗体と該抵抗体に接続したリード
線を載置し、その上面に上記成分と同一成分の平板状の
窒化珪素質成形体を重ねてホットプレス焼成法により焼
成し、直径が約4.5■m、長さが約35+a+++の
セラミックヒータ焼結体を得た。その後、前記セラミッ
クヒータ焼結体を研磨加工して、直径が4.3m■、長
さが35m+aの円柱状のセラミックヒータを作製した
Next, a coil-shaped control resistor made of the control resistor material shown in the construction table and a lead wire connected to the resistor are placed in the pre-formed groove so as to be connected in series to the heat generating pattern. A flat silicon nitride molded body having the same composition as the above was placed on top of the molded body and fired using a hot press firing method. Obtained a body. Thereafter, the ceramic heater sintered body was polished to produce a cylindrical ceramic heater with a diameter of 4.3 m and a length of 35 m+a.

かくの如くして作製した同一条件のセラミックヒータ各
5本にそれぞれの電極を接続し、それぞれのセラミック
ヒータが1100°Cで飽和に至る電圧を印加□し、セ
ラミックヒータ先端部の発熱パターン部が800℃に到
達する時間を測定し、その平均値でそれぞれの昇温特性
を評価した。その後、セラミックヒータを発熱パターン
とコイル状の制御用抵抗体との接続部及びコイル状の制
御用抵抗体とリード線との接続部でそれぞれ切断し、発
熱パターンと制御用抵抗体の抵抗値を測定し、セラミッ
クヒータの長手方向の該発熱パターンと制御用抵抗体の
埋設部の長さに相当する円柱状のセラミックヒータの体
積から、それぞれの単位体積当りの抵抗値を算出し、発
熱パターンに対する制御用抵抗体の単位体積当りの抵抗
値の比を抵抗比ρとして求めた。
Each of the electrodes was connected to each of the five ceramic heaters manufactured under the same conditions as described above, and a voltage that reached saturation at 1100°C was applied to each ceramic heater, so that the heating pattern at the tip of the ceramic heater The time taken to reach 800°C was measured, and the temperature increase characteristics of each were evaluated based on the average value. After that, the ceramic heater is cut at the connection between the heating pattern and the coiled control resistor, and at the connection between the coiled control resistor and the lead wire, and the resistance values of the heating pattern and the control resistor are determined. From the heat generation pattern in the longitudinal direction of the ceramic heater and the volume of the cylindrical ceramic heater corresponding to the length of the buried part of the control resistor, the resistance value per unit volume of each is calculated, and the resistance value for each unit volume is calculated. The ratio of the resistance value per unit volume of the control resistor was determined as the resistance ratio ρ.

更に、前記同一条件の各5本のセラミックヒータにメタ
ライズ処理を施し、セラミックヒータの所定の位置に金
属パイプと金属キャップをろう接して、制御用抵抗体の
リード線の一端は金属パイプから取付金具へ電気的に接
続されて一方の電極を形成し、他端は金属パイプを介し
て取付金具にろう接されたセラミックヒータの後端部か
ら金属キャップを経てリード軸から電極軸に電気的に接
続する。次に、電極軸には耐熱樹脂とバッキングを挿入
した後、取付金具の端部外周部をかしめて耐久性評価用
の自己制御型グロープラグを作製した。
Furthermore, each of the five ceramic heaters under the same conditions as described above was subjected to metallization treatment, a metal pipe and a metal cap were soldered to a predetermined position of the ceramic heater, and one end of the lead wire of the control resistor was connected from the metal pipe to the mounting bracket. The rear end of the ceramic heater is electrically connected to the metal cap to form one electrode, and the other end is soldered to the mounting bracket via a metal pipe.The lead shaft is electrically connected to the electrode shaft via the metal cap. do. Next, a heat-resistant resin and a backing were inserted into the electrode shaft, and then the outer periphery of the end of the mounting bracket was caulked to produce a self-control glow plug for durability evaluation.

次に、上記自己制御型グロープラグを使用し、該グロー
プラグに通電して1100’Cまで急速昇温し、その温
度に3分間自己制御により保持させた後、1分間通電を
停止する行程を1サイクルとし、5000サイクル経過
後の自己制御型グロープラグの抵抗変化を測定し、耐久
性評価を行った。
Next, using the above-mentioned self-control type glow plug, conduct a process of energizing the glow plug to rapidly raise the temperature to 1100'C, keeping the temperature at that temperature for 3 minutes under self-control, and then stopping the energization for 1 minute. One cycle was used, and the resistance change of the self-regulating glow plug after 5000 cycles was measured to evaluate durability.

また、発熱体をタングステン(W)−レニウム(Re)
から成るU字状に折り曲げたコイル状の線材を埋設した
セラミックヒータと、該セラミックヒータに直列に接続
したニッケノ喧Ni)線を制御用抵抗体とする自己制御
型グロープラグを比較例とした。
In addition, the heating element is made of tungsten (W)-rhenium (Re).
Comparative examples include a ceramic heater in which a coiled wire bent into a U-shape is embedded, and a self-control glow plug in which a control resistor is a Japanese wire connected in series to the ceramic heater.

以上の結果を第1表に示す。The above results are shown in Table 1.

(以下余白) 第1表 第1表より明らかなように、コイル状の線材より成る発
熱体を埋設したセラミックヒータと制御用抵抗体を直列
に接続した自己制御型グロープラグである比較例では、
800°Cの温度に到達する時間が最高5.5秒である
ものの、耐久性評価では5000サイクル経過後の抵抗
変化が213mΩと極めて大であり、制御用抵抗体の線
材が酸化されているのが認められるのに対し、本発明の
自己制御型グロープラグでは、抵抗比ρが0.85以下
であれば800℃の温度到達時間が5.5秒以下となり
、かつ5000サイクルの耐久試験後における発熱パタ
ーン及び制御用抵抗体のいずれにもなんら異常は認めら
れなかった。
(Leaving space below) Table 1 As is clear from Table 1, the comparative example is a self-control glow plug in which a ceramic heater with a heating element made of a coiled wire is embedded and a control resistor are connected in series.
Although the maximum time required to reach a temperature of 800°C is 5.5 seconds, the resistance change after 5000 cycles was extremely large at 213 mΩ, indicating that the control resistor wire was oxidized. On the other hand, in the self-regulating glow plug of the present invention, if the resistance ratio ρ is 0.85 or less, the time to reach 800°C is 5.5 seconds or less, and the No abnormality was observed in either the heat generation pattern or the control resistor.

従って、本発明の単位体積当りの抵抗比ρが0゜85以
下であれば800℃の温度到達時間は5.5秒以下とな
るが、前記抵抗比ρを0.02以下にすることは発熱パ
ターンの幅が極めて小さくなり寸法精度上、厚膜印刷が
困難となるため、前記抵抗比ρは0.02乃至0.85
、より望ましくは0.05乃至0.85であれば良い。
Therefore, if the resistance ratio ρ per unit volume of the present invention is 0°85 or less, the time to reach a temperature of 800°C will be 5.5 seconds or less, but setting the resistance ratio ρ to 0.02 or less will cause heat generation. Since the width of the pattern becomes extremely small and thick film printing becomes difficult due to dimensional accuracy, the resistance ratio ρ is set in the range of 0.02 to 0.85.
, more preferably from 0.05 to 0.85.

[発明の効果] 叙上の如く、本発明の自己制御型グロープラクは、抵抗
温度係数の小さい周期律表第1Va 、 Va= Vi
a族金属の炭化物、窒化物、珪化物及び硼化物の少なく
とも一種から成る発熱パターンと、該発熱パターンと直
列に接続した抵抗温度係数の大なる高融点金属から成る
制御用抵抗体を、セラミック体に埋設させるか、もしく
は発熱パターンの一部を露出させた状態のセラミックヒ
ータを発熱部としていることから、苛酷な使用条件下に
おける耐熱性、耐食性をより向上させることができると
共に、更に、より急速な昇温特性を得ることができる等
多数の利点を有し、かつ高価な制御機構を必要としない
耐久性と急速昇温特性に優れた、より偉績性の高い自己
制御型グロープラグを提供することができる。
[Effects of the Invention] As mentioned above, the self-regulating glow plaque of the present invention has a small temperature coefficient of resistance, Va = Vi of the periodic table.
A heating pattern made of at least one of carbides, nitrides, silicides, and borides of Group A metals, and a control resistor made of a high melting point metal with a large temperature coefficient of resistance connected in series with the heating pattern, are made of a ceramic body. Since the heat generating part is a ceramic heater that is buried in the ceramic heater or has a part of the heat generating pattern exposed, it is possible to further improve heat resistance and corrosion resistance under harsh usage conditions, and also to improve the heat resistance more rapidly. To provide a self-regulating glow plug with a higher performance, which has many advantages such as being able to obtain a temperature increase characteristic, and which does not require an expensive control mechanism and is excellent in durability and rapid temperature increase characteristics. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の自己制御型グロープラグの要部を示す
断面図、第2図は第1図のセラミックヒータの要部を拡
大した断面図、第3図は発熱バタ−ンの一部をセラミッ
ク体表面に露出させた本発明の他の自己制御型グロープ
ラグのセラミックヒータの要部を拡大した断面図、第4
図は従来の自己制御型グロープラグの要部を示す断面図
である。 2.2゛ ・ ・ 6.8 ・ ・ 10   ・ ・ 11   ・ ・ 12   ・ ・ 13   ・ ・ セラミックヒータ 発熱パターン 制御用抵抗体 セラミック体 取付金具 内孔 金属パイプ リード線 後端部 金属キャップ リード軸 電極軸
Fig. 1 is a cross-sectional view showing the main parts of the self-regulating glow plug of the present invention, Fig. 2 is an enlarged cross-sectional view of the main parts of the ceramic heater shown in Fig. 1, and Fig. 3 is a part of the heating pattern. FIG. 4 is an enlarged sectional view of a main part of a ceramic heater of another self-regulating glow plug of the present invention in which the glow plug is exposed on the surface of the ceramic body.
The figure is a sectional view showing the main parts of a conventional self-regulating glow plug. 2.2゛ ・ ・ 6.8 ・ ・ 10 ・ ・ 11 ・ ・ 12 ・ ・ 13 ・ ・ Ceramic heater Heat generation pattern control resistor Ceramic body mounting bracket Inner hole Metal pipe Lead wire rear end Metal cap Lead shaft Electrode shaft

Claims (1)

【特許請求の範囲】[Claims]  周期律表第IVa、Va、VIa族金属の炭化物、窒化物
、珪化物及び硼化物の少なくとも一種からなる発熱パタ
ーンに、該発熱パターンより大きい正の抵抗温度係数を
有する高融点金属からなる制御用抵抗体を直列に接続し
た状態で、前記発熱パターンと制御用抵抗体とをともに
セラミック体に埋設するか、もしくは前記発熱パターン
の一部を露出せしめた状態のセラミックヒータで構成さ
れたことを特徴とする自己制御型グロープラグ。
A heating pattern made of at least one of carbides, nitrides, silicides, and borides of group IVa, Va, and VIa metals of the periodic table, and a control material made of a high melting point metal having a positive temperature coefficient of resistance larger than that of the heating pattern. The heating pattern and the control resistor are both embedded in a ceramic body with resistors connected in series, or a ceramic heater is configured with a part of the heating pattern exposed. Self-regulating glow plug.
JP24514190A 1990-09-14 1990-09-14 Self-control type glow plug Pending JPH04124467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24514190A JPH04124467A (en) 1990-09-14 1990-09-14 Self-control type glow plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24514190A JPH04124467A (en) 1990-09-14 1990-09-14 Self-control type glow plug

Publications (1)

Publication Number Publication Date
JPH04124467A true JPH04124467A (en) 1992-04-24

Family

ID=17129234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24514190A Pending JPH04124467A (en) 1990-09-14 1990-09-14 Self-control type glow plug

Country Status (1)

Country Link
JP (1) JPH04124467A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0642293A1 (en) * 1993-09-03 1995-03-08 Texas Instruments Incorporated Heating device for an internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0642293A1 (en) * 1993-09-03 1995-03-08 Texas Instruments Incorporated Heating device for an internal combustion engine
US5601742A (en) * 1993-09-03 1997-02-11 Texas Instruments Incorporated Heating device for an internal combustion engine with PTC elements having different curie temperatures

Similar Documents

Publication Publication Date Title
JP5292317B2 (en) Ceramic heater and glow plug
JPH0155368B2 (en)
US6111223A (en) Ceramic glow plug having portion of heater within metallic sleeve
JPH04257615A (en) Ceramic heater type glow plug
JPH07293417A (en) Self temperature control type glow plug
JP3044632B2 (en) Ceramic heater type glow plug
EP0648978A2 (en) Ceramic glow plug
JP3078418B2 (en) Ceramic heating element
JPH04124467A (en) Self-control type glow plug
JP2004061041A (en) Ceramic glow plug
JPS60218A (en) Self-regulating type ceramic glow plug
JPH0434052B2 (en)
JPH0233015Y2 (en)
JPS58106326A (en) Ceramic glow plug
JPH0311576Y2 (en)
JPS62158926A (en) Glow plug for diesel engine
JPS6086324A (en) Self-control type ceramic glow plug
JPH07109303B2 (en) Self-regulating ceramic glow plug
JPH07139737A (en) Ceramic heater
JP2001015252A (en) Ceramic heater
JPH0814374B2 (en) Method of manufacturing self-regulating glow plug
JPS6360290B2 (en)
JPS61217624A (en) Self-temperature control type glow plug
JPS60103229A (en) Self-controlling type ceramic glow plug
JPH0315094B2 (en)