JPH04124127A - Microcapsule type sustained releasable preparation and its production - Google Patents

Microcapsule type sustained releasable preparation and its production

Info

Publication number
JPH04124127A
JPH04124127A JP24278390A JP24278390A JPH04124127A JP H04124127 A JPH04124127 A JP H04124127A JP 24278390 A JP24278390 A JP 24278390A JP 24278390 A JP24278390 A JP 24278390A JP H04124127 A JPH04124127 A JP H04124127A
Authority
JP
Japan
Prior art keywords
substance
microcapsule
physiologically active
emulsion
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24278390A
Other languages
Japanese (ja)
Inventor
Masayuki Arakawa
荒川 正幸
Takashi Uchio
内尾 尚
Yasushi Sato
泰 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Pharmaceutical Co Ltd
Original Assignee
Chugai Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Pharmaceutical Co Ltd filed Critical Chugai Pharmaceutical Co Ltd
Priority to JP24278390A priority Critical patent/JPH04124127A/en
Priority to JP25712791A priority patent/JP3372558B2/en
Priority to AU84912/91A priority patent/AU8491291A/en
Priority to PCT/JP1991/001224 priority patent/WO1992004891A1/en
Publication of JPH04124127A publication Critical patent/JPH04124127A/en
Priority to KR1019930700774A priority patent/KR100202073B1/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1682Processes
    • A61K9/1694Processes resulting in granules or microspheres of the matrix type containing more than 5% of excipient

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Preparation (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

PURPOSE:To obtain a microcapsule type sustained releasable preparation gradually releasable in vivo for many hours, having fine and uniform particle diameter, containing a physiologically active substance and a polymer substance compatible with living body. CONSTITUTION:0.01-50wt.% physiologically active substance such as protein, polypeptide or a derivative thereof is contained as an inner substance of microcapsule. 20-99wt.% polymer substance compatible with living body (e.g. polylactic acid glycolic acid copolymer) to be a shell substance of microcapsule is contained. An aqueous solution of the physiologically active substance and a solution of said polymer substance in an organic solvent are adjusted to W/O type emulsion, which is secondarily emulsified with an aqueous solution of a water-soluble polymer substance. In the operation, a salt substance having 0.1M to saturated concentration is made to exist in the outer water layer to prepare a W/O/W type emulsion. The objective substance having <=150mum maximum particle diameter, <=5-100mum average particle diameter and <=50% coefficient of variation is obtained and is directly used as an injection as it is without especially carrying out classifying and adjusting operation of particles.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、人、馬、牛等の温血哺乳動物に投与され、
内包された生理活性物質をこれら温血哺乳動物の体内で
長期間に亘って徐々に放出するマイクロカプセル型徐放
性製剤及びその製造法に関する。
[Detailed Description of the Invention] [Industrial Field of Application] This invention is intended for administration to warm-blooded mammals such as humans, horses, and cows,
The present invention relates to a microcapsule-type sustained release preparation that gradually releases encapsulated physiologically active substances in the bodies of these warm-blooded mammals over a long period of time, and a method for producing the same.

〔従来の技術〕[Conventional technology]

長期間の投与を必要とする生理活性物質については、こ
れをマイクロカプセル化し、このマイクロカプセル中に
内包された生理活性物質を徐々に放出させ、これによっ
て生理活性物質の薬効の持続性を改善することが行われ
ており、また、この様に生理活性物質をマイクロカプセ
ル化するための種々の方法が提案されている。
Physiologically active substances that require long-term administration are microencapsulated, and the bioactive substances encapsulated in the microcapsules are gradually released, thereby improving the sustainability of the medicinal effects of the bioactive substances. Various methods have been proposed for microencapsulating physiologically active substances.

例えば、特公平1−57.087号公報には、W10/
〜“型乳化物を形成して水中乾燥法によりマイクロカプ
セルを製造する際に、水溶性薬物及び薬物保持物質を含
む内水層を粘度約5,000cp以上に増粘あるいは固
化したW10型乳化物を調製し、これによってマイクロ
カプセル中に薬物を効率良く取り込むようにしたマイク
ロカプセルの製造方法が開示されている。また、特開昭
62−201.816号公報には、W/O/W型乳化物
を形成して水中乾燥法によりマイクロカプセルを製造す
る際に、W10型乳化物の粘度を150〜10,000
cpに調整し、これによってマイクロカプセル中に薬物
を効率良く取り込むようにしたマイクロカプセルの製造
方法が開示されている。更に、特開平2−124.81
4号公報には、水溶性薬物を含む内水層中に塩基性の薬
物保持物質を添加することにより、効率良く、初期バー
ストの少ないマイクロカプセルが得られることが開示さ
れている。加えて、特公昭63−36.290号公報に
は、溶剤中で生物学活性剤等の活性剤を外殻物質に溶解
又は分散させる工程と、得られた懸濁液又は溶液をその
溶剤より高沸点の水等の連続相生成媒体中に分散させて
W2C型又は○/W型乳型物化物成せしめる工程と、前
工程で得られた分散液から溶剤の一部を蒸散させてマイ
クロカプセルを生成させる工程と、このマイクロカプセ
ルを分離する工程と、得られたマイクロカプセルから残
余の溶剤を抽出する工程とからなり、活性剤含有量か高
く、高品質のマイクロカプセルを得ることができるマイ
クロカプセルの製造方法が開示されている。
For example, in Japanese Patent Publication No. 1-57.087, W10/
- W10 type emulsion in which the inner aqueous layer containing a water-soluble drug and drug-retaining substance is thickened or solidified to a viscosity of approximately 5,000 cp or more when forming a type emulsion and manufacturing microcapsules by drying in water. A method for manufacturing microcapsules is disclosed in which a drug is efficiently incorporated into the microcapsules.In addition, JP-A No. 62-201.816 discloses a W/O/W type When manufacturing microcapsules by forming an emulsion and drying in water, the viscosity of the W10 emulsion is set to 150 to 10,000.
A method for manufacturing microcapsules is disclosed in which the cp is adjusted to efficiently incorporate drugs into the microcapsules. Furthermore, JP-A-2-124.81
Publication No. 4 discloses that microcapsules with less initial burst can be obtained efficiently by adding a basic drug-retaining substance to the inner aqueous layer containing a water-soluble drug. In addition, Japanese Patent Publication No. 63-36.290 describes a process for dissolving or dispersing an active agent such as a biologically active agent in a shell material in a solvent, and a process for dissolving or dispersing an active agent such as a biologically active agent in a shell material, and dispersing the resulting suspension or solution from the solvent. A step of dispersing in a continuous phase forming medium such as high boiling point water to form a W2C type or ○/W type emulsion compound, and a step of evaporating a part of the solvent from the dispersion obtained in the previous step to microcapsule. This process consists of a step of producing microcapsules, a step of separating the microcapsules, and a step of extracting the remaining solvent from the microcapsules obtained. A method of making capsules is disclosed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記いずれの方法においても、得られた
マイクロカプセルはその粒子の粒径が大きいばかりでな
く、不揃いであってその粒度分布が広いという問題があ
る。このため、この様な方法によって製造されたマイク
ロカプセルを例えば医療用注射剤とする場合には、日本
薬局方の製剤総則の16.注射剤の(4)項に「懸濁性
注射液中の粒子は、通例、150趨以下とし、」と記載
されていることから、篩を使用して粒径150趨以下に
分別整粒操作を行う必要があり、この分別整粒操作は製
品の歩留を著しく低下させるばかりでなく、それ自体が
極めて面倒な操作であり、かつ、医療用注射剤とするも
のであるから無菌無塵雰囲気下に行わなければならず、
コストアップの原因になり、この点を解決することが工
業的に製造する際における重大な課題になっていた。
However, in any of the above methods, there is a problem that the obtained microcapsules not only have a large particle size but also are irregular and have a wide particle size distribution. Therefore, when microcapsules produced by such a method are used as, for example, a medical injection, 16. Since it is stated in item (4) of the injection that "particles in a suspended injection solution should generally be 150 particles or less," it is necessary to separate and size the particles using a sieve to reduce the particle size to 150 particles or less. This sorting and sizing operation not only significantly reduces the yield of the product, but is itself an extremely troublesome operation, and since it is intended for medical injections, it must be carried out in a sterile and dust-free atmosphere. Must be done below;
This causes an increase in costs, and solving this problem has become a serious issue in industrial production.

そこで、本発明者らは、この様な分別整粒操作を必要と
することなく、粒径が微細かつ均一な生理活性物質のマ
イクロカプセル型徐放性製剤を得ることができるマイク
ロカプセル型徐放性製剤及びその製造法について鋭意研
究を重ねた結果、W10型乳化物からW/O/W型乳化
物を調製する二次乳化工程でその外水層に0.1M濃度
ないし飽和濃度の塩物質を存在させることにより、微細
かつ均一な粒径を有するマイクロカプセル型徐放性製剤
を得ることができることを見出し、本発明に到達した。
Therefore, the present inventors developed a microcapsule-type sustained-release formulation that can obtain microcapsule-type sustained-release preparations of physiologically active substances with fine and uniform particle sizes without the need for such sorting and sizing operations. As a result of extensive research into sexual preparations and their manufacturing methods, we found that in the secondary emulsification step of preparing a W/O/W type emulsion from a W10 type emulsion, a salt substance with a concentration of 0.1M to saturated concentration is added to the outer aqueous layer of the W10 type emulsion. It was discovered that a microcapsule-type sustained-release preparation having a fine and uniform particle size can be obtained by the presence of .

従って、本発明の目的は、分別整粒操作を必要としない
微細かつ均一な粒径を有するマイクロカプセル型徐放性
製剤及びその製造法を提供することにある。
Therefore, an object of the present invention is to provide a microcapsule-type sustained release preparation having a fine and uniform particle size that does not require separate sizing operations, and a method for producing the same.

また、本発明の他の目的は、内包物となる生理活性物質
のマイクロカプセル中への高い取込み率を達成できるマ
イクロカプセル型徐放性製剤及びその製造法を提供する
ことにある。
Another object of the present invention is to provide a microcapsule-type sustained release preparation that can achieve a high rate of incorporation of a physiologically active substance into microcapsules, and a method for producing the same.

更に、本発明の他の目的は、内包物となる生理活性物質
の水溶液の濃度あるいは外殻物質となる生体適合性高分
子物質の有機溶剤溶液の濃度に関係なく良好なマイクロ
カプセル型徐放性製剤を製造することができ、これによ
って生理活性物質の放出速度を適宜変更することが可能
であるマイクロカプセル型徐放性製剤及びその製造法を
提供することにある。
Furthermore, another object of the present invention is to provide a microcapsule type that exhibits good sustained release properties regardless of the concentration of an aqueous solution of a physiologically active substance as an inclusion material or the concentration of an organic solvent solution of a biocompatible polymeric substance as an outer shell material. It is an object of the present invention to provide a microcapsule-type sustained release preparation that can be manufactured and thereby make it possible to appropriately change the release rate of a physiologically active substance, and a method for manufacturing the same.

〔課題を解決するための手段〕[Means to solve the problem]

すなわち、本発明は、生理活性物質を含有する内包物と
生体内分解性及び/又は生体内組織適合性を有する生体
適合高分子物質で形成された外殻物質とを有し、最大粒
径が1504以下であって平均粒径が5〜100であり
、かつ、変動係数が50%以下であるマイクロカプセル
型徐放性製剤である。
That is, the present invention has an inner material containing a physiologically active substance and an outer shell material formed of a biocompatible polymeric material having biodegradability and/or in vivo tissue compatibility, and has a maximum particle size of It is a microcapsule type sustained release preparation having a particle size of 1504 or less, an average particle size of 5 to 100, and a coefficient of variation of 50% or less.

また、本発明は、生理活性物質を含有する水溶液と生体
内分解性及び/又は生体内組織適合性の生体適合性高分
子物質を含有する有機溶剤溶液とでW10型乳化物を調
製し、次いでこのW10型乳化物と水溶性高分子物質の
水溶液とで二次乳化させてW/O/W型乳化物を調製し
、得られたW/O/W型乳化物から上記有機溶剤を蒸散
、固化させ、更に洗浄し、乾燥させて生理活性物質を内
包物とし、かつ、生体適合高分子物質を外殻物質とする
マイクロカプセル型徐放性製剤を調製するに際し、上記
二次乳化工程でその外水層に0,1M濃度ないし飽和濃
度の塩物質を存在させるマイクロカプセル型徐放性製剤
の製造法である。
Moreover, the present invention prepares a W10 type emulsion with an aqueous solution containing a physiologically active substance and an organic solvent solution containing a biocompatible polymeric substance that is biodegradable and/or tissue compatible in the living body, and then This W10 type emulsion and an aqueous solution of a water-soluble polymer substance are secondary emulsified to prepare a W/O/W type emulsion, and the organic solvent is evaporated from the obtained W/O/W type emulsion. When preparing microcapsule-type sustained-release preparations that contain physiologically active substances by solidification, further washing, and drying, and have a biocompatible polymeric substance as an outer shell material, the secondary emulsification process This is a method for producing a microcapsule type sustained release preparation in which a salt substance is present in the outer aqueous layer at a concentration of 0.1 M to saturation.

本発明において、マイクロカプセルの内包物となる生理
活性物質としては、それが優れた親水性を有して水に可
溶性であればよく、薬理作用等によって特に制限を受け
るものではなく、生理活性を有する蛋白質やポリペプチ
ド及びこれらの誘導体、その他に、抗生物質、抗腫瘍剤
、解熱剤、鎮痛剤、消炎剤、鎮咳去痰剤、鎮静剤、筋弛
緩剤、抗てんかん剤、抗潰瘍剤、抗うつ剤、抗アレルギ
ー剤、強心剤、不整脈治療剤、血管拡張剤、降圧利尿剤
、糖尿病治療剤、抗凝血剤、止血剤、抗結核剤、ホルモ
ン剤、麻薬拮抗剤等の種々のものを挙げることができる
。このうち、特に好ましい生理活性物質は、本発明のマ
イクロカプセル型徐放性製剤が微細かつ均一な粒径を有
して特に分別整粒操作を必要とすることなく注射用製剤
とすることか可能であることから、注射剤とする必要が
あり、また、比較的長期の投与が必要とされようなタン
パク質やポリペプチド及びこれらの誘導体であり、具体
的には、例えばエリスロポエチン(EPO)、顆粒球コ
ロニー刺激因子(G−C3F) 、マクロファージコロ
ニー刺激因子(M−C3F) 、顆粒球マクロファージ
コロニー刺激因子(GM−C3F)、インターフェロン
(IFNα、 IFNβ、 IFNγ)、インターロイ
キン(TL−1、IL−2、IL−3、IL−4、IL
−5、IL−6>、腫瘍壊死因子(TNF) 、成長ホ
ルモン(GH又はST旧、インスリン、カルシトニン(
CT)等及びこれらの誘導体を挙げることかできる。こ
れらの生理活性物質は、それが哺乳動物、魚類、鳥類等
の動物やその他の植物等から抽出精製された天然由来の
ものであっても、また、遺伝子組換え、合成、半合成等
の手段で製造されたものであってもよい。これらの生理
活性物質は、その1種のみを使用してもよく、また、必
要により2種以上を併用使用してもよい。そして、この
生理活性物質は、その種類や性状等によっても異なるが
、通常、マイクロカプセル中に0.01〜50重量%の
範囲で内包される。
In the present invention, the physiologically active substance to be included in the microcapsules only needs to have excellent hydrophilicity and be soluble in water, and is not particularly limited by pharmacological action. proteins, polypeptides, and their derivatives, as well as antibiotics, antitumor agents, antipyretics, analgesics, anti-inflammatory agents, antitussive expectorants, sedatives, muscle relaxants, antiepileptics, antiulcer agents, and antidepressants. , antiallergic agents, cardiotonic agents, antiarrhythmia agents, vasodilators, antihypertensive diuretics, antidiabetic agents, anticoagulants, hemostatic agents, antituberculous agents, hormonal agents, and narcotic antagonists. can. Among these, particularly preferred physiologically active substances are the microcapsule-type sustained-release preparation of the present invention, which has a fine and uniform particle size and can be made into an injectable preparation without the need for separation and sizing operations. Therefore, these proteins, polypeptides, and their derivatives need to be made into injections and require relatively long-term administration.Specifically, they include erythropoietin (EPO), granulocytes, Colony stimulating factor (G-C3F), macrophage colony stimulating factor (M-C3F), granulocyte macrophage colony stimulating factor (GM-C3F), interferon (IFNα, IFNβ, IFNγ), interleukin (TL-1, IL-2) , IL-3, IL-4, IL
-5, IL-6>, tumor necrosis factor (TNF), growth hormone (GH or ST former), insulin, calcitonin (
CT) and their derivatives. These physiologically active substances may be of natural origin extracted and purified from animals such as mammals, fish, and birds, or other plants, or may be produced by means such as genetic recombination, synthesis, or semi-synthesis. It may be manufactured by. These physiologically active substances may be used alone or in combination of two or more, if necessary. The physiologically active substance is usually encapsulated in microcapsules in a range of 0.01 to 50% by weight, although it varies depending on its type and properties.

また、本発明で使用するマイクロカプセルの外殻物質と
なる生体適合高分子物質は、それが生体内分解性あるい
は生体内組織適合性であって、人、馬、牛等の生体内に
入った際に分解しあるいは組織に取り込まれて適合する
ものであれば、如何なるものであってもよく、具体的に
は、生体内分解性の生体適合高分子物質としては、例え
ばポリ乳酸、ポリグリコール酸、ポリクエン酸、ポリリ
ンゴ酸、ポリ乳酸グリコール酸共重合体等の脂肪酸エス
テルの単独重合体や共重合体や、ポリα−シアノアクリ
ル酸エステル等のポリアクリル酸エステル類や、ポリβ
−ヒドロキシ酪酸等のヒドロキシ酪酸類や、ポリトリメ
チレンオキサレート等のポリアルキレンオキサレート類
や、ポリオルソエステルや、ポリオルソカーボネート、
ポリエチレンカーボネート等のポリカーボネート類や、
ポリγ−ベンジル−し一グルタミン酸、ポリL−アラニ
ン等のポリアミノ酸等があり、また、生体内組織適合性
の生体適合高分子物質としては、例えばポリスチレン、
ポリアクリル酸、ポリメタクリル酸、スチレンとアクリ
ル酸又はメタクリル酸との共重合体、アクリル酸とメタ
クリル酸との共重合体、ナイロン、テトロン、ポリアミ
ノ酸、シリコンポリマー、ポリウレタン、ポリビニルア
セテート、ポリビニルアルコール、ポリアクリルアミド
、エチレン−ビニルアセテート系共重合体、無水マレイ
ン酸系共重合体、デキストランステアレート、エチルセ
ルロース、アセチルセルロース、ニトロセルロース等を
挙げることができる。これらの生体適合高分子物質は、
その1種のみを使用してもよく、また、必要により2種
以上を混合使用してもよい。これらのうち、特に好まし
い生体適合高分子物質は、本発明のマイクロカプセル型
徐放性製剤が特に注射用製剤として最適であることから
生体内分解性の生体適合高分子物質、特にポリ乳酸、ポ
リグリコール酸、ポリクエン酸、ポリリンゴ酸、ポリ乳
酸グリコール酸共重合体等の脂肪酸エステルの単独重合
体や共重合体である。そしてこれらの生体適合高分子物
質の平均分子量については、好ましくは約1,000〜
200,000程度のものであり、より好ましくは2,
000〜i、oo、、oooの範囲である。この生体適
合高分子物質は、その種類等によっても異なるが、通常
、マイクロカプセル中に20〜99重量%、好ましくは
40〜95重量%の範囲となるように使用される。
In addition, the biocompatible polymeric material that forms the outer shell material of the microcapsules used in the present invention is biodegradable or tissue compatible with the body and cannot be absorbed into the living body of humans, horses, cows, etc. Any substance may be used as long as it is compatible with biodegradable biodegradable or biocompatible polymer substances, such as polylactic acid and polyglycolic acid. , homopolymers and copolymers of fatty acid esters such as polycitric acid, polymalic acid, and polylactic acid-glycolic acid copolymers, polyacrylic acid esters such as polyα-cyanoacrylic acid ester, and polyβ
- Hydroxybutyric acids such as hydroxybutyric acid, polyalkylene oxalates such as polytrimethylene oxalate, polyorthoesters, polyorthocarbonates,
Polycarbonates such as polyethylene carbonate,
There are polyamino acids such as poly-γ-benzyl monoglutamic acid and poly-L-alanine, and examples of biocompatible polymeric substances that are tissue compatible with the body include polystyrene,
Polyacrylic acid, polymethacrylic acid, copolymer of styrene and acrylic acid or methacrylic acid, copolymer of acrylic acid and methacrylic acid, nylon, tetron, polyamino acid, silicone polymer, polyurethane, polyvinyl acetate, polyvinyl alcohol, Examples include polyacrylamide, ethylene-vinyl acetate copolymer, maleic anhydride copolymer, dextran stearate, ethyl cellulose, acetyl cellulose, nitrocellulose, and the like. These biocompatible polymeric substances are
Only one type thereof may be used, or two or more types may be used in combination if necessary. Among these, biocompatible polymeric substances that are particularly preferred are biodegradable biocompatible polymeric substances, especially polylactic acid, polylactic acid, etc., since the microcapsule-type sustained-release preparation of the present invention is especially suitable as an injection preparation. These are homopolymers and copolymers of fatty acid esters such as glycolic acid, polycitric acid, polymalic acid, and polylactic acid-glycolic acid copolymers. The average molecular weight of these biocompatible polymeric substances is preferably about 1,000 to
200,000, more preferably 2,
The range is 000 to i, oo, , ooo. This biocompatible polymeric substance is usually used in a microcapsule in an amount of 20 to 99% by weight, preferably 40 to 95% by weight, although it varies depending on its type.

更に、本発明においては、上記生理活性物質の安定性を
確保したり、あるいは、この生理活性物質を増量し取扱
易くする等の目的で、必要に応じて水溶性の安定化剤や
賦形剤(補形剤)等をマイクロカプセル中に内包させる
ことかできる。この目的で使用される安定化剤としては
、例えばアルブミン、ゼラチン等のタンパク質類や、グ
リシン、アルギニン、ヒスチジン、リジン、グルタミン
酸、アスパラギン酸等のアミノ酸類又はこれらの塩類や
、ソルビタン脂肪酸エステル、ポリオキシエチレン脂肪
酸エステル、グリセリン脂肪酸エステル等の界面活性剤
や、エチレンジアミン四酢酸塩、クエン酸等のキレート
剤や、グルコース、シュクロース、フラクトース、トレ
ハロース、デキストリン、デキストラン、マンニトール
、ソルビトール等の糖類又は糖アルコール類等を挙げる
ことができる。また、賦形剤としては、例えば、アラビ
アゴム、キサンタンガム等の天然水溶性ガムや、カゼイ
ン、ゼラチン、コラーゲン、アルブミン、セルロース、
デンプン、寒天等の天然水溶性高分子化合物や、カルボ
キシメチルセルロース、ポリサッカライド等の合成水溶
性高分子化合物を挙げることができる。これら安定化剤
や賦形剤の使用量は、その種類や目的等によって決定さ
れるものであるが、通常、生体適合高分子物質に対して
0〜500%程度である。
Furthermore, in the present invention, water-soluble stabilizers and excipients may be added as necessary to ensure the stability of the physiologically active substance or to increase the amount of the physiologically active substance and make it easier to handle. (excipients) etc. can be encapsulated in microcapsules. Stabilizers used for this purpose include, for example, proteins such as albumin and gelatin, amino acids such as glycine, arginine, histidine, lysine, glutamic acid, and aspartic acid, or their salts, sorbitan fatty acid esters, and polyoxygenates. Surfactants such as ethylene fatty acid ester and glycerin fatty acid ester, chelating agents such as ethylenediaminetetraacetate and citric acid, and sugars or sugar alcohols such as glucose, sucrose, fructose, trehalose, dextrin, dextran, mannitol, and sorbitol. etc. can be mentioned. Examples of excipients include natural water-soluble gums such as gum arabic and xanthan gum, casein, gelatin, collagen, albumin, cellulose,
Examples include natural water-soluble polymer compounds such as starch and agar, and synthetic water-soluble polymer compounds such as carboxymethyl cellulose and polysaccharide. The amount of these stabilizers and excipients to be used is determined depending on the type, purpose, etc., but is usually about 0 to 500% of the biocompatible polymeric substance.

本発明のマイクロカプセル型徐放性製剤は、生理活性物
質の水溶液と生体適合性高分子物質の有機溶剤溶液とで
W10型乳化物を調製し、このW10型乳化物と水溶性
高分子物質の水溶液とで二次乳化させる際にその外水層
にO,IM濃度ないし飽和濃度の塩物質を存在させてW
/O/W型乳化物を調製し、得られたW/O/W型乳化
物から生理活性物質を内包物とし、かつ、生体適合高分
子物質を外殻物質とするマイクロカプセルを調製して得
られるものであるが、この得られたマイクロカプセルは
、その最大粒径が1504以下、通常75趨以下、より
好ましい形態としては30/JIn以下であってその平
均粒径が5〜100趨、通常5〜25趨、より好ましい
形態としては5〜15趨の範囲内で、その変動係数が5
0%以下であり、特に分別整粒操作を行うことなくその
まま注射剤として利用できる。最大粒径は乳化の条件や
溶液の濃度によって影響を受け、これらの条件によって
は15074近くの値を示す場合もある。なお、最大粒
径は10ツト中の最大粒子の粒径を求めることにより、
平均粒径は粒子500個の粒径の平均値を求めることに
より、また、変動係数は(標準偏差)÷(平均粒径)X
100の式から算出することにより求められる値である
The microcapsule-type sustained release preparation of the present invention is prepared by preparing a W10 type emulsion with an aqueous solution of a physiologically active substance and an organic solvent solution of a biocompatible polymeric substance, and combining this W10 type emulsion with a water-soluble polymeric substance. When secondary emulsifying with an aqueous solution, a salt substance with an O, IM concentration or a saturated concentration is present in the outer aqueous layer.
/O/W type emulsion is prepared, and from the obtained W/O/W type emulsion, microcapsules having a physiologically active substance as an inclusion material and a biocompatible polymeric substance as an outer shell material are prepared. The obtained microcapsules have a maximum particle size of 1504 or less, usually 75 or less, more preferably 30/JIn or less, and an average particle size of 5 to 100, Normally, the range is 5 to 25, more preferably 5 to 15, and the coefficient of variation is 5.
It is 0% or less and can be used as an injection as it is without any special separation and sizing operation. The maximum particle size is affected by emulsification conditions and solution concentration, and may show a value close to 15,074 depending on these conditions. In addition, the maximum particle size is determined by determining the particle size of the largest particle among 10 particles.
The average particle size is calculated by calculating the average value of the particle sizes of 500 particles, and the coefficient of variation is (standard deviation) ÷ (average particle size) x
This is a value obtained by calculating from the formula 100.

本発明のマイクロカプセル型徐放性製剤は、以下の方法
で製造される。
The microcapsule type sustained release preparation of the present invention is manufactured by the following method.

先ず、生体適合高分子物質を有機溶剤に溶解し、その有
機溶剤溶液を調製する。この目的で使用される有機溶剤
としては、比較的沸点が低くて水と混和せず、生体適合
高分子物質を溶解するものであればよく、例えば、ジク
ロロメタン、クロロエタン、クロロホルム、トリクロル
エタン、四塩化炭素、酢酸エチル、n−ヘキサン、トル
エン等を挙げることができ、これらはその1種のみを単
独で使用できるほか、2種以上を混合して使用すること
もできる。この有機溶剤溶液における生体適合高分子物
質の濃度は、使用する生体適合高分子物質の種類等に応
して適宜変更し得るものであるか、通常0.5〜50重
量%、好ましくは1〜40重量%程度である。
First, a biocompatible polymeric substance is dissolved in an organic solvent to prepare an organic solvent solution. The organic solvent used for this purpose may be one that has a relatively low boiling point, is immiscible with water, and dissolves biocompatible polymeric substances, such as dichloromethane, chloroethane, chloroform, trichloroethane, and tetrachloride. Examples include carbon, ethyl acetate, n-hexane, toluene, etc., and these can be used alone or in combination of two or more. The concentration of the biocompatible polymeric substance in this organic solvent solution can be changed as appropriate depending on the type of biocompatible polymeric substance used, and is usually 0.5 to 50% by weight, preferably 1 to 50% by weight. It is about 40% by weight.

また、上記の生体適合高分子物質の有機溶剤溶液とは別
に、上記生理活性物質及び必要に応じて添加される水溶
性の安定化剤や賦形剤を所定の水に溶解してその水溶液
を調製する。そして、この生理活性物質の水溶液を調製
する際には、その安定性や溶解性を保持する目的で、必
要によりpH調整剤を添加する。この目的で使用される
pH調整剤としては、例えば燐酸、クエン酸、酢酸、炭
酸等の酸類やこれらのナトリウム塩やカリウム塩、更に
は燐酸緩衝液等の各種の緩衝液を挙げることができる。
In addition, in addition to the organic solvent solution of the biocompatible polymeric substance described above, the physiologically active substance and water-soluble stabilizers and excipients added as necessary can be dissolved in a predetermined water solution. Prepare. When preparing an aqueous solution of this physiologically active substance, a pH adjuster is added if necessary in order to maintain its stability and solubility. Examples of the pH adjuster used for this purpose include acids such as phosphoric acid, citric acid, acetic acid, and carbonic acid, their sodium salts and potassium salts, and various buffers such as phosphate buffers.

これらpH調整剤の使用量は、特に限定されるものでは
ないが、通常数10mM濃度程度である。
The amount of these pH adjusters to be used is not particularly limited, but is usually at a concentration of several tens of mM.

次に、この様にして調整された生理活性物質の水溶液を
高速攪拌下に上記生体適合高分子物質の有機溶剤溶液中
に添加し、W10型乳化物を調製する。この際の攪拌速
度は通常1,000〜30゜000 rpm 、好まし
くは5,000〜28,000 rpmであり、乳化温
度は−100〜40°C1好ましくは一50〜20℃程
度かよい。
Next, the aqueous solution of the physiologically active substance prepared in this manner is added to the organic solvent solution of the biocompatible polymer substance under high-speed stirring to prepare a W10 type emulsion. The stirring speed at this time is usually 1,000 to 30.000 rpm, preferably 5,000 to 28,000 rpm, and the emulsification temperature is about -100 to 40°C, preferably -50 to 20°C.

この様にして調製されたW10型乳化物は、次に外水層
中に0.1.M濃度から飽和濃度の塩物質を存在させて
予め準備された水溶性高分子物質の水溶液と混合され、
二次乳化されてWlo、/W型型化化物される。
The W10 type emulsion prepared in this way was then added to the outer aqueous layer at a concentration of 0.1%. Mixed with an aqueous solution of a water-soluble polymer substance prepared in advance in the presence of a salt substance at a concentration ranging from M to saturation;
Secondary emulsification is performed to form a Wlo/W type product.

この二次乳化工程で使用する水溶性高分子物質としては
、例えばポリビニルアルコール(PVA)、ポリビニル
ピロリドン、カルボキシメチルセルロースナトリウム、
ゼラチン、キチン及びその誘導体、キサントン及びその
誘導体、ヒアルロン酸及びそのナトリウム塩、デキスト
ラン、ペクチン、コンドロイチン硫酸及びそのナトリウ
ム塩等を挙げることができ、これらはその1種のみを単
独で使用できるほか、2種以上を混合物として使用する
こともできる。この水溶性高分子物質の水溶液における
濃度は、通常0.05〜5.0重量%の範囲、好ましく
は0.1〜2.0重量%の範囲がよい。
Examples of water-soluble polymer substances used in this secondary emulsification step include polyvinyl alcohol (PVA), polyvinylpyrrolidone, sodium carboxymethyl cellulose,
Gelatin, chitin and its derivatives, xanthone and its derivatives, hyaluronic acid and its sodium salts, dextran, pectin, chondroitin sulfate and its sodium salts, etc. can be mentioned, and these can be used alone, as well as 2 It is also possible to use more than one species as a mixture. The concentration of this water-soluble polymeric substance in the aqueous solution is usually in the range of 0.05 to 5.0% by weight, preferably in the range of 0.1 to 2.0% by weight.

また、上記二次乳化の際にその外水層中に存在させる塩
物質としては、それか先に調製されたW10型乳化物と
外水層との間の界面で形成されるエマルジョンの安定性
を改善し、かつ、生体適合高分子物質の膨潤を抑えるこ
とができるものであればよく、特に限定されるものでは
ないか、例えば酢酸ナトリウム、クエン酸ナトリウム、
クエン酸カリウム等の種々の有機酸塩や、塩化ナトリウ
ム、塩化カリウム、塩化カルシウム、硫酸ナトリウム、
硫酸カリウム等の種々の無機酸塩や、硫酸アンモニウム
等のアンモニウム塩や、コリンクロライド、テトラメチ
ルアンモニウムクロライド等の第四級アミン塩等を挙げ
ることができる。これらの塩物質は、通常、外水層中に
0.1M濃度から飽和濃度の範囲、好ましくは0.5M
濃度から飽和濃度の範囲で存在させるのがよく、O,1
M濃度より低いとバースト化という問題が生じ、また、
飽和濃度より高くなると塩の包理化という問題が生じる
。そして、この塩物質を外水層中に存在させる方法につ
いては、二次乳化工程でW/O/W型乳化物が調製され
る際に結果としてその外水層中に存在すればよく、予め
水溶性高分子物質の水溶液中に添加しておいてもよく、
また、W10型乳化物と水溶性高分子物質の水溶液とを
混和する際に別途に添加してもよい。
In addition, the salt substance to be present in the outer aqueous layer during the above secondary emulsification should be used to stabilize the emulsion formed at the interface between the previously prepared W10 emulsion and the outer aqueous layer. There is no particular limitation, as long as it can improve the biocompatible polymeric substance and suppress the swelling of the biocompatible polymeric substance. For example, sodium acetate, sodium citrate,
Various organic acid salts such as potassium citrate, sodium chloride, potassium chloride, calcium chloride, sodium sulfate,
Examples include various inorganic acid salts such as potassium sulfate, ammonium salts such as ammonium sulfate, and quaternary amine salts such as choline chloride and tetramethylammonium chloride. These salt substances are usually present in the outer aqueous layer at a concentration ranging from 0.1M to saturation concentration, preferably 0.5M.
It is preferable that O,1 be present in the range from the concentration to the saturation concentration.
If the concentration is lower than M, there will be a problem of bursting, and
When the concentration is higher than the saturation concentration, the problem of salt embedding occurs. As for the method of making this salt substance exist in the outer aqueous layer, it is sufficient that it is present in the outer aqueous layer as a result when a W/O/W type emulsion is prepared in the secondary emulsification step, and It may be added to an aqueous solution of a water-soluble polymer substance,
Further, it may be added separately when mixing the W10 type emulsion and the aqueous solution of the water-soluble polymer substance.

この様にして調製されたW/O/W型乳化物は、次に通
常室温下で若しくは0〜50℃、好ましくは0〜25°
Cで攪拌され、有機溶剤を蒸散し、これによって外殻物
質の生体適合高分子物質が固化してマイクロカプセルが
生成する。
The W/O/W emulsion prepared in this way is then usually heated at room temperature or at 0 to 50°C, preferably at 0 to 25°C.
C to evaporate the organic solvent, thereby solidifying the biocompatible polymer material of the outer shell material and producing microcapsules.

更に、生成したマイクロカプセルは、遠心分離あるいは
濾過等の手段で分離し、必要により洗浄し、乾燥させる
。その後、必要に応じて例えばマンニトール等の適当な
賦形剤を含む水溶液に再度分散させ、凍結乾燥等の手段
で乾燥させ、残留有機溶剤を除去し、使用時の再分散性
に優れたマイクロカプセル型徐放性製剤を生成せしめる
Furthermore, the produced microcapsules are separated by means such as centrifugation or filtration, washed and dried if necessary. Thereafter, if necessary, the microcapsules are redispersed in an aqueous solution containing an appropriate excipient such as mannitol, dried by freeze-drying or other means to remove residual organic solvent, and are made into microcapsules with excellent redispersibility during use. to produce sustained release formulations.

以上のようにして得られたマイクロカプセルは、その最
大粒径が1501#R以下であってその平均粒径か5〜
100趨であり、しかも、変動係数か50%以下であっ
て、特に分別整粒操作を行うことなくそのまま注射剤と
して利用できる。
The microcapsules obtained as described above have a maximum particle size of 1501#R or less and an average particle size of 5 to 5.
100, and the coefficient of variation is 50% or less, so it can be used as an injection as it is without any special separation and sizing operation.

また、本発明によるマイクロカプセル型徐放性製剤は、
治療目的やマイクロカプセル中に内包物として含有され
る生理活性物質の薬理作用に応じて、注射剤、散剤、顆
粒剤、錠剤、坐剤等の任意の剤形に製剤することができ
るか、粒径が微細かつ均一であって分別整粒操作を行う
ことなくそのままで通針性や再分散性を有することから
、特に注射剤として好適である。
Furthermore, the microcapsule-type sustained release preparation according to the present invention includes:
Depending on the therapeutic purpose and the pharmacological action of the physiologically active substance contained in the microcapsules, it can be formulated into any dosage form such as injections, powders, granules, tablets, suppositories, etc. It is particularly suitable as an injection because it has a fine and uniform diameter and has needle passability and redispersibility as it is without the need for fractionating and sizing operations.

〔作 用〕[For production]

本発明のマイクロカプセル型徐放性製剤はその粒径が微
細かつ均一である。また、本発明方法によれば、W10
型乳化物をW/O/W型乳化物に乳化させる二次乳化工
程でその外水層に0.IM濃度ないし飽和濃度の塩物質
を存在させることにより、W10型乳化物と水溶性高分
子物質の水溶液との間の界面の性質が改善され、これに
よって粒径が微細かつ均一なマイクロカプセル型徐放性
製剤が得られるものと考えられる。
The microcapsule type sustained release preparation of the present invention has a fine and uniform particle size. Furthermore, according to the method of the present invention, W10
In the secondary emulsification process in which the type emulsion is emulsified into a W/O/W type emulsion, 0.0% is added to the outer water layer. The presence of a salt substance at IM concentration or saturation concentration improves the properties of the interface between the W10 type emulsion and the aqueous solution of the water-soluble polymer substance, thereby forming a microcapsule-type pellet with fine and uniform particle size. It is believed that a release formulation is obtained.

〔実施例〕〔Example〕

以下、実施例及び実験例に基ついて、本発明を具体的に
説明する。
Hereinafter, the present invention will be specifically explained based on Examples and Experimental Examples.

実施例1 ポリ乳酸グリコール酸共重合体(乳酸/クリコール酸比
率= 75/25、重量平均分子量10,000) 2
0■をジクロロメタン5−に溶解し、生体適合高分子物
質の有機溶剤溶液とした。遺伝子組換えヒトエリスロポ
エチン(以下、rEPoと略す)1■及び二・ンピハイ
グレードゼラチンタイプB((lり二・ソピ製、平均分
子量的7.000のアルカリ処理ゼラチン)40■を1
−の日本薬局方注射用水に溶解し、孔径0,22.in
のメンブランフィルタ−(日本ミリポアリミテ・ソド製
:マイレフクスGv)で無菌濾過し、生理活性物質の水
溶液とした。ホモジナイザー(キネマチカ製:ボf丹ロ
ン)によって攪拌(28,000rpm)下の上記有機
溶剤溶液中に上記水溶液を滴下し、更に同回転数で30
秒間攪拌混合してW10型乳化物を得た。
Example 1 Polylactic acid/glycolic acid copolymer (lactic acid/glycolic acid ratio = 75/25, weight average molecular weight 10,000) 2
0■ was dissolved in dichloromethane 5- to prepare an organic solvent solution of a biocompatible polymeric substance. Genetically recombinant human erythropoietin (hereinafter abbreviated as rEPo) 1 and 2 high-grade gelatin type B ((manufactured by Rini Sopi, alkali-treated gelatin with an average molecular weight of 7.000) 40
- dissolved in Japanese Pharmacopoeia water for injection, pore size 0, 22. in
The mixture was sterile-filtered using a membrane filter (manufactured by Nippon Millipore Limite Sodo: Milefx Gv) to obtain an aqueous solution of the physiologically active substance. The above aqueous solution was added dropwise to the above organic solvent solution under stirring (28,000 rpm) using a homogenizer (manufactured by Kinematica: Bof Tanron), and further stirred at the same rotation speed for 30 min.
A W10 type emulsion was obtained by stirring and mixing for seconds.

次に、予め別に氷冷しておいたIM−塩化ナトリウムを
含む0.5X−ポリビニルアルコール水溶液20〇−中
に上記W10型乳化物を加え、10,000 rpmの
速度で30秒間攪拌混合し、W/O/W型乳化物を生成
せしめた。
Next, the W10 type emulsion was added to IM-0.5X-polyvinyl alcohol aqueous solution containing sodium chloride, which had been separately ice-cooled in advance, and stirred and mixed at a speed of 10,000 rpm for 30 seconds. A W/O/W type emulsion was produced.

更に、このW/O/W型乳化物を含む分散液を引続き室
温で穏和に攪拌することにより、残存する塩化メチレン
を揮散させ、かつポリ乳酸グリコール酸共重合物を固化
させた後、3.00Orpm、10分間の遠心分離によ
り生成したマイクロカプセルを捕集した。
Furthermore, the dispersion containing this W/O/W type emulsion was subsequently gently stirred at room temperature to volatilize the remaining methylene chloride and solidify the polylactic acid-glycolic acid copolymer, and then 3. Microcapsules produced by centrifugation at 00 rpm for 10 minutes were collected.

このようにして得られたマイクロカプセルを再び注射用
水に分散し、更に遠心分離を行う操作を5回繰り返すこ
とにより、外水層中のポリビニルアルコール、塩化ナト
リウム及び遊離したrEPo、ポリ乳酸グリコール酸共
重合物を洗浄した。
By repeating the procedure of dispersing the thus obtained microcapsules in water for injection and further centrifugation five times, polyvinyl alcohol, sodium chloride, free rEPo, and polylactic acid/glycolic acid in the outer aqueous layer were dissolved. The polymer was washed.

最終的に捕集されたマイクロカプセルは5x−マンニト
ール水溶液5−に再分散した後、凍結乾燥に供した。な
お、以上の工程は全て無菌無塵的に行った。
The finally collected microcapsules were redispersed in a 5x-mannitol aqueous solution 5- and then subjected to freeze-drying. Note that all of the above steps were performed in a sterile and dust-free manner.

この様にして得られたrEPO含有マイクロカプセルは
、その最大粒径が157mであって平均粒径が8.0趨
であり、変動係数は40%であった。また、rEPOの
取込み率は約95%であった。
The rEPO-containing microcapsules thus obtained had a maximum particle size of 157 m, an average particle size of 8.0, and a coefficient of variation of 40%. Moreover, the uptake rate of rEPO was about 95%.

実験例 上記実施例1で得られたrEPo含有マイクロカプセル
10■を、10−の0.05トT w e e n 2
0を含む50mM−リン酸緩衝液(pH7,4)に分散
させ、回転培養機(太陽科学工業(m:RT−50)を
用いて、37℃の恒温槽中、25rpmで転倒回転させ
た。
Experimental Example 10 μ of rEPo-containing microcapsules obtained in Example 1 above were mixed with 0.05 tons of 10 − T w e n 2
The cells were dispersed in a 50 mM phosphate buffer (pH 7,4) containing 0 and rotated inverted at 25 rpm in a 37° C. constant temperature bath using a rotary culture machine (Taiyo Kagaku Kogyo (m:RT-50)).

所定時間後、分散液を遠心分離(3,000rpm、1
0分)に供しマイクロカプセルを捕集した。
After a predetermined time, the dispersion was centrifuged (3,000 rpm, 1
microcapsules were collected.

マイクロカプセル中のrEPo含量は、捕集したマイク
ロカプセルをアセトニトリル1−で溶解した後、50m
M−+Jン酸緩衝液で全量10−に調整し、逆相高速液
体クロマトグラフィー(HPLC)で定量した。
The rEPo content in the microcapsules was determined by dissolving the collected microcapsules with acetonitrile 1-.
The total amount was adjusted to 10- with M-+J acid buffer, and quantified by reversed-phase high-performance liquid chromatography (HPLC).

経時的に定量したマイクロカプセル中のrEPO含量の
変化を第1図に示す。この第1図から明らかなように、
このマイクロカプセル中のrEPOは、はぼ一定速度で
4週間放出されていることが認められた。
FIG. 1 shows the changes in rEPO content in the microcapsules determined over time. As is clear from this figure 1,
It was observed that rEPO in the microcapsules was released at a nearly constant rate for 4 weeks.

実施例2 ポリ乳酸グリコール酸共重合体(乳酸/グリコール酸比
率−75/25、重量平均分子量10,000) 20
■をジクロロメタン5−に溶解し、生体適合高分子物質
の有機溶剤溶液とした。rEPo 1■を1−の50m
M燐酸緩衝液(pH6,6)に溶解し、孔径0,227
mのメンブランフィルタ−で無菌濾過し、生理活性物質
の水溶液とした。ホモジナイザーによって攪拌(28,
000rpm)下の上記有機溶剤溶液中に上記水溶液を
滴下し、更に同回転数で30秒間攪拌混合してW10型
乳化物を得た。
Example 2 Polylactic acid/glycolic acid copolymer (lactic acid/glycolic acid ratio -75/25, weight average molecular weight 10,000) 20
(2) was dissolved in dichloromethane 5- to obtain an organic solvent solution of a biocompatible polymeric substance. rEPo 1■ 1-50m
Dissolved in M phosphate buffer (pH 6,6), pore size 0,227
The mixture was sterile-filtered using a membrane filter (M) to obtain an aqueous solution of the physiologically active substance. Stir with a homogenizer (28,
The above aqueous solution was added dropwise into the above organic solvent solution under the same rotation speed (000 rpm), and the mixture was stirred and mixed for 30 seconds at the same rotation speed to obtain a W10 type emulsion.

次に、予め別に水冷しておいたLM−塩化ナトリウムを
含む0.5トポリビニルアルコール水溶液20011I
l中に上記W10型乳化物を加え、10,000rpm
の速度で30秒間攪拌混合し、W/O/W型乳化物を生
成せしめた。以下、上記実施例1と同様にして、rEP
O含有マイクロカプセルを得た。
Next, a 0.5 topolyvinyl alcohol aqueous solution 20011I containing LM-sodium chloride, which had been cooled separately in advance, was prepared.
Add the above W10 type emulsion into 1,000 rpm.
The mixture was stirred and mixed for 30 seconds at a speed of 30 to form a W/O/W type emulsion. Hereinafter, in the same manner as in Example 1 above, rEP
O-containing microcapsules were obtained.

この様にして得られたrEPo含有マイクロカプセルは
、その最大粒径が40趨であって平均粒径が22A#n
であり、変動係数は45%であった。また、rEPoの
取込み率は約80%であった。
The rEPo-containing microcapsules obtained in this way have a maximum particle size of 40 mm and an average particle size of 22A#n.
The coefficient of variation was 45%. Moreover, the uptake rate of rEPo was about 80%.

実施例3 ポリ乳酸グリコール酸共重合体(乳酸/グリコ−ル酸比
率= 75/25、重量平均分子量20,000) 2
0■をジクロロメタン5−に溶解し、有機溶剤溶液とし
た。
Example 3 Polylactic acid/glycolic acid copolymer (lactic acid/glycolic acid ratio = 75/25, weight average molecular weight 20,000) 2
0■ was dissolved in dichloromethane 5- to prepare an organic solvent solution.

また、遺伝子組換えヒト顆粒球コロニー刺激因子(以下
、rG−C3F)  1■及びニツピハイグレードゼラ
チンタイプ840■を11nlの日本薬局方注射用水に
溶解し、孔径0.22.cmのメンブランフィルタ−で
無菌濾過して水溶液とした。ホモジナイザーによって攪
拌下(28,000rpm)の上記有機溶剤溶液中に上
記水溶液を滴下し、さらに同回転数で30秒間攪拌混合
することによってW10型乳化物を得た。
In addition, recombinant human granulocyte colony stimulating factor (hereinafter referred to as rG-C3F) 1■ and Nitupi High Grade Gelatin Type 840■ were dissolved in 11 nl of Japanese Pharmacopoeia Water for Injection, and a pore size of 0.22. The mixture was sterile-filtered using a cm membrane filter to obtain an aqueous solution. The aqueous solution was added dropwise to the organic solvent solution while being stirred by a homogenizer (28,000 rpm), and further stirred and mixed for 30 seconds at the same rotation speed to obtain a W10 emulsion.

次に、予め別に氷冷しておいたIM−硫酸ナトリウムを
含む0.5トポリビニルピロリドン水溶液200dに上
記W10型乳化物を加え、10,000 rpmの速度
で30秒間攪拌混合し、W/O/W型乳化物を生成せし
めた。以下、上記実施例1と同様にして、rG−C3F
含有マイクロカプセルを得た。
Next, the above W10 type emulsion was added to 200 d of a 0.5 topolyvinylpyrrolidone aqueous solution containing IM-sodium sulfate that had been ice-cooled separately in advance, and stirred and mixed at a speed of 10,000 rpm for 30 seconds. /W type emulsion was produced. Hereinafter, in the same manner as in Example 1 above, rG-C3F
Containing microcapsules were obtained.

得られたrG−C3F含有マイクロカプセルは、その最
大粒径が50趨であって平均粒径か20序であり、その
変動係数は40%であった。また、rG−C3Fの取込
み率は約90%であった。
The obtained rG-C3F-containing microcapsules had a maximum particle size in the 50s, an average particle size in the 20s, and a coefficient of variation of 40%. Moreover, the uptake rate of rG-C3F was about 90%.

実施例4 ポリ乳酸グリコール酸共重合体(乳酸/クリコール酸比
率= 75/25、重量平均分子量5,000) 20
■をジクロロメタン5−に溶解し、有機溶剤溶液とした
Example 4 Polylactic acid/glycolic acid copolymer (lactic acid/glycolic acid ratio = 75/25, weight average molecular weight 5,000) 20
(2) was dissolved in dichloromethane 5- to form an organic solvent solution.

rEPo 1■及びニッピハイグレードゼラチンタイプ
B40■を1−の日本薬局方注射用水に溶解し、孔径(
1,2274のメンブランフィルタ−で無菌濾過して水
溶液とした。ホモジナイザーによって攪拌下(28,0
0Orpm)の上記有機溶剤溶液中に上記水溶液を滴下
し、さらに同回転数で30秒間攪拌混合することによっ
てW10型乳化物を得た。
rEPo 1■ and Nippi High Grade Gelatin Type B40■ were dissolved in 1- Japanese Pharmacopoeia Water for Injection, and the pore size (
The mixture was sterile filtered using a No. 1,2274 membrane filter to obtain an aqueous solution. While stirring with a homogenizer (28,0
The above aqueous solution was added dropwise to the above organic solvent solution at a rotational speed of 0 rpm), and further stirred and mixed for 30 seconds at the same rotation speed to obtain a W10 type emulsion.

次に、予め別に氷冷しておいたIM=硫酸アンモニウム
を含む0.5%−カルボキシメチルセルロースナトリウ
ム水溶液200−に上記W10型乳化物を加え、10,
000rpmの速度で30秒間攪拌混合し、W/O/W
型乳化物を生成せしめた。以下、上記実施例1と同様に
して、rEPo含有マイクロカプセルを得た。
Next, the above W10 type emulsion was added to IM = 0.5% aqueous sodium carboxymethyl cellulose solution containing ammonium sulfate, which had been ice-cooled separately in advance.
Stir and mix for 30 seconds at a speed of 000 rpm, W/O/W
A type emulsion was produced. Thereafter, rEPo-containing microcapsules were obtained in the same manner as in Example 1 above.

得られたrEPo含有マイクロカプセルは、その最大粒
径が55趨であって平均粒径が23趨であり、その変動
係数が48%であった。また、rEPoの取込み率は約
95%であった。
The obtained rEPo-containing microcapsules had a maximum particle size of 55 particles, an average particle size of 23 particles, and a coefficient of variation of 48%. Moreover, the uptake rate of rEPo was about 95%.

実施例5 ポリ乳酸重合体(重量平均分子量5,000) 20■
をジクロロメタン5−に溶解し、有機溶剤溶液とした。
Example 5 Polylactic acid polymer (weight average molecular weight 5,000) 20■
was dissolved in dichloromethane 5- to obtain an organic solvent solution.

rG−C3F 1■及びニッピハイグレードゼラチンタ
イプ840■を1−の日本薬局方注射用水に溶解し、孔
径0.22.c41のメンブランフィルタ−で無菌濾過
して水溶液とした。ホモジナイザーによって攪拌下(2
8,00Orpm)の上記有機溶剤溶液中に上記水溶液
を滴下し、さらに同回転数で30秒間攪拌混合すること
によってW10型乳化物を得た。
rG-C3F 1■ and Nippi High Grade Gelatin Type 840■ were dissolved in 1- Japanese Pharmacopoeia Water for Injection, and the pore size was 0.22. It was sterile filtered using a C41 membrane filter to obtain an aqueous solution. While stirring with a homogenizer (2
The above aqueous solution was added dropwise to the above organic solvent solution at a rotational speed of 8.00 Orpm), and further stirred and mixed at the same rotation speed for 30 seconds to obtain a W10 type emulsion.

次に、予め別に氷冷しておいたlト塩化カジカリウムむ
0.5x−日本薬局法精製ゼラチン水溶液200−に上
記W10型乳化物を加え、i、0.00Orpmの速度
で30秒間攪拌混合し、W/ O/W型型化化物生成せ
しめた。以下、上記実施例1と同様にしてrG−C3F
含有マイクロカプセルを得た。
Next, the above W10 type emulsion was added to a 0.5x aqueous solution of potassium chloride-containing gelatin purified by the Japanese Pharmacopoeia method, which had been ice-cooled separately in advance, and mixed by stirring at a speed of 0.00 rpm for 30 seconds. , W/O/W type compound was produced. Hereinafter, rG-C3F was prepared in the same manner as in Example 1 above.
Containing microcapsules were obtained.

得られたrG−C3F含有マイクロカプセルは、その最
大粒径が60趨であって平均粒径か25趨であり、その
変動係数は44%であった。また、rG−CSFの取込
み率は約90%であった。
The obtained rG-C3F-containing microcapsules had a maximum particle size of 60 mm, an average particle size of 25 mm, and a coefficient of variation of 44%. Moreover, the uptake rate of rG-CSF was about 90%.

実施例6 ポリ乳酸グリコール酸共重合体(乳酸/グリコール酸比
率= 75/25.重量平均分子量10,000) 2
0■をジクロロメタン5−に溶解し、生体適合高分子物
質の有機溶剤溶液とした。rEPo 1■及びニッピハ
イグレードゼラチンタイプ840■を1−の日本薬局方
注射用水に溶解し、孔径0.22IJIIのメンブラン
フィルタ−で無菌濾過し、生理活性物質の水溶液とした
。ホモジナイザーによって攪拌(28,000rpm)
下の上記有機溶剤溶液中に上記水溶液を滴下し、更に同
回転数で30秒間攪拌混合してWZO型乳型物化物た。
Example 6 Polylactic acid/glycolic acid copolymer (lactic acid/glycolic acid ratio = 75/25. Weight average molecular weight 10,000) 2
0■ was dissolved in dichloromethane 5- to prepare an organic solvent solution of a biocompatible polymeric substance. rEPo 1■ and Nippi High Grade Gelatin Type 840■ were dissolved in 1- Japanese Pharmacopoeia Water for Injection and sterile filtered through a membrane filter with a pore size of 0.22IJII to obtain an aqueous solution of a physiologically active substance. Stir by homogenizer (28,000 rpm)
The aqueous solution was added dropwise to the organic solvent solution below, and the mixture was further stirred and mixed at the same rotation speed for 30 seconds to form a WZO emulsion.

次に、予め別に水冷しておいた各種濃度の塩化ナトリウ
ムを含む0.5%−ポリビニルアルコール水溶液200
d中に上記〜V10型乳化物をそれぞれ加え、10.0
0Orpmの速度で30秒間攪拌混合し、W/O/W型
乳化物を生成せしめた。
Next, 200 0.5% polyvinyl alcohol aqueous solution containing sodium chloride of various concentrations, which had been cooled separately in advance, was added.
Add each of the above V10 type emulsions to 10.0
The mixture was stirred and mixed at a speed of 0 rpm for 30 seconds to produce a W/O/W type emulsion.

更に、これらのW/O/W型乳化物を含む分散液を引続
き室温で穏和に攪拌するこ七により、残存する塩化メチ
レンを揮散させ、かつポリ乳酸グリコール酸共重合物を
固化させた後、3.00Orpm 、  l 0分間の
遠心分離により生成したマイクロカプセルを捕集した。
Furthermore, the dispersion containing these W/O/W emulsions was subsequently gently stirred at room temperature to volatilize the remaining methylene chloride and solidify the polylactic acid glycolic acid copolymer. Microcapsules generated by centrifugation at 3.00 rpm for 10 minutes were collected.

このようにして得られたマイクロカプセルを再び注射用
水に分散し、更に遠心分離を行う操作を5回繰り返すこ
とにより、外水層中のポリビニルアルコール、塩化ナト
リウム及び遊離したrEPo、ポリ乳酸グリコール酸共
重合物を洗浄した。
By repeating the procedure of dispersing the thus obtained microcapsules in water for injection and further centrifugation five times, polyvinyl alcohol, sodium chloride, free rEPo, and polylactic acid/glycolic acid in the outer aqueous layer were dissolved. The polymer was washed.

最終的に捕集されたマイクロカプセルは5X−マンニト
ール水溶液5−に再分散した後、凍結乾燥に供した。
The finally collected microcapsules were redispersed in 5X-mannitol aqueous solution 5- and then subjected to freeze-drying.

二次乳化工程での外水層の塩濃度のみを変えて調製した
各rEPo含有マイクロカプセルの最大粒径、平均粒径
及び変動係数を求め、また、その形状を観察した。結果
を第1表に示す。
The maximum particle diameter, average particle diameter, and coefficient of variation of each rEPo-containing microcapsule prepared by changing only the salt concentration of the outer water layer in the secondary emulsification step were determined, and the shape thereof was observed. The results are shown in Table 1.

第  1  表 〔発明の効果〕 本発明によれば、W/O/W型乳化物をつくる際の外水
層に所定濃度の塩物質を存在させることにより、粘度調
整や分別整粒操作を必要とすることなく粒径が微細かつ
均一なマイクロカプセルを製造することができ、工業上
有利である。また、この方法で製造される本発明の生理
活性物質と生体適合高分子物質とからなるマイクロカプ
セル型徐放性製剤は、優れた徐放性を有しており、−回
の投与により長期間に亘って生理活性物質の薬効を発現
させることができる。
Table 1 [Effects of the Invention] According to the present invention, the presence of a salt substance at a predetermined concentration in the outer water layer when producing a W/O/W type emulsion eliminates the need for viscosity adjustment and fractional sizing operations. It is possible to produce microcapsules with fine and uniform particle size without causing any damage, which is industrially advantageous. In addition, the microcapsule-type sustained-release preparation comprising the physiologically active substance and biocompatible polymeric substance of the present invention produced by this method has excellent sustained-release properties, and can be administered for a long period of time by administration once. The medicinal efficacy of the physiologically active substance can be expressed over a period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例1で得られたrEPO含有マイクロカ
プセル中のrEPo含有量の経時的変化を示したグラフ
図である。 特許出願人  中外製薬株式会社
FIG. 1 is a graph showing the change over time in the rEPo content in the rEPO-containing microcapsules obtained in Example 1. Patent applicant Chugai Pharmaceutical Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)生理活性物質を含有する内包物と生体内分解性及
び/又は生体内組織適合性を有する生体適合高分子物質
で形成された外殻物質とを有し、最大粒径が150μm
以下であって平均粒径が5〜100μm以下であり、か
つ、変動係数が50%以下であることを特徴とするマイ
クロカプセル型徐放性製剤。
(1) It has an inner material containing a physiologically active substance and an outer shell material made of a biocompatible polymer material that is biodegradable and/or tissue compatible in the living body, and has a maximum particle size of 150 μm
1. A microcapsule-type sustained release preparation, which has an average particle size of 5 to 100 μm or less, and a coefficient of variation of 50% or less.
(2)生理活性物質を含有する水溶液と生体内分解性及
び/又は生体内組織適合性の生体適合性高分子物質を含
有する有機溶剤溶液とでW/O型乳化物を調製し、次い
でこのW/O型乳化物と水溶性高分子物質の水溶液とで
二次乳化させてW/O/W型乳化物を調製し、得られた
W/O/W型乳化物から上記有機溶剤を蒸散、固化させ
、更に洗浄し、乾燥させて生理活性物質を内包物とし、
かつ、生体適合高分子物質を外殼物質とするマイクロカ
プセル型徐放性製剤を調製するに際し、上記二次乳化工
程でその外水層に0.1M濃度ないし飽和濃度の塩物質
を存在させることを特徴とするマイクロカプセル型徐放
性製剤の製造法。
(2) A W/O emulsion is prepared with an aqueous solution containing a physiologically active substance and an organic solvent solution containing a biocompatible polymeric substance that is biodegradable and/or tissue compatible with the body, and then this emulsion is prepared. A W/O/W emulsion is prepared by secondary emulsification of the W/O emulsion and an aqueous solution of a water-soluble polymer substance, and the organic solvent is evaporated from the obtained W/O/W emulsion. , solidify, further wash and dry to contain physiologically active substances,
In addition, when preparing a microcapsule-type sustained-release preparation using a biocompatible polymeric substance as an outer shell material, it is recommended that a salt substance be present in the outer aqueous layer at a concentration of 0.1M to saturated concentration in the secondary emulsification step. A method for producing a characteristic microcapsule-type sustained-release preparation.
JP24278390A 1990-09-14 1990-09-14 Microcapsule type sustained releasable preparation and its production Pending JPH04124127A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP24278390A JPH04124127A (en) 1990-09-14 1990-09-14 Microcapsule type sustained releasable preparation and its production
JP25712791A JP3372558B2 (en) 1990-09-14 1991-09-10 Microcapsule type sustained-release preparation and production method thereof
AU84912/91A AU8491291A (en) 1990-09-14 1991-09-13 Microencapsulated sustained-release preparation and production
PCT/JP1991/001224 WO1992004891A1 (en) 1990-09-14 1991-09-13 Microencapsulated sustained-release preparation and production
KR1019930700774A KR100202073B1 (en) 1990-09-14 1993-03-13 Microencapsulated sustained-release preparation and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24278390A JPH04124127A (en) 1990-09-14 1990-09-14 Microcapsule type sustained releasable preparation and its production

Publications (1)

Publication Number Publication Date
JPH04124127A true JPH04124127A (en) 1992-04-24

Family

ID=17094224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24278390A Pending JPH04124127A (en) 1990-09-14 1990-09-14 Microcapsule type sustained releasable preparation and its production

Country Status (4)

Country Link
JP (1) JPH04124127A (en)
KR (1) KR100202073B1 (en)
AU (1) AU8491291A (en)
WO (1) WO1992004891A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11130697A (en) * 1997-10-27 1999-05-18 Ss Pharmaceut Co Ltd Pharmaceutical composition controlled in rate for releasing medicine
EP0955331A2 (en) * 1998-04-23 1999-11-10 Dainippon Ink And Chemicals, Inc. Self-water dispersible particle made of biodegradable polyester and process for the preparation thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT644771E (en) * 1992-06-11 2002-12-31 Alkermes Inc ERITROPOIETIN DRUG DELIVERY SYSTEM
ATE161716T1 (en) * 1992-08-07 1998-01-15 Takeda Chemical Industries Ltd PRODUCTION OF MICRO CAPSULES CONTAINING WATER SOLUBLE MEDICINAL PRODUCTS
US5599583A (en) * 1994-05-27 1997-02-04 Micro Flo Company Encapsulation with water soluble polymer
DE59607089D1 (en) * 1995-03-10 2001-07-19 Roche Diagnostics Gmbh POLYPEPTIDE-CONTAINING PHARMACEUTICAL ADMINISTRATIVE FORMS IN THE FORM OF MICROPARTICLES AND METHOD FOR THE PRODUCTION THEREOF
GB2316316A (en) * 1996-08-23 1998-02-25 Int Centre Genetic Eng & Bio Sustained release of erythropoietin from microspheres
CA2407472A1 (en) * 2000-06-14 2002-10-23 Takeda Chemical Industries, Ltd. Sustained release compositions

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933738B1 (en) * 1969-01-16 1974-09-09
JPS5619324B2 (en) * 1972-05-18 1981-05-07
JPS5094112A (en) * 1973-12-06 1975-07-26
US4389330A (en) * 1980-10-06 1983-06-21 Stolle Research And Development Corporation Microencapsulation process
JPH0720859B2 (en) * 1985-02-07 1995-03-08 武田薬品工業株式会社 Microcapsule manufacturing method
JP2526589B2 (en) * 1986-08-08 1996-08-21 武田薬品工業株式会社 Peptide-containing microcapsule and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11130697A (en) * 1997-10-27 1999-05-18 Ss Pharmaceut Co Ltd Pharmaceutical composition controlled in rate for releasing medicine
EP0955331A2 (en) * 1998-04-23 1999-11-10 Dainippon Ink And Chemicals, Inc. Self-water dispersible particle made of biodegradable polyester and process for the preparation thereof
EP0955331A3 (en) * 1998-04-23 2001-07-18 Dainippon Ink And Chemicals, Inc. Self-water dispersible particle made of biodegradable polyester and process for the preparation thereof

Also Published As

Publication number Publication date
AU8491291A (en) 1992-04-15
WO1992004891A1 (en) 1992-04-02
KR100202073B1 (en) 1999-06-15

Similar Documents

Publication Publication Date Title
EP0442671B1 (en) Prolonged release microcapsules
Herrmann et al. Somatostatin containing biodegradable microspheres prepared by a modified solvent evaporation method based on W/O/W-multiple emulsions
JP2818704B2 (en) Sustained-release composition and method for producing the same
DE69332210T2 (en) BIODEGRADABLE, MELTED SPRAYING SYSTEM FOR CONTROLLED RELEASE
DE69420632T2 (en) Process for the preparation of pharmaceutical preparations with delayed release of active substances
US4853226A (en) Sustained-release particulate preparation and process for preparing the same
EP0523847B1 (en) Taste mask coating for preparation of chewable pharmaceutical tablets
EP0669128B1 (en) Sustained-release microsphere containing antipsychotic and process for producing the same
JPH07502990A (en) Production and use of multiphase microspheres
JP4073478B2 (en) Biodegradable controlled-release microspheres and their production
JP2003521491A (en) Compacted particles for dry injection
JPH09505308A (en) Production of biodegradable microparticles containing biologically active agents
KR20010031289A (en) Encapsulation method
JPH01216918A (en) Polylactic acid particles containing physiologically active substance and its production
US5652220A (en) Encapsulation of TRH or its analog
KR20210100986A (en) Method for preparing microspheres with high density and sustained release
JP2867404B2 (en) Porous microspheres for drug delivery and method for producing the same
JPH04124127A (en) Microcapsule type sustained releasable preparation and its production
JP2911732B2 (en) Sustained release polynuclear microsphere preparation and its manufacturing method
JP3372558B2 (en) Microcapsule type sustained-release preparation and production method thereof
JPH0436233A (en) Sustained release preparation containing physiologically active substance and decomposable and absorbable in living body
Singh et al. In vitro characterization of methotrexate loaded poly (lactic-co-glycolic) acid microspheres and antitumor efficacy in Sarcoma-180 mice bearing tumor
JP3139913B2 (en) Method for producing dry-processed particles, dry-processed particles produced by the method, and pharmaceutical composition containing the particles
EP1778290A1 (en) Use of glycerol dipalmitostearate for improving the bioavailability of protein active ingredients in subcutaneous or intramuscular injectable formulations
JPH05194253A (en) Sustained release particulate pharmaceutical containing water-soluble polypeptide hormone and its production