WO1992004891A1 - Microencapsulated sustained-release preparation and production - Google Patents

Microencapsulated sustained-release preparation and production Download PDF

Info

Publication number
WO1992004891A1
WO1992004891A1 PCT/JP1991/001224 JP9101224W WO9204891A1 WO 1992004891 A1 WO1992004891 A1 WO 1992004891A1 JP 9101224 W JP9101224 W JP 9101224W WO 9204891 A1 WO9204891 A1 WO 9204891A1
Authority
WO
WIPO (PCT)
Prior art keywords
substance
emulsion
particle size
aqueous solution
acid
Prior art date
Application number
PCT/JP1991/001224
Other languages
French (fr)
Japanese (ja)
Inventor
Masayuki Arakawa
Takashi Uchio
Yasushi Sato
Original Assignee
Chugai Seiyaku Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Seiyaku Kabushiki Kaisha filed Critical Chugai Seiyaku Kabushiki Kaisha
Publication of WO1992004891A1 publication Critical patent/WO1992004891A1/en
Priority to KR1019930700774A priority Critical patent/KR100202073B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1682Processes
    • A61K9/1694Processes resulting in granules or microspheres of the matrix type containing more than 5% of excipient

Definitions

  • the present invention relates to a micro-powered capsule which is administered to warm-blooded mammals such as humans, horses, cattle, etc., and gradually releases encapsulated physiologically active substances in the body of these warm-blooded mammals over a long period of time.
  • the present invention relates to a release preparation and a method for producing the same.
  • bioactive substances that require long-term administration, they are encapsulated in a micro-mouth capsule, and the bioactive substance encapsulated in the microcapsules is gradually released, thereby improving the efficacy of the bioactive substance. Improvements in sustainability have been made, and various methods for microencapsulating bioactive substances in this way have been proposed.
  • Japanese Patent Publication No. 1-57,087 discloses that when a WZO .ZW type emulsion is formed and a microcapsule is produced by an underwater drying method, the water-soluble drug and the drug-retaining substance are prepared.
  • 62-201,816 discloses that the viscosity of a W / 0 emulsion is reduced by 150% when a WZO / W emulsion is formed and a ⁇ -force microphone is produced by a water drying method.
  • 2-124, 814 The gazette discloses that by adding a basic drug-retaining substance to an inner aqueous layer containing a water-soluble drug, microcapsules with a low initial burst can be obtained efficiently.
  • JP-B-63-36,290 discloses a process of dissolving or dispersing an active agent such as a biologically active agent in a shell material in a solvent, and disposing the obtained suspension or solution in the solvent.
  • Disclosed is a method for producing a microforce cell that can be obtained.
  • any of the above methods has a problem that the obtained micro force cell not only has a large particle size, but also is irregular and has a wide particle size distribution.
  • “suspension properties” are described in section (4) of “16.
  • the particles in the injection solution are usually set to 150 or less, and it is necessary to perform a sorting and sizing operation using a sieve to a particle size of 150 or less. Not only significantly lowers the yield of the product, but also is an extremely cumbersome operation in itself, and must be performed in a sterile and dust-free atmosphere because it is used as a medical injection. Cause cost up Therefore, solving this point has been a serious issue in industrial production.
  • an object of the present invention is to provide a micro-mouth capsule-type sustained-release preparation having a fine and uniform particle size that does not require a sorting and sizing operation, and a method for producing the same.
  • Another object of the present invention is to provide a microcapsule-type sustained-release preparation capable of achieving a high incorporation rate of a physiologically active substance to be included therein into a microcapsule, and a method for producing the same. .
  • Another object of the present invention is to provide a good micro-mouth regardless of the concentration of an aqueous solution of a physiologically active substance as an inclusion substance or the concentration of an organic solvent solution of a biocompatible polymer substance as an outer shell substance.
  • the present invention provides a microcell-based sustained-release preparation capable of producing a capsule-type sustained-release preparation, whereby the release rate of a physiologically active substance can be appropriately changed, and a method for producing the same. And there.
  • the present invention has an inclusion having a bioactive substance and an outer shell material formed of a biocompatible polymer substance having biodegradability and / or tissue compatibility in vivo, and has a maximum particle size. 1 5 0 or less It is a microforced sustained-release preparation having an average particle diameter of 5 to 100 and a coefficient of variation of 50% or less.
  • the present invention also provides a W0-type emulsion comprising an aqueous solution containing a physiologically active substance and an organic solvent solution containing a biocompatible polymer substance having biodegradability and / or histocompatibility in vivo. Then, the W / 0 emulsion and the aqueous solution of a water-soluble polymer substance are subjected to secondary emulsification to prepare a W0 / W emulsion, and the organic solvent is evaporated from the obtained wzo zw emulsion, The secondary emulsification step described above is used to prepare a micro-alpha capsule-type sustained-release preparation containing a bioactive substance as an inclusion substance and a biocompatible polymer substance as an outer shell substance by solidifying, further washing and drying. This is a process for producing a microcapsule-type sustained-release preparation in which a salt substance having a concentration of 0.1% or saturation is present in the outer aqueous layer.
  • the physiologically active substance to be included in the micro force cell is not particularly limited as long as it has excellent hydrophilicity and is soluble in water, and is not particularly restricted by pharmacological action or the like.
  • physiologically active substances are the microforced sustained-release preparations of the present invention, which have a fine and uniform particle size, and are particularly suitable for injection preparations without the necessity of fractionating and sizing. Is possible Therefore, they are proteins, polypeptides and their derivatives that need to be injected and need to be administered over a relatively long period of time.
  • Slovodin EP type
  • G-CSF granulocyte colony stimulating factor
  • M-CSF macrophic zico oral knee stimulating factor
  • GM-CSF granulocyte Mac phagocylonic stimulating factor
  • IFN interferon
  • IFN interleukin
  • IL-1 interleukin
  • IL-2 interleukin
  • IL-3 interleukin
  • IL-4 interleukin
  • TNF tumor death factor
  • GH or STH growth hormone
  • insulin calcitonin
  • CT calcitonin
  • These physiologically active substances may be of natural origin extracted and purified from animals such as mammals, fish, birds, and other plants, or may be obtained by means of genetic recombination, synthesis, semi-synthesis, etc. May be manufactured.
  • physiologically active substances may be used alone, or two or more of them may be used in combination, if necessary.
  • the physiologically active substance differs depending on the type and properties of the substance, or is usually contained in a ⁇ -capsule in the range of 0.01 to 50% by weight.
  • biocompatible macromolecule material used as the outer shell material of the microcapsule used in the present invention is biodegradable or biocompatible, and can be used in humans, horses, cows, and other living organisms. Any substance can be used as long as it is decomposed or taken into tissues when it enters, and any substance can be used.
  • biodegradable biocompatible high molecular substances include, for example, polylactic acid. Polyglycolic acid, polytaenoic acid, polylingic acid, polylactic acid glycolic acid copolymer, etc.
  • Polyalkylene oxalates such as methylene oxide, polyorthoesters, polycarbonates such as polyorthocarbonate and polyethylenecarbonate, and poly- ⁇ "-benzyl-L-glutamic acid And polyamino acids such as poly-L-alanine, etc.
  • biocompatible high-molecular-weight biocompatible materials that are biocompatible include, for example, polystyrene, polyacrylic acid, polymethacrylic acid, styrene, and styrene.
  • Copolymer of acrylic acid and methacrylic acid copolymer of acrylic acid and methacrylic acid, copolymer of acrylic acid and methacrylic acid, nylon, tetron, polyamino acid, silicone Copolymer, polyurethane, polybutyl acetate, polyvinyl alcohol, polyacrylamide, ethylene-vinyl acetate copolymer, maleic anhydride copolymer, dextran stearate Examples thereof include ethyl cellulose, acetyl cellulose, nitrocellulose, etc.
  • biocompatible high-molecular substances may be used alone or in combination of two or more as necessary.
  • particularly preferred biocompatible polymer substances are biodegradable biodegradable capsules of the present invention, which are particularly suitable for injection.
  • Biocompatible polymer substances especially fatty acid esters such as polylactic acid, polylactic acid, polycunic acid, polylingic acid, and polylactic glycolic acid copolymer
  • the average molecular weight of these biocompatible polymer substances is preferably about 1,000 to 200,000, and more preferably about 1,000 to 200,000. It is in the range of 2,000 to 100,000.
  • the biocompatible polymer substance is used depending on the type and the like, but is usually used in a microcapsule in an amount of 20 to 99% by weight, preferably 40 to 95% by weight.
  • a water-soluble stabilizer or excipient may be used, if necessary, for the purpose of ensuring the stability of the above-mentioned physiologically active substance, or increasing the amount of this physiologically active substance to facilitate handling.
  • shapeing agent can be encapsulated in microcapsules.
  • stabilizers used for this purpose include proteins such as albumin and gelatin; amino acids such as glycine, arginine, histidine, lysine, glutamic acid, and aspartic acid; Salts, surfactants such as sorbitan fatty acid ester, polyoxyethylene fatty acid ester, and dalyserine fatty acid ester; chelating agents such as ethylenediaminetetraacetate and citric acid; and darcose and sucrose. And sugars such as fructose, trehalose, dextrin, dextran, mannitol and sorbitol, and sugar alcohols.
  • excipients include natural water-soluble gums such as arabic gum and xanthan gum, and natural water-soluble gums such as casein, gelatin, collagen, albumin, cellulose, starch, and agar.
  • examples include a high molecular compound and a synthetic water-soluble high molecular compound such as lipoxymethylcellulose and polysaccharide. The amount of these stabilizers and excipients used is determined depending on the type and purpose thereof, but is usually about 0 to 500% based on the biocompatible polymer.
  • a WZO-type emulsion is prepared from an aqueous solution and an organic solvent solution of a biocompatible polymer, and when the W0-type emulsion is secondarily emulsified with an aqueous solution of a water-soluble polymer, the outer aqueous layer is formed.
  • a WZO-no W-type emulsion is prepared, and a physiologically active substance is included from the obtained W / OZW-type emulsion.
  • microcapsule containing a molecular substance as an outer shell substance
  • the obtained microcapsule has a maximum particle size of 150 or less, usually 75 or less, and a more preferable form is 30 or less
  • the average particle size is 5 to 100, usually 5 to 25, and more preferably in the range of 5 to 15 / m
  • the coefficient of variation is 50% or less. It can be used as it is without injection.
  • the maximum particle size is affected by the conditions of emulsification and the concentration of the solution, and may be around 150 depending on these conditions.
  • the maximum particle size is obtained by calculating the particle size of the largest particle in one lot
  • the average particle size is obtained by calculating the average value of 500 particle sizes
  • the coefficient of variation is (standard deviation) ⁇ (Average particle size) It is a value obtained by calculating from the formula of X100.
  • microcapsule-type sustained-release preparation of the present invention is produced by the following method.
  • a biocompatible polymer substance is dissolved in an organic solvent to prepare an organic solvent solution.
  • the organic solvent used for this purpose may be any solvent which has a relatively low boiling point, is immiscible with water, and dissolves a biocompatible polymer.
  • the concentration of the biocompatible polymer substance in the organic solvent solution can be appropriately changed depending on the type of the biocompatible polymer substance to be used, but is usually 0.5 to 50% by weight, preferably It is about 1 to 40% by weight.
  • the above-mentioned physiologically active substance and a water-soluble stabilizing agent or excipient added as necessary are dissolved in predetermined water to prepare an aqueous solution thereof.
  • a pH adjuster is added as necessary for the purpose of maintaining its stability and solubility.
  • PH regulators used for this purpose include, for example, acids such as sulfuric acid, citric acid, acetic acid, and carbonic acid, and sodium and calcium salts thereof, and various buffers such as a phosphate buffer. Liquids can be mentioned.
  • the amount of use of these pH adjusters is not particularly limited, but is usually about several tens of mM concentration.
  • the aqueous solution of the physiologically active substance prepared in this manner is added to the organic solvent solution of the biocompatible polymer substance under high-speed stirring to prepare a WZO type emulsion.
  • the stirring speed at this time is usually 1,000 to 30,000 rpm, preferably 5,000 to 28,000 rPm, and the emulsification temperature is about -100 to 40, preferably about -50 to 20. Is good.
  • the WZO-type emulsion thus prepared is then mixed with a prepared aqueous solution of a water-soluble polymer substance in the presence of a salt substance having a concentration of 0.1 M to a saturation concentration in the outer aqueous layer, It is secondarily emulsified into a W / 0 emulsion.
  • water-soluble polymer used in the secondary emulsification step examples include polyvinyl alcohol (PVA), polyvinylpyrrolidone carboxymethyl senorelose sodium, gelatin, chitin and its derivatives, xanthonone and Derivatives, hyaluronic acid and its sodium salts, dextran, pectin, chondroitin sulfate and its sodium salts, and the like can be mentioned. In addition to being used alone, two or more can be used as a mixture.
  • concentration of the water-soluble polymer substance in the aqueous solution is usually in the range of 0.05 to 5.0% by weight, preferably in the range of 0.1 to 2.0% by weight.
  • the salt substance to be present in the outer water layer during the secondary emulsification is an emulsion formed at the interface between the previously prepared WZO emulsion and the outer water layer.
  • Any material can be used as long as it can improve the stability and suppress the swelling of the biocompatible polymer substance, and is not particularly limited.
  • sodium acetate sodium citrate
  • various inorganic acid salts such as sodium chloride, potassium chloride, calcium chloride, sodium sulfate, sulfuric acid potassium, and the like. Examples thereof include ammonium salts such as ammonium sulfate, and quaternary amine salts such as link mouth ride and tetramethylammonium chloride.
  • These salt substances are usually present in the outer water layer in the range of 0.1 M concentration to the saturation concentration, preferably in the range of 0.5 M concentration to the saturation concentration, and more preferably in the range of 0.1 M concentration to the saturation concentration. If the concentration is low, the problem of bursting occurs, and if the concentration is higher than the saturation concentration, the problem of embedding of salt occurs. And the method of making this salt substance exist in the outer water layer For the wzo / w-type emulsion to be prepared in the secondary emulsification step, it only needs to be present in the outer water layer as a result, and it may be added to an aqueous solution of a water-soluble polymer in advance. Also, it may be added separately when the W / 0 emulsion is mixed with an aqueous solution of a water-soluble polymer substance.
  • the W / 0 / W type emulsion thus prepared is then stirred at room temperature or at 0 to 50 ° C, preferably at 0 to 25, to evaporate the organic solvent.
  • the biocompatible polymer material of the outer shell material is solidified to generate micro force cells.
  • microcapsules are separated by means such as centrifugation or filtration, washed and dried if necessary. Thereafter, if necessary, the dispersion is re-dispersed in an aqueous solution containing an appropriate excipient such as mannitol, and dried by freeze-drying or the like to remove the residual organic solvent. Produces a micronized capsule-type sustained-release preparation with excellent dispersibility.
  • microcapsules obtained as described above have a maximum particle size of 150 or less and an average particle size of 5 to 100, and a coefficient of variation of 50% or less. In particular, it can be used as an injection as it is, without performing a sorting and sizing operation.
  • the microcapsule-type sustained-release preparation of the present invention can be used for injections, powders, granules, tablets, tablets, etc., depending on the pharmacological action of a physiologically active substance contained as an inclusion in the microcapsules for therapeutic purposes.
  • a physiologically active substance contained as an inclusion in the microcapsules for therapeutic purposes can be formulated into any dosage form such as suppositories, it has a fine and uniform particle size and has needle penetration and redispersibility as it is without the need for sorting and sizing. It is suitable as an injection.
  • the microcapsule-type sustained-release preparation of the present invention has a fine and uniform particle size.
  • a salt substance having a concentration of 0.1% or more is present in the outer water layer.
  • the properties of the interface between the WZO-type emulsion and the aqueous solution of a water-soluble polymer are improved, and as a result, a microcellular sustained-release preparation having a fine and uniform particle size is obtained. It is considered to be obtained.
  • FIG. 1 is a graph showing the time-dependent change in the rEPO content of the rEPO-owned microcapsule obtained in Example 1. [Best mode for carrying out the invention]
  • rEPO Genetically modified human erythropoietin 1 rag and two high-grade gelatin type B (manufactured by Nitsubishi, Al-treated gelatin with an average molecular weight of about 7,000) 40ni of 1 ffig It was dissolved in water for injection and sterile-filtered through a membrane filter with a pore size of 0.22 (manufactured by Nippon Millipore Limited: Mylex GV) to obtain an aqueous solution of a physiologically active substance.
  • rEPO Genetically modified human erythropoietin
  • the dispersion containing the W / 0 / W type emulsion is gently stirred at room temperature to volatilize the remaining methylene chloride, and the polylactic acid-glycolic acid is removed. After solidification of the polymer, microcapsules generated by centrifugation at 3,000 rpm for 10 minutes were collected.
  • microforce obtained in this manner was dispersed again in water for injection, and the operation of centrifugation was repeated 5 times, so that polybutyl alcohol, sodium chloride and free water were released into the outer water layer.
  • the obtained rEP0, polylactic acid-glycolic acid copolymer was washed.
  • microcapsules finally collected were redispersed in 5% aqueous mannitol solution 5 and then freeze-dried. The above steps were all performed aseptically and dustlessly.
  • the maximum particle size of the rEPO0 Municipal Mikuguchi capsule obtained in this way was 15, the average particle size was 8.0, and the coefficient of variation was 40%. Also, the uptake rate of rEPO was about 95%.
  • the r EP 0 microcapsule obtained in Example 1 above was dispersed in a 50 mM monophosphate buffer (pH 7.4) containing 0.05% of Tween 20 in a rotary culture machine. (Taiyo scientific industrial ⁇ : KT - 50) using, in O thermostatic bath Te 37 and invert rotated at 25 r P ⁇ - After a predetermined time, the dispersion was subjected to centrifugation (3,000 rpm, 10 minutes) to collect microcapsules.
  • the amount of r EPO in the microcapsules was adjusted by dissolving the collected microcapsules with 1 rag of acetonitrile and then adjusting the total volume to lOfflg with 50 mM phosphate buffer. It was quantified by liquid chromatography (HPLC).
  • the solution was aseptically filtered through a 0.22 membrane filter to obtain an aqueous solution of a physiologically active substance.
  • the aqueous solution was dropped into the organic solvent solution under stirring (28,000 rpm) with a homogenizer, and further stirred and mixed at the same rotation speed for 30 seconds to obtain a WZO-type emulsion.
  • the above-mentioned WZO-type emulsion was added to 0.5% -polyvinyl alcohol aqueous solution 200, and the mixture was stirred and mixed at a speed of 10,000 rpm for 30 seconds to form a W / 0 / W-type emulsion. Thereafter, in the same manner as in Example 1 above, rEPO0 microcapsules were obtained.
  • the r EPO house-owned microcapsules obtained in this way are Had a maximum particle size of 40, an average particle size of 22%, and a coefficient of variation of 45%.
  • the uptake rate of rEP0 was about 80%.
  • the aqueous solution was dropped into the organic solvent solution under stirring (28,000 rpm) with a homogenizer, and the mixture was further stirred and mixed at the same rotation speed for 30 seconds to obtain a WZO-type emulsion.
  • the above-mentioned W0 type emulsion was added to a 0.5% aqueous solution of 0.5% polybutylpyrrolidone containing 1M sodium sulfate, which had been previously ice-cooled separately, and added at a speed of 10,000 rpm for 30 minutes.
  • the mixture was stirred and mixed for 2 seconds to produce a W / 0 ZW type emulsion.
  • rG—CSF microcapsules were obtained.
  • the obtained rG—CSF-containing microcapsule capsule had a maximum particle size of 50, an average particle size of 20, and a coefficient of variation of 40%.
  • the uptake rate of rG—CSF was about 90%.
  • the above-mentioned WZO-type emulsion was added to 200 ml of 0.5% -rubiximetyl cell ⁇ -sodium sodium water solution containing 1 M ammonium sulfate, which had been separately ice-cooled, and the speed was increased to 10,000 rpm. For 30 seconds to form a WZOZW emulsion. Thereafter, r EPO microcapsules were obtained in the same manner as in Example 1 above. The obtained r ⁇ ⁇ ⁇ ⁇ ⁇ 0 micro-capsule has the largest particle size.
  • the average particle size was 55 and the coefficient of variation was 48%.
  • the uptake rate of r r ⁇ 0 was about 95%.
  • a 1M-chlorinated reamer which has been separately ice-cooled, is set up. 0. ⁇ % —200 gelatin aqueous solution of purified gelatin in the Japanese Pharmacopoeia.
  • the above-mentioned W / 0 emulsion is added, and ⁇ , ⁇ pm
  • the mixture was stirred and mixed at the speed described above for 30 seconds to form a W / 'OZW type emulsion.
  • microcapsules containing rG—CSF were obtained.
  • the obtained rG-CSF microcapsule had a maximum particle size of 60, an average particle size of 25, and a coefficient of variation of 44%.
  • the uptake rate of rG—CSF was about 90%.
  • the obtained r E P 0 ⁇ own microcapsule has the maximum particle size.
  • a solution of a biocompatible polymer substance in an organic solvent was obtained.
  • 1 ng of rPO and 40 m of Nibbi Greater Gelatin Type B were dissolved in 1 i of water for injection in the Japanese Pharmacopoeia, and sterile-filtered through a membrane filter with a pore size of 0.22 to obtain an aqueous solution of a physiologically active substance.
  • the above aqueous solution was dropped into the above organic solvent solution under stirring (28,000 rpm) with a homogenizer, and the mixture was further stirred and mixed at the same rotation speed for 30 seconds to obtain a WZ0 type emulsion.
  • each of the WZ0 emulsions was added to 200% of a 0.5% aqueous solution of sodium borohydride containing sodium chloride of various concentrations, which had been previously ice-cooled separately, and the emulsion was added at a speed of 10,000 rpm. After stirring and mixing for 2 seconds, a WZ0ZW type emulsion was formed.
  • the dispersion containing these WZOZW-type emulsions was gently stirred at room temperature to volatilize the remaining methylene chloride and solidify the polylactic acid-glycolic acid copolymer. Thereafter, microcapsules generated by centrifugation at 3,000 rpm for 10 minutes were collected.
  • microcapsules thus obtained were dispersed again in water for injection, and the operation of centrifugation was repeated 5 times to remove the boryl alcohol, sodium chloride and the sodium chloride in the outer water layer.
  • r EPO polylactic acid glycolic acid copolymer was washed.
  • microcapsules finally collected were redispersed in 5% aqueous mannitol solution 5 and then freeze-dried.
  • the presence of a predetermined concentration of a salt substance in the outer water layer when a wzozw type emulsion is produced allows the particle size to be fine and fine without the need for viscosity adjustment and sorting and sizing. Uniform micro force can be produced, which is industrially advantageous.
  • the micro-force Busel-type sustained-release preparation comprising the physiologically active substance of the present invention and the biocompatible polymer produced by this method has excellent sustained-release properties, and can be administered by a single administration. The drug effect of the physiologically active substance can be exhibited over a long period of time.

Abstract

A microencapsulated sustained-release preparation comprising a physiologically active substance as the core and a biocompatible polymer which is decomposable in vivo and/or is compatible with the tissues in vivo as the shell, said preparation being produced from a W/O/W emulsion which is prepared by first preparing a W/O emulsion from an aqueous solution of the physiologically active substance and a solution of the biocompatible polymer in an organic solvent, and conducting secondary emulsification between the W/O emulsion and an aqueous solution of a water-soluble polymer in the presence of a salt substance with the concentration of 0.1 M or saturation concentration in the outer water layer. The microcapsule has a maximum particle diameter of 150 νm or less, a mean particle diameter of 5 to 100 νm, and a coefficient of variation of the particle diameter of 50% or less, so that it can be used as an injection as such without the necessity for conducting particular fractionation and particle size adjustment.

Description

明 細 書  Specification
マイ ク 口カプセル型徐放性製剤及びその製造法 Mic mouth capsule type sustained release preparation and method for producing the same
〔技術分野〕 〔Technical field〕
この発明は、 人、 馬、 牛等の温血哺乳動物に投与され、 内包 された生理活性物質をこれら温血哺乳動物の体内で長期間に亘 つて徐々に放出するマイ ク ロ力プセル型徐放性製剤及びその製 造法に関する。  The present invention relates to a micro-powered capsule which is administered to warm-blooded mammals such as humans, horses, cattle, etc., and gradually releases encapsulated physiologically active substances in the body of these warm-blooded mammals over a long period of time. The present invention relates to a release preparation and a method for producing the same.
〔背景'技術〕  [Background 'technology]
長期間の投与を必要とする生理活性物質については、 これを マイ ク 口カプセル化し、 このマイ ク ロカプセル中に内包された 生理活性物質を徐々に放出させ、 これによつて生理活性物質の 薬効の持続性を改善することが行われており、 また、 この様に 生理活性物質をマイ ク ロカプセル化するための種々の方法が提 案されている。  For bioactive substances that require long-term administration, they are encapsulated in a micro-mouth capsule, and the bioactive substance encapsulated in the microcapsules is gradually released, thereby improving the efficacy of the bioactive substance. Improvements in sustainability have been made, and various methods for microencapsulating bioactive substances in this way have been proposed.
例えば、 特公平 1-57, 087号公報には、 WZO .ZW型乳化物を 形成して水中乾燥法によりマイ ク ロカプセルを製造する際::: . 水溶性薬物及び薬物保持物質を舍む内水層を粘度約 5,000 c. F 以上に増粘あるいは固化した W / 0型乳化物を調製し、 こ Πに よってマイ ク ロカプセル中に薬物を効率良く取り込むようにし たマイ ク ロカプセルの製造方法が開示されている。 また、 特開 昭 62-201,816号公報には、 WZO/W型乳化物を形成して水中 乾燥法によりマイ ク π力プセルを製造する際に、 W/ 0型乳化 物の粘度を 150〜 10 , 000 c p に調整し、 これによ つてマイ :'" c: カプセル中に薬物を効率良く取り込むようにしたマイ ク ロ: ÷ — セルの製造方法が開示されている。 更に、 特開平 2- 124, 814号 公報には、 水溶性薬物を含む内水層中に塩基性の薬物保持物質 を添加することにより、 効率良く、 初期バース トの少ないマイ クロカプセルが得られることが開示されている。 加えて、 特公 昭 63 - 36 , 290号公報には、 溶剤中で生物学活性剤等の活性剤を 外殻物質に溶解又は分散させる工程と、 得られた懸濁液又は溶 液をその溶剤より高沸点の水等の連続相生成媒体中に分散させ て W Z O型又は O Z W型乳化物を生成せしめる工程と、 前工程 で得られた分散液から溶剤の一部を蒸散させてマイ クロカブセ ルを生成させる工程と、 このマイ ク口カプセルを分離する工程 と、 得られたマイ クロカプセルから残余の溶剤を抽出する工程 とからなり、 活性剤含有量が高く、 高品質のマイ クロ力プセル を得ることができるマイ クロ力プセルの製造方法が開示されて いる。 For example, Japanese Patent Publication No. 1-57,087 discloses that when a WZO .ZW type emulsion is formed and a microcapsule is produced by an underwater drying method, the water-soluble drug and the drug-retaining substance are prepared. A method for producing microcapsules in which a water layer is thickened or solidified to a viscosity of about 5,000 c.F or more to prepare a W / 0 type emulsion, and thereby the drug is efficiently incorporated into the microcapsules. It has been disclosed. Also, Japanese Patent Application Laid-Open No. 62-201,816 discloses that the viscosity of a W / 0 emulsion is reduced by 150% when a WZO / W emulsion is formed and a π-force microphone is produced by a water drying method. A method for producing a micro: ÷ —cell, which is adjusted to 取 り 込 む 10,000 cp to thereby efficiently incorporate a drug into a my: ′ ″ c: capsule, is disclosed. 2-124, 814 The gazette discloses that by adding a basic drug-retaining substance to an inner aqueous layer containing a water-soluble drug, microcapsules with a low initial burst can be obtained efficiently. In addition, JP-B-63-36,290 discloses a process of dissolving or dispersing an active agent such as a biologically active agent in a shell material in a solvent, and disposing the obtained suspension or solution in the solvent. A step of dispersing in a continuous phase forming medium such as water having a boiling point higher than that of the solvent to form a WZO-type or OZW-type emulsion; and a step of evaporating a part of the solvent from the dispersion obtained in the previous step to form a microcapsule. , A step of separating the microcapsules, and a step of extracting the remaining solvent from the obtained microcapsules, thereby providing a high-quality microcapsule having a high active agent content. Disclosed is a method for producing a microforce cell that can be obtained.
〔発明の開示〕  [Disclosure of the Invention]
しかしながら、 上記いずれの方法においても、 得られたマイ クロ力プセルはその粒子の粒径が大きいばかりでなく、 不揃い であってその粒度分布が広いという問題がある。 このため、 こ の様な方法によつて製造されたマイ クロカプセルを例えば医療 用注射剤とする場合には、 日本薬局方の製剤総則の 16. 注射剤 の ( 4 ) 項に 「懸濁性注射液中の粒子は、 通例、 150 以下と し、 」 と記載されていることから、 篩を使用して粒径 150卿以 下に分別整粒操作を行う必要があり、 この分別整粒操作は製品 の歩留を著し く低下させるばかりでなく、 それ自体が極めて面 倒な操作であり、 かつ、 医療用注射剤とするものであるから無 菌無塵雰囲気下に行わなければならず、 コス トア ップの原因に なり、 この点を解決することが工業的に製造する際における重 大な課題になっていた。 However, any of the above methods has a problem that the obtained micro force cell not only has a large particle size, but also is irregular and has a wide particle size distribution. For this reason, when microcapsules produced by such a method are to be used as, for example, a medical injection, “suspension properties” are described in section (4) of “16. The particles in the injection solution are usually set to 150 or less, and it is necessary to perform a sorting and sizing operation using a sieve to a particle size of 150 or less. Not only significantly lowers the yield of the product, but also is an extremely cumbersome operation in itself, and must be performed in a sterile and dust-free atmosphere because it is used as a medical injection. Cause cost up Therefore, solving this point has been a serious issue in industrial production.
そこで、 本発明者らは、 この様な分別整粒操作を必要とする ことな く、 粒径が微細かつ均一な生理活性物質のマイ ク ロカブ セル型徐放性製剤を得るこ とができるマイ ク ロカプセル型徐放 性製剤及びその製造法について鋭意研究を重ねた結果、 Wノ 0 型乳化物から 型乳化物を調製する二次乳化工程でそ の外水層に 0. 1 M濃度ないし飽和濃度の塩物質を存在させるこ とにより、 微細かつ均一な粒径を有するマイ ク ロカプセル型徐 放性製剤を得ることができることを見出し、 本発明に到達した。 従って、 本発明の目的は、 分別整粒操作を必要としない微細 かつ均一な粒径を有するマイ ク口カプセル型徐放性製剤及びそ の製造法を提供することにある。  Therefore, the present inventors have been able to obtain a microclob cell-type sustained-release preparation of a bioactive substance having a fine and uniform particle size without requiring such a sorting and sizing operation. As a result of intensive studies on the microcapsule-type sustained-release formulation and its manufacturing method, the outer aqueous layer was 0.1 M concentration or saturated in the secondary emulsification step of preparing a type-emulsion from W-type zero-emulsion. The present inventors have found that a microcapsule-type sustained-release preparation having a fine and uniform particle size can be obtained by the presence of a salt substance at a concentration, and arrived at the present invention. Accordingly, an object of the present invention is to provide a micro-mouth capsule-type sustained-release preparation having a fine and uniform particle size that does not require a sorting and sizing operation, and a method for producing the same.
また、 本発明の他の目的は、 内包物となる生理活性物質のマ イ ク ロカプセル中への高い取込み率を達成できるマイ ク ロカプ セル型徐放性製剤及びその製造法を提供することにある。  Another object of the present invention is to provide a microcapsule-type sustained-release preparation capable of achieving a high incorporation rate of a physiologically active substance to be included therein into a microcapsule, and a method for producing the same. .
更に、 本発明の他の目的は、 内包物となる生理活性物質の水 溶液の濃度あるいは外殻物質となる生体適合性高分子物質の有 機溶剤溶液の濃度に関係な く良好なマイ ク 口カプセル型徐放性 製剤を製造することができ、 これによつて生理活性物質の放出 速度を適宜変更することが可能であるマイ ク ロ力ブセル型徐放 性製剤及びその製造法を提供する こ とにある。  Furthermore, another object of the present invention is to provide a good micro-mouth regardless of the concentration of an aqueous solution of a physiologically active substance as an inclusion substance or the concentration of an organic solvent solution of a biocompatible polymer substance as an outer shell substance. The present invention provides a microcell-based sustained-release preparation capable of producing a capsule-type sustained-release preparation, whereby the release rate of a physiologically active substance can be appropriately changed, and a method for producing the same. And there.
すなわち、 本発明は、 生理活性物質を舍有する内包物と生体 内分解性及び/又は生体内組織適合性を有する生体適合高分子 物質で形成された外殻物質とを有し、 最大粒径が 1 5 0 以下 であって平均粒径が 5〜: 100 であり、 かつ、 変動係数が 50 % 以下であるマイ ク ロ力プセル型徐放性製剤である。 That is, the present invention has an inclusion having a bioactive substance and an outer shell material formed of a biocompatible polymer substance having biodegradability and / or tissue compatibility in vivo, and has a maximum particle size. 1 5 0 or less It is a microforced sustained-release preparation having an average particle diameter of 5 to 100 and a coefficient of variation of 50% or less.
また、 本発明は、 生理活性物質を舍有する水溶液と生体内分 解性及び 又は生体内組織適合性の生体適合性高分子物質を舍 有する有機溶剤溶液とで Wノ 0型乳化物を調製し、 次いでこの W / 0型乳化物と水溶性高分子物質の水溶液とで二次乳化させ て W 0 / W型乳化物を調製し、 得られた w z o zw型乳化物 から上記有機溶剤を蒸散、 固化させ、 更に洗浄し、 乾燥させて 生理活性物質を内包物とし、 かつ、 生体適合高分子物質を外殻 物質とするマイ ク αカプセル型徐放性製剤を調製するに際し、 上記二次乳化工程でその外水層に 0. 1 Μ濃度ないし飽和濃度の 塩物質を存在させるマイ ク口カプセル型徐放性製剤の製造法で ある。  The present invention also provides a W0-type emulsion comprising an aqueous solution containing a physiologically active substance and an organic solvent solution containing a biocompatible polymer substance having biodegradability and / or histocompatibility in vivo. Then, the W / 0 emulsion and the aqueous solution of a water-soluble polymer substance are subjected to secondary emulsification to prepare a W0 / W emulsion, and the organic solvent is evaporated from the obtained wzo zw emulsion, The secondary emulsification step described above is used to prepare a micro-alpha capsule-type sustained-release preparation containing a bioactive substance as an inclusion substance and a biocompatible polymer substance as an outer shell substance by solidifying, further washing and drying. This is a process for producing a microcapsule-type sustained-release preparation in which a salt substance having a concentration of 0.1% or saturation is present in the outer aqueous layer.
本発明において、 マイ クロ力プセルの内包物となる生理活性 物質としては、 それが優れた親水性を有して水に可溶性であれ ばよ く、 薬理作用等によって特に制跟を受けるものではなく、 生理活性を有する蛋白質ゃポリ ベプチ ド及びこれらの誘導体、 その他に、 抗生物質、 抗腫瘍剤、 解熱剤、 鎮痛剤、 消炎剤、 鎮 咳去痰剤、 鎮静剤、 筋弛緩剤、 抗てんかん剤、 抗潰瘍剤、 抗ぅ つ剤、 抗ア レルギー剤、 強心剤、 不整脈治療剤、 血管拡張剤、 降圧利尿剤、 糖尿病治療剤、 抗凝血剤、 止血剤、 抗結核剤、 ホ ルモ ン剤、 麻薬拮抗剤等の種々のものを挙げることができる。 このうち、 特に好ましい生理活性物質は、 本発明のマイ クロ力 プセル型徐放性製剤が微細かつ均一な粒径を有して特に分別整 粒操作を必要とすることな く注射用製剤とすることが可能であ ることから、 注射剤とする必要があり、 また、 比較的長期の投 与が必要とされるようなタ ンパク質やポリ ぺプチ ド及びこれら の誘導体であり、 具体的には、 例えばヱ リ スロボヱチン ( E P 〇 ) 、 顆粒球コ ロニー刺激因子 ( G— C S F ) 、 マク ロファー ジコ 口ニー刺激因子 ( M— C S F ) 、 顆粒球マク 口フ ァージコ ロニー刺激因子 ( G M— C S F ) 、 イ ンターフェ ロ ン ( I F N 、 I F N 、 I F N r ) 、 イ ンターロイ キ ン ( I L— 1 、 I L— 2、 I L— 3 , I L— 4、 I L— 5、 I L— 6 ) 、 腫瘍壌 死因子 ( T N F ) 、 成長ホルモ ン ( G H又は S T H ) 、 イ ンス リ ン、 カルシ トニン ( C T ) 等及びこれらの誘導体を挙げるこ とができる。 これらの生理活性物質は、 それが哺乳動物、 魚類、 鳥類等の動物やその他の植物等から抽出精製された天然由来の ものであっても、 また、 遺伝子組換え、 合成、 半合成等の手段 で製造されたものであってもよい。 これらの生理活性物質は、 その 1種のみを使用してもよ く、 また、 必要により 2種以上を 併用使用してもよい。 そして、 この生理活性物質は、 その種類 や性状等によっても異なるか、 通常、 マイ ク πカプセル中に 0.01〜50重量%の範囲で内包される。 In the present invention, the physiologically active substance to be included in the micro force cell is not particularly limited as long as it has excellent hydrophilicity and is soluble in water, and is not particularly restricted by pharmacological action or the like. , Physiologically active protein polypeptides and their derivatives, as well as antibiotics, antitumor agents, antipyretics, analgesics, anti-inflammatory agents, antitussive expectorants, sedatives, muscle relaxants, antiepileptics, anti- Ulcers, antidepressants, antiallergics, cardiotonic, arrhythmic, vasodilators, antihypertensive diuretics, diabetes, anticoagulants, hemostats, antituberculosis, hormones, narcotics And various agents such as agents. Of these, particularly preferred physiologically active substances are the microforced sustained-release preparations of the present invention, which have a fine and uniform particle size, and are particularly suitable for injection preparations without the necessity of fractionating and sizing. Is possible Therefore, they are proteins, polypeptides and their derivatives that need to be injected and need to be administered over a relatively long period of time. Slovodin (EP type), granulocyte colony stimulating factor (G-CSF), macrophic zico oral knee stimulating factor (M-CSF), granulocyte Mac phagocylonic stimulating factor (GM-CSF), interferon (IFN, IFN, IFN r), interleukin (IL-1, IL-2, IL-3, IL-4, IL-5, IL-6), tumor death factor (TNF), growth hormone (GH or STH), insulin, calcitonin (CT), and the like, and derivatives thereof. These physiologically active substances may be of natural origin extracted and purified from animals such as mammals, fish, birds, and other plants, or may be obtained by means of genetic recombination, synthesis, semi-synthesis, etc. May be manufactured. One of these physiologically active substances may be used alone, or two or more of them may be used in combination, if necessary. The physiologically active substance differs depending on the type and properties of the substance, or is usually contained in a π-capsule in the range of 0.01 to 50% by weight.
また、 本発明で使用するマイ ク ロカプセルの外殻物質となる 生体適合高分子物質は、 それが生体内分解性あるいは生体内組 織適合性であって、 人、 馬、 牛等の生体内に入った際に分解し あるいは組織に取り込まれて適合するものであれば、 如何なる ものであってもよ く 、 具体的には、 生体内分解性の生体適合高 分子物質としては、 例えばポリ乳酸.. ポリ グリ コール酸,. ポリ タエン酸、 ポリ リ ンゴ酸、 ポリ乳酸グ コ一ル酸共重合体等 © 脂肪酸エステルの単独重合体や共重合体や、 ポリ or—シァノ ア ク リ ル酸エステル等のポリ アク リ ル酸エステル類や、 ポリ 一 ヒ ドロキシ酩酸等のヒ ドロキシ酪酸類や、 ポリ ト リ メチレンォ キサレー ト等のポリ アルキ レンォキサレー ト類や、 ポリ オルソ エステルや、 ポリ オルソカーボネー ト、 ポリ エチレンカーボネ ー ト等のボリ カーボネー ト類や、 ポリ τ" 一べンジルー L —グル タ ミ ン酸、 ポリ Lーァラニン等のポリア ミノ酸等があり、 また. 生体内組織適合性の生体適合高分子物質としては、 例えばポリ スチレン、 ポリ アク リ ル酸、 ポリ メ タク リ ル酸、 スチレンとァ ク リル酸又はメ タク リル酸との共重合体、 アク リル酸とメ タク リル酸との共重合体、 ナイ ロ ン、 テ ト ロ ン、 ボリ ア ミ ノ酸、 シ リ コ ンポリ マー、 ポリ ウ レタ ン、 ポリ ビュルアセテー ト、 ポリ ビュルァノレコール、 ポリ アク リルア ミ ド、 エチレンービニルァ セテー ト系共重合体、 無水マレィ ン酸系共重合体、 デキス ト ラ ンステアレー ト ェチルセルロース、 ァセチルセルロース、 二 トロセルロース等を挙げることができる。 これらの生体適合高 分子物質は、 その 1種のみを使用してもよ く、 また、 必要によ り 2種以上を混合使用してもよい。 これらのうち、 特に好まし い生体適合高分子物質は、 本発明のマイ ク口カブセル型徐放性 製剤が特に注射用製剤として最適であることから、 生体内分解 性の生体適合高分子物質、 特にボリ乳酸、 ボリダリ コール酸、 ポリ クェン酸、 ポリ リ ンゴ酸、 ポリ乳酸グリコール酸共重合体 等の脂肪酸エステルの単独重合体や共重合体である。 そして、 これらの生体適合高分子物質の平均分子量については、 好まし く は約 1 , 000〜200 , 000程度のものであり、 より好ましく は 2 , 000〜100,000の範囲である。 この生体適合高分子物質は、 そ の種類等によっても異なるが、 通常、 マイ ク ロカプセル中に 20 〜99重量%、 好ま し く は 40〜95重量%の範囲となるように使用 される。 In addition, the biocompatible macromolecule material used as the outer shell material of the microcapsule used in the present invention is biodegradable or biocompatible, and can be used in humans, horses, cows, and other living organisms. Any substance can be used as long as it is decomposed or taken into tissues when it enters, and any substance can be used.Specifically, biodegradable biocompatible high molecular substances include, for example, polylactic acid. Polyglycolic acid, polytaenoic acid, polylingic acid, polylactic acid glycolic acid copolymer, etc. © Homopolymers and copolymers of fatty acid esters, polyacrylic acid esters such as poly- or cyanoacrylic acid esters, hydroxybutyric acids such as poly-hydroxy dramanic acid, and polytriols Polyalkylene oxalates such as methylene oxide, polyorthoesters, polycarbonates such as polyorthocarbonate and polyethylenecarbonate, and poly-τ "-benzyl-L-glutamic acid And polyamino acids such as poly-L-alanine, etc. Examples of biocompatible high-molecular-weight biocompatible materials that are biocompatible include, for example, polystyrene, polyacrylic acid, polymethacrylic acid, styrene, and styrene. Copolymer of acrylic acid and methacrylic acid, copolymer of acrylic acid and methacrylic acid, nylon, tetron, polyamino acid, silicone Copolymer, polyurethane, polybutyl acetate, polyvinyl alcohol, polyacrylamide, ethylene-vinyl acetate copolymer, maleic anhydride copolymer, dextran stearate Examples thereof include ethyl cellulose, acetyl cellulose, nitrocellulose, etc. These biocompatible high-molecular substances may be used alone or in combination of two or more as necessary. Of these, particularly preferred biocompatible polymer substances are biodegradable biodegradable capsules of the present invention, which are particularly suitable for injection. Biocompatible polymer substances, especially fatty acid esters such as polylactic acid, polylactic acid, polycunic acid, polylingic acid, and polylactic glycolic acid copolymer The average molecular weight of these biocompatible polymer substances is preferably about 1,000 to 200,000, and more preferably about 1,000 to 200,000. It is in the range of 2,000 to 100,000. The biocompatible polymer substance is used depending on the type and the like, but is usually used in a microcapsule in an amount of 20 to 99% by weight, preferably 40 to 95% by weight.
更に、 本発明においては、 上記生理活性物質の安定性を確保 したり、 あるいは、 この生理活性物質を増量し取扱易く する等 の目的で、 必要に応じて水溶性の安定化剤や賦形剤 (捕形剤) 等をマイ ク ロカプセル中に内包させることができる。 この目的 で使用される安定化剤としては、 例えばアルブミ ン、 ゼラチン 等のタ ンパク質類や、 グリ シン、 アルギニン、 ヒスチジン、 リ ジン、 グルタ ミ ン酸、 ァスパラギン酸等のア ミノ酸類又はこれ らの塩類や、 ソルビタ ン脂肪酸エステル、 ポリ オキシエチレン 脂肪酸エステル、 ダリ セ リ ン脂肪酸エステル等の界面活性剤や、 エチレンジァ ミ ン四酢酸塩、 クェン酸等のキ レー ト剤や、 ダル コース、 シュク ロース、 フラク トース、 ト レハロース、 デキス ト リ ン、 デキス ト ラ ン、 マンニ トール、 ソルビ トール等の糖類 又は糖アルコール類等を挙げることができる。 また、 賦形剤と しては、 例えば、 ア ラ ビアゴム、 キサ ンタ ンガム等の天然水溶 性ガムや、 カゼイ ン、 ゼラチン、 コ ラーゲン、 アルブ ミ ン、 セ ルロース、 デンプン、 寒天等の天然水溶性高分子化合物や、 力 ルポキシメ チルセルロース、 ポリ サッカライ ド等の合成水溶性 高分子化合物を挙げることができる。 これら安定化剤や賦形剤 の使用量は、 その種類や目的等によって決定されるものである が、 通常、 生体適合高分子物質に対して 0〜500 %程度である。 本凳明のマイ ク ロカプセル型徐放性製剤は、 生理活性物質の 水溶液と生体適合性高分子物質の有機溶剤溶液とで W Z O型乳 化物を調製し、 この Wノ 0型乳化物と水溶性高分子物質の水溶 液とで二次乳化させる際にその外水層に 0. 1 M濃度ないし飽和 濃度の塩物質を存在させて W Z Oノ W型乳化物を調製し、 得ら れた W / O Z W型乳化物から生理活性物質を内包物とし、 かつ、 生体適合高分子物質を外殻物質とするマイ ク口カプセルを調製 して得られるものであるが、 この得られたマイ クロカプセルは、 その最大粒径が 150卿以下、 通常 75 以下、 より好ましい形態 としては 30 以下であってその平均粒径が 5 〜100 、 通常 5 〜25 、 より好ましい形態としては 5 〜15 /mの範囲内で、 その 変動係数が 50 %以下であり、 特に分別整粒操作を行う ことなく そのまま注射剤として利用できる。 最大粒径は乳化の条件や溶 液の濃度によって影響を受け、 これらの条件によっては 150 近く の値を示す場合もある。 なお、 最大粒径は 1 ロ ッ ト中の最 大粒子の粒径を求めることにより、 平均粒径は粒子 500個の粒 径の平均値を求めることにより、 また、 変動係数は (標準偏差) ÷ (平均粒径) X 1 0 0の式から算出することにより求められ る値である。 Furthermore, in the present invention, a water-soluble stabilizer or excipient may be used, if necessary, for the purpose of ensuring the stability of the above-mentioned physiologically active substance, or increasing the amount of this physiologically active substance to facilitate handling. (Shaping agent) can be encapsulated in microcapsules. Examples of stabilizers used for this purpose include proteins such as albumin and gelatin; amino acids such as glycine, arginine, histidine, lysine, glutamic acid, and aspartic acid; Salts, surfactants such as sorbitan fatty acid ester, polyoxyethylene fatty acid ester, and dalyserine fatty acid ester; chelating agents such as ethylenediaminetetraacetate and citric acid; and darcose and sucrose. And sugars such as fructose, trehalose, dextrin, dextran, mannitol and sorbitol, and sugar alcohols. Examples of excipients include natural water-soluble gums such as arabic gum and xanthan gum, and natural water-soluble gums such as casein, gelatin, collagen, albumin, cellulose, starch, and agar. Examples include a high molecular compound and a synthetic water-soluble high molecular compound such as lipoxymethylcellulose and polysaccharide. The amount of these stabilizers and excipients used is determined depending on the type and purpose thereof, but is usually about 0 to 500% based on the biocompatible polymer. The microcapsule-type sustained-release preparation of the present invention A WZO-type emulsion is prepared from an aqueous solution and an organic solvent solution of a biocompatible polymer, and when the W0-type emulsion is secondarily emulsified with an aqueous solution of a water-soluble polymer, the outer aqueous layer is formed. In the presence of a salt substance at a concentration of 0.1 M or a saturated concentration, a WZO-no W-type emulsion is prepared, and a physiologically active substance is included from the obtained W / OZW-type emulsion. It is obtained by preparing a microcapsule containing a molecular substance as an outer shell substance, and the obtained microcapsule has a maximum particle size of 150 or less, usually 75 or less, and a more preferable form is 30 or less, the average particle size is 5 to 100, usually 5 to 25, and more preferably in the range of 5 to 15 / m, and the coefficient of variation is 50% or less. It can be used as it is without injection. The maximum particle size is affected by the conditions of emulsification and the concentration of the solution, and may be around 150 depending on these conditions. Note that the maximum particle size is obtained by calculating the particle size of the largest particle in one lot, the average particle size is obtained by calculating the average value of 500 particle sizes, and the coefficient of variation is (standard deviation) ÷ (Average particle size) It is a value obtained by calculating from the formula of X100.
本発明のマイ ク ロカプセル型徐放性製剤は、 以下の方法で製 造される。  The microcapsule-type sustained-release preparation of the present invention is produced by the following method.
先ず、 生体適合高分子物質を有機溶剤に溶解し、 その有機溶 剤溶液を調製する。 この目的で使用される有機溶剤としては、 比較的沸点が低く て水と混和せず、 生体適合高分子物質を溶解 するものであればよ く、 例えば、 ジクロロメタ ン、 クロ口エタ ン、 ク ロロホ Jレム、 ト リ クロルェタン、 四塩化炭素、 酢酸ェチ ル、 n —へキサ ン、 ト ルニ ン等を挙げることができ、 これらは その 1種のみを単独で使用できるほか、 2種以上を混合して使 用することもできる。 この有機溶剤溶液における生体適合高分 子物質の濃度は、 使用する生体適合高分子物質の種類等に応じ て適宜変更し得るものであるが、 通常 0. 5〜50重量%、 好まし く は 1 〜40重量%程度である。 First, a biocompatible polymer substance is dissolved in an organic solvent to prepare an organic solvent solution. The organic solvent used for this purpose may be any solvent which has a relatively low boiling point, is immiscible with water, and dissolves a biocompatible polymer.For example, dichloromethane, chloromethane, chlorophore J-REM, trichlorethane, carbon tetrachloride, ethyl acetate And n-hexane and tolnin. These can be used alone, or two or more of them can be used in combination. The concentration of the biocompatible polymer substance in the organic solvent solution can be appropriately changed depending on the type of the biocompatible polymer substance to be used, but is usually 0.5 to 50% by weight, preferably It is about 1 to 40% by weight.
また、 上記の生体適合高分子物質の有機溶剤溶液とは別に、 上記生理活性物質及び必要に応じて添加される水溶性の安定化 剤や賦形剤を所定の水に溶解してその水溶液を調製する。 そし て、 この生理活性物質の水溶液を調製する際には、 その安定性 や溶解性を保持する目的で、 必要により P H調整剤を添加する。 この目的で使用される P H調整剤としては、 例えば辚酸、 クェ ン酸、 酢酸、 炭酸等の酸類やこれらのナ ト リ ウム塩やカ リ ウム 塩、 更には燐酸緩衝液等の各種の緩衝液を挙げるこ とができる。 これら P H調整剤の使用量は、 特に限定されるものではないカ^ 通常数 10 m M濃度程度である。  Separately from the above-mentioned organic solvent solution of the biocompatible polymer substance, the above-mentioned physiologically active substance and a water-soluble stabilizing agent or excipient added as necessary are dissolved in predetermined water to prepare an aqueous solution thereof. Prepare. When preparing the aqueous solution of the physiologically active substance, a pH adjuster is added as necessary for the purpose of maintaining its stability and solubility. PH regulators used for this purpose include, for example, acids such as sulfuric acid, citric acid, acetic acid, and carbonic acid, and sodium and calcium salts thereof, and various buffers such as a phosphate buffer. Liquids can be mentioned. The amount of use of these pH adjusters is not particularly limited, but is usually about several tens of mM concentration.
次に、 この様にして調整された生理活性物質の水溶液を高速 攪拌下に上記生体適合高分子物質の有機溶剤溶液中に添加し、 W Z O型乳化物を調製する。 この際の攪拌速度は通常 1 , 000〜 30 , 000 r p m、 好ましく は 5, 000〜28 , 000 r P mであり、 乳化 温度はー100〜40て、 好ま し く はー50〜20て程度がよい。  Next, the aqueous solution of the physiologically active substance prepared in this manner is added to the organic solvent solution of the biocompatible polymer substance under high-speed stirring to prepare a WZO type emulsion. The stirring speed at this time is usually 1,000 to 30,000 rpm, preferably 5,000 to 28,000 rPm, and the emulsification temperature is about -100 to 40, preferably about -50 to 20. Is good.
この様にして調製された W Z O型乳化物は、 次に外水層中に 0. 1 M濃度から飽和濃度の塩物質を存在させて予め準備された 水溶性高分子物質の水溶液と混合され、 二次乳化されて W / 0 型乳化物とされる。 この二次乳化工程で使用する水溶性高分子物質としては、 例 えばポリ ビニルアルコール ( P V A ) 、 ポリ ビニルピロ リ ドン カルボキシメ チルセノレロースナ ト リ ウム、 ゼラチン、 キチン及 びその誘導体、 キサン ト ン及びその誘導体、 ヒアルロ ン酸及び そのナ ト リ ウム塩、 デキス ト ラ ン、 ぺクチン、 コ ン ドロイ チン 硫酸及びそのナ ト リ ゥム塩等を挙げることができ、 これらはそ の 1種のみを単独で使用できるほか、 2種以上を混合物として 使用することもできる。 この水溶性高分子物質の水溶液におけ る濃度は、 通常 0. 05〜5. 0重量%の範囲、 好ましく は 0. 1〜2. 0 重量%の範囲がよい。 The WZO-type emulsion thus prepared is then mixed with a prepared aqueous solution of a water-soluble polymer substance in the presence of a salt substance having a concentration of 0.1 M to a saturation concentration in the outer aqueous layer, It is secondarily emulsified into a W / 0 emulsion. Examples of the water-soluble polymer used in the secondary emulsification step include polyvinyl alcohol (PVA), polyvinylpyrrolidone carboxymethyl senorelose sodium, gelatin, chitin and its derivatives, xanthonone and Derivatives, hyaluronic acid and its sodium salts, dextran, pectin, chondroitin sulfate and its sodium salts, and the like can be mentioned. In addition to being used alone, two or more can be used as a mixture. The concentration of the water-soluble polymer substance in the aqueous solution is usually in the range of 0.05 to 5.0% by weight, preferably in the range of 0.1 to 2.0% by weight.
また、 上記二次乳化の際にその外水層中に存在させる'塩物質 としては、 それが先に調製された W Z O型乳化物と外水層との 間の界面で形成されるェマルジョ ンの安定性を改善し、 かつ、 生体適合高分子物質の膨潤を抑えることができるものであれば よ く、 特に限定されるものではないが、 例えば酢酸ナ ト リ ゥム. クェン酸ナ ト リ ウム、 クェン酸カ リ ウム等の種々の有機酸塩や. 塩化ナ ト リ ウム、 塩化力 リ ウム、 塩化カルシゥム、 硫酸ナ ト リ ゥム、 硫酸力 リ ゥム等の種々の無機酸塩や、 硫酸ァ ンモニゥム 等のア ンモニゥム塩や、 コ リ ンク 口 ライ ド、 テ ト ラメ チルア ン モニゥムクロライ ド等の第四級アミ ン塩等を挙げることができ る。 これらの塩物質は、 通常、 外水層中に 0. 1 M濃度から飽和 濃度の範囲、 好ましく は 0. 5 M濃度から飽和濃度の範囲で存在 させるのがよ く、 0. 1 M濃度より低いとバース ト化という問驛 が生じ、 また、 飽和濃度より高く なると塩の包埋化という問題 が生じる。 そして、 この塩物質を外水層中に存在させる方法に ついては、 二次乳化工程で w z o / w型乳化物が調製される際 に結果としてその外水層中に存在すればよ く、 予め水溶性高分 子物質の水溶液中に添加しておいてもよ く、 また、 W / 0型乳 化物と水溶性高分子物質の水溶液とを混和する際に別途に添加 してもよい。 In addition, the salt substance to be present in the outer water layer during the secondary emulsification is an emulsion formed at the interface between the previously prepared WZO emulsion and the outer water layer. Any material can be used as long as it can improve the stability and suppress the swelling of the biocompatible polymer substance, and is not particularly limited. For example, sodium acetate. And various organic acid salts such as sodium citrate, and various inorganic acid salts such as sodium chloride, potassium chloride, calcium chloride, sodium sulfate, sulfuric acid potassium, and the like. Examples thereof include ammonium salts such as ammonium sulfate, and quaternary amine salts such as link mouth ride and tetramethylammonium chloride. These salt substances are usually present in the outer water layer in the range of 0.1 M concentration to the saturation concentration, preferably in the range of 0.5 M concentration to the saturation concentration, and more preferably in the range of 0.1 M concentration to the saturation concentration. If the concentration is low, the problem of bursting occurs, and if the concentration is higher than the saturation concentration, the problem of embedding of salt occurs. And the method of making this salt substance exist in the outer water layer For the wzo / w-type emulsion to be prepared in the secondary emulsification step, it only needs to be present in the outer water layer as a result, and it may be added to an aqueous solution of a water-soluble polymer in advance. Also, it may be added separately when the W / 0 emulsion is mixed with an aqueous solution of a water-soluble polymer substance.
この様にして調製された W / 0 / W型乳化物は、 次に通常室 温下で若しく は 0〜50 'C、 好ましく は 0〜25 で攪拌され、 有 機溶剤を蒸散し、 これによつて外殻物質の生体適合高分子物質 が固化してマイ ク ロ力プセルが生成する。  The W / 0 / W type emulsion thus prepared is then stirred at room temperature or at 0 to 50 ° C, preferably at 0 to 25, to evaporate the organic solvent. As a result, the biocompatible polymer material of the outer shell material is solidified to generate micro force cells.
更に、 生成したマイ クロカプセルは、 遠心分離あるいは濾過 等の手段で分離し、 必要により洗浄し、 乾燥させる。 その後、 必要に応じて例えばマ ンニ ト ール等の適当な賦形剤を舍む水溶 液に再度分散させ、 凍結乾燥等の手段で乾燥させ、 残留有機溶 剤を除去し、 使用時の再分散性に優れたマイ ク口カプセル型徐 放性製剤を生成せしめる。  Further, the produced microcapsules are separated by means such as centrifugation or filtration, washed and dried if necessary. Thereafter, if necessary, the dispersion is re-dispersed in an aqueous solution containing an appropriate excipient such as mannitol, and dried by freeze-drying or the like to remove the residual organic solvent. Produces a micronized capsule-type sustained-release preparation with excellent dispersibility.
以上のようにして得られたマイ ク 口カプセルは、 その最大粒 柽が 150卿以下であってその平均粒径が 5〜100卿であり、 し かも、 変動係数が 50%以下であって、 特に分別整粒操作を行う ことな く そのまま注射剤として利用できる。  The microcapsules obtained as described above have a maximum particle size of 150 or less and an average particle size of 5 to 100, and a coefficient of variation of 50% or less. In particular, it can be used as an injection as it is, without performing a sorting and sizing operation.
また、 本発明によるマイ ク ロカプセル型徐放性製剤は、 治療 目的によるマイ クロカプセル中に内包物として舍有される生理 活性物質の薬理作用に応じて、 注射剤、 散剤、 顆粒剤、 錠剤、 坐剤等の任意の剤形に製剤することができるが、 粒径が微細か つ均一であって分別整粒操作を行う ことな く そのままで通針性 や再分散性を有することから、 特に注射剤として好適である。 本発明のマイ ク口カプセル型徐放性製剤はその粒径が微細か つ均一である。 また、 本発明方法によれば、 WZ0型乳化物を W/0/W型乳化物に乳化させる二次乳化工程でその外水層に 0. 1 Μ濃度ないし飽和濃度の塩物質を存在させることにより、 WZO型乳化物と水溶性高分子 質の水镕液との間の界面の性 質が改善され、 これによつて粒径が微細かつ均一なマイ ク ロ力 プセル型徐放性製剤が得られるものと考えられる。 In addition, the microcapsule-type sustained-release preparation of the present invention can be used for injections, powders, granules, tablets, tablets, etc., depending on the pharmacological action of a physiologically active substance contained as an inclusion in the microcapsules for therapeutic purposes. Although it can be formulated into any dosage form such as suppositories, it has a fine and uniform particle size and has needle penetration and redispersibility as it is without the need for sorting and sizing. It is suitable as an injection. The microcapsule-type sustained-release preparation of the present invention has a fine and uniform particle size. Further, according to the method of the present invention, in the secondary emulsification step of emulsifying the WZ0-type emulsion into a W / 0 / W-type emulsion, a salt substance having a concentration of 0.1% or more is present in the outer water layer. As a result, the properties of the interface between the WZO-type emulsion and the aqueous solution of a water-soluble polymer are improved, and as a result, a microcellular sustained-release preparation having a fine and uniform particle size is obtained. It is considered to be obtained.
〔図面の簡単な説明〕  [Brief description of drawings]
第 1図は、 実施例 1 で得られた r E P O舍有マイ ク ロカプセ ル中の r E P 0含有量の経時的変化を示したグラフである。 〔発明を実施するための最良の形態〕  FIG. 1 is a graph showing the time-dependent change in the rEPO content of the rEPO-owned microcapsule obtained in Example 1. [Best mode for carrying out the invention]
以下、 実施例及び実験例に基づいて、 本発明を具体的に説明 する。  Hereinafter, the present invention will be specifically described based on examples and experimental examples.
実施例 1  Example 1
ポリ乳酸グリ コール酸共重合体 (乳酸ノグリ コール酸比率- 75/25s 重量平均分子量 10,000 ) 1 gをジク ロロメ タ ン 5 に 溶解し、 生体適合高分子物質の有機溶剤溶液とした。 遺伝子組 換えヒ トエリスロポエチン (以下、 r E P Oと略す) 1 rag及び 二ツ ビハイ グレー ドゼラチンタイプ B (㈱二ツビ製、 平均分子 量約 7, 000 のアル力 リ処理ゼラチン) 40ni を 1 ffigの日本薬局方 注射用水に溶解し、 孔径 0.22 のメ ンブラ ンフ ィルター- (日本 ミ リ ボアリ ミテ ッ ド製 : マイ レックス G V ) で無菌濾過し、 生理活性物質の水溶液とした。 ホモジナイザー (キネマチ力製 : ポリ ト ロ ン) によつて攪拌 (28,000 r p m ) 下の上記有機溶 剤溶液中に上記水溶液を滴下し、 更に同面転数で 30秒間攪拌混 合して WZ O型乳化物を得た 1 g of a polylactic acid-glycolic acid copolymer (noglycolic acid lactate-75 / 25s weight-average molecular weight 10,000) was dissolved in dichloromethane 5 to obtain a biocompatible polymer organic solvent solution. Genetically modified human erythropoietin (hereinafter abbreviated as rEPO) 1 rag and two high-grade gelatin type B (manufactured by Nitsubishi, Al-treated gelatin with an average molecular weight of about 7,000) 40ni of 1 ffig It was dissolved in water for injection and sterile-filtered through a membrane filter with a pore size of 0.22 (manufactured by Nippon Millipore Limited: Mylex GV) to obtain an aqueous solution of a physiologically active substance. The above aqueous solution is dropped into the above organic solvent solution under stirring (28,000 rpm) with a homogenizer (manufactured by Kinematics: Polytron), and further stirred and mixed at the same inversion number for 30 seconds. Combined to obtain a WZ O-type emulsion
次に、 予め別に氷冷しておいた 1 M—塩化ナ ト リ ウムを舍む 0. δ %ポリ ビニルアルコ ール水溶液 200 中に上記 W / 0型乳 化物を加え、 10.000 r p mの速度で 30秒間攪拌混合し、 W, 0 /W型乳化物を生成せしめた。  Next, the above-mentioned W / 0 type emulsion was added to a 0.δ% aqueous polyvinyl alcohol solution 200 containing 1 M sodium chloride, which had been previously ice-cooled, and added at a speed of 10.000 rpm. The mixture was stirred and mixed for 2 seconds to form a W, 0 / W emulsion.
更に、 こ の W/ 0 /W型乳化物を舍む分散液を引続き室温で 穏和に攪拌する こ とにより、 残存する塩化メ チ レ ンを揮散させ-, かつポ 乳酸グリ コ一ル酸共重合物を固化させた後、 3,000 r P m、 10分間の遠心分離により生成したマイ ク ロカプセルを捕 集した。  Furthermore, the dispersion containing the W / 0 / W type emulsion is gently stirred at room temperature to volatilize the remaining methylene chloride, and the polylactic acid-glycolic acid is removed. After solidification of the polymer, microcapsules generated by centrifugation at 3,000 rpm for 10 minutes were collected.
このよう にして得られたマイ ク ロ力プセルを再び注射用水に 分散し、 更に遠心分離を行う操作を 5 回繰り返すこ とにより、 外水層中にポリ ビュルアルコール、 塩化ナ ト リ ウム及び遊離し た r E P 0、 ポリ 乳酸グリ コ一ル酸共重合物を洗浄した。  The microforce obtained in this manner was dispersed again in water for injection, and the operation of centrifugation was repeated 5 times, so that polybutyl alcohol, sodium chloride and free water were released into the outer water layer. The obtained rEP0, polylactic acid-glycolic acid copolymer was washed.
最終的に捕集されたマイ ク ロカプセルは 5 %—マ ンニ トール 水溶液 5 に再分散した後、 凍結乾燥に供した。 なお、 以上 工程は全て無菌無塵的に行った。  The microcapsules finally collected were redispersed in 5% aqueous mannitol solution 5 and then freeze-dried. The above steps were all performed aseptically and dustlessly.
こ の様に して得られた r E P 0舍有マイ ク 口 カ プセルは、 そ の最大粒径が 15 であって平均粒径が 8.0 であり、 変動係数 は 40%であった。 また、 r E P 0の取込み率は約 95%であった。 実験例  The maximum particle size of the rEPO0 Municipal Mikuguchi capsule obtained in this way was 15, the average particle size was 8.0, and the coefficient of variation was 40%. Also, the uptake rate of rEPO was about 95%. Experimental example
上記実施例 1 で得られた r E P 0舍有マイ ク ロカ プセル を、 の 0.05%— T w e e n 2 0 を舍む 50m M 一 リ ン酸緩衝 液 ( p H 7.4)に分散させ、 回転培養機 (太陽科学工業賴 : K T - 50 ) を用いて、 37て O恒温槽中、 25 r P で転倒回転させ ς— 所定時間後、 分散液を遠心分離 (3,000 r p m, 10分) に供し マイ クロカプセルを捕集した。 The r EP 0 microcapsule obtained in Example 1 above was dispersed in a 50 mM monophosphate buffer (pH 7.4) containing 0.05% of Tween 20 in a rotary culture machine. (Taiyo scientific industrial賴: KT - 50) using, in O thermostatic bath Te 37 and invert rotated at 25 r P ς - After a predetermined time, the dispersion was subjected to centrifugation (3,000 rpm, 10 minutes) to collect microcapsules.
マイ ク ロカプセル中の r E P O舍量は、 捕集したマイ ク ロカ プセルをァセ トニ ト リ ル 1 ragで溶解した後、 50m M— リ ン酸緩 衝液で全量 lOfflgに調整し、 逆相高速液体ク口マ トグラフィー ( H P L C ) で定量した。  The amount of r EPO in the microcapsules was adjusted by dissolving the collected microcapsules with 1 rag of acetonitrile and then adjusting the total volume to lOfflg with 50 mM phosphate buffer. It was quantified by liquid chromatography (HPLC).
経時的に定量したマイ ク ロカプセル中の r E P 0含量の変化 を第 1·図に示す。 この第 1図から明らかなように、 このマイ ク 口力ブセル中の r Ε Ρ 0は、 ほぼ一定速度で 4週間放出されて いることが認められた。  The changes in the rEPO content in the microcapsules determined over time are shown in FIG. As is clear from FIG. 1, it was observed that r Ε Ρ0 in the microphone was released at a substantially constant rate for 4 weeks.
実施例 2  Example 2
ボリ乳酸グリ コール酸共重合体 (乳酸 グリ コール酸比率- 75/25. 重量平均分子量 10, 000) 1 gをジク ロロメ タ ン 5 に 溶解し、 生体適合高分子物質の有機溶剤溶液とした。 r E P O 1 mgを 1 fflfiの 50mM—燐酸緩衝液 ( p H 6, 6)に溶解し、 孔柽 1 g of poly (lactic acid-glycolic acid) copolymer (lactic acid-glycolic acid ratio-75 / 25; weight average molecular weight 10,000) was dissolved in dichloromethane 5 to obtain a biocompatible polymer solution in an organic solvent. r EPO 1 mg was dissolved in 1 fflfi of 50 mM phosphate buffer (pH 6, 6).
0.22 のメ ンブラ ンフィルタ一で無菌濾過し、 生理活性物質の 水溶液とした。 ホモジナイザーによつて攪拌 ( 28,000 r p m) 下の上記有機溶剤溶液中に上記水溶液を滴下し、 更に同回転数 で 30秒間攆拌混合して WZO型乳化物を得た。 The solution was aseptically filtered through a 0.22 membrane filter to obtain an aqueous solution of a physiologically active substance. The aqueous solution was dropped into the organic solvent solution under stirring (28,000 rpm) with a homogenizer, and further stirred and mixed at the same rotation speed for 30 seconds to obtain a WZO-type emulsion.
次に、 予め別に氷冷しておいた 1 M—塩化ナ ト リ ウムを舍む Next, set up 1 M sodium chloride, which was previously ice-cooled separately.
0. 5 %—ポリ ビュルアルコール水溶液 200 中に上記 WZO型 乳化物を加え、 10,000 r p mの速度で 30秒間攪拌混合し、 W/ 0/W型乳化物を生成せしめた。 以下、 上記実施例 1 と同様に して、 r E P 0舍有マイ ク ロカプセルを得た。 The above-mentioned WZO-type emulsion was added to 0.5% -polyvinyl alcohol aqueous solution 200, and the mixture was stirred and mixed at a speed of 10,000 rpm for 30 seconds to form a W / 0 / W-type emulsion. Thereafter, in the same manner as in Example 1 above, rEPO0 microcapsules were obtained.
この様にして得られた r E P O舍有マイ ク ロカプセルは、 そ の最大粒径が 40 であって平均粒径が 22卿であり、 変動係数は 45%であった。 また、 r E P 0の取込み率は約 80%であった。 The r EPO house-owned microcapsules obtained in this way are Had a maximum particle size of 40, an average particle size of 22%, and a coefficient of variation of 45%. The uptake rate of rEP0 was about 80%.
実施例 3  Example 3
ポリ乳酸ダリ コール酸共重合体 (乳酸/ダリ コール酸比率 = 75 25、 重量平均分子量 20, 000) l gをジク ロロメ タ ン 5 Λ?£に 溶解し、 有機溶剤溶液とした。 また、 遺伝子組換えヒ ト顆粒球 コ ロニー剌激因子 (以下、 r G— C S F ) l a 及び二ツ ビハイ グレー ドゼラチンタイプ B40mgを 1 i の日本薬局方注射用水に 溶解し、 孔径 0.22 のメ ンブラ ンフィ ルターで無菌濾過して水 溶液とした。 ホモジナイザーによって攪拌下 (28,000 r p m ) の上記有機溶剤溶液中に上記水溶液を滴下し、 さ らに同回転数 で 30秒間攪拌混合することによって WZO型乳化物を得た。 次に、 予め別に氷冷しておいた 1 M—硫酸ナ ト リ ウムを舍む 0. 5 %—ポリ ビュルピロリ ドン水溶液 200 に上記 W 0型乳 化物を加え、 10, 000 r p mの速度で 30秒間攪拌混合し、 W/0 ZW型乳化物を生成せしめた。 以下、 上記実施例 1 と同様にし て、 r G— C S F舍有マイ ク ロカプセルを得た。  1 g of polylactic acid dalicholic acid copolymer (lactic acid / daricholic acid ratio = 7525, weight average molecular weight 20,000) was dissolved in dichloromethan (5Λ? £) to prepare an organic solvent solution. In addition, recombinant human granulocyte colony stimulating factor (hereinafter referred to as rG-CSF) la and two-grade high-grade gelatin type B40 mg were dissolved in 1 i of water for injection in the Japanese Pharmacopoeia, and a 0.22 pore size membrane was used. The solution was aseptically filtered with a filter to obtain an aqueous solution. The aqueous solution was dropped into the organic solvent solution under stirring (28,000 rpm) with a homogenizer, and the mixture was further stirred and mixed at the same rotation speed for 30 seconds to obtain a WZO-type emulsion. Next, the above-mentioned W0 type emulsion was added to a 0.5% aqueous solution of 0.5% polybutylpyrrolidone containing 1M sodium sulfate, which had been previously ice-cooled separately, and added at a speed of 10,000 rpm for 30 minutes. The mixture was stirred and mixed for 2 seconds to produce a W / 0 ZW type emulsion. Thereafter, in the same manner as in Example 1 above, rG—CSF microcapsules were obtained.
得られた r G— C S F含有マイ ク口カプセルは、 その最大粒 径が 50 であって平均粒径が 20 であり、 その変動係数は 40% であった。 また、 r G— C S Fの取込み率は約 90%であった。  The obtained rG—CSF-containing microcapsule capsule had a maximum particle size of 50, an average particle size of 20, and a coefficient of variation of 40%. The uptake rate of rG—CSF was about 90%.
実施例 4  Example 4
ボリ乳酸グリ コ一ル酸共重合体 (乳酸ノグリ コール酸比率 = 75/25. 重量平均分子量 5, 000) 1 gをジク ロロメ タ ン 5 ^に溶 解し、 有機溶剤溶液とした。 r E P 0 1 nig及び二ッ ピハイ グレ ー ドゼラチンタイ プ B40mgを 1 の日本薬局方注射用水に溶解 し、 孔柽 0.22 のメ ンブラ ンフィルタ一で無菌濾過して水溶液 とした。 ホモジナイザーによって攪拌下 ( 28, 000 r p m ) の上 記有機溶剤溶液中に上記水溶液を滴下し、 さらに同面転数で 30 秒間攪拌混合することによって W 0型乳化物を得た。 1 g of polylactic glycolic acid copolymer (noglycolic acid lactate ratio = 75/25; weight average molecular weight 5,000) was dissolved in dichloromethan 5 ^ to obtain an organic solvent solution. r EP 0 1 nig and Nippi High Grade Gelatin Type B 40 mg dissolved in 1 Japanese Pharmacopoeia Water for Injection Then, the solution was aseptically filtered through a membrane filter having a pore size of 0.22 to obtain an aqueous solution. The aqueous solution was dropped into the above organic solvent solution under stirring (28,000 rpm) with a homogenizer, and further stirred and mixed at the same inversion number for 30 seconds to obtain a W0 emulsion.
次に、 予め別に氷冷しておいた 1 M—硫酸アンモニゥムを舍 む 0. 5 %—力ルボキシメ チルセル π—スナ ト リ ウム水溶液 200 に上記 WZO型乳化物を加え、 10,000 r p mの速度で 30秒間 攪拌混合し、 WZOZW型乳化物を生成せしめた。 以下、 上記 実施例 1 と同様にして、 r E P O舍有マイ ク ロカプセルを得た。 得られた r Ε Ρ 0舍有マイ ク ロカプセルは、 その最大粒径が Next, the above-mentioned WZO-type emulsion was added to 200 ml of 0.5% -rubiximetyl cell π-sodium sodium water solution containing 1 M ammonium sulfate, which had been separately ice-cooled, and the speed was increased to 10,000 rpm. For 30 seconds to form a WZOZW emulsion. Thereafter, r EPO microcapsules were obtained in the same manner as in Example 1 above. The obtained r カ プ セ ル Ρ 0 micro-capsule has the largest particle size.
55 であつて平均粒径が 23卿であり、 その変動係数が 48%であ つた。 また、 r Ε Ρ 0の取込み率は約 95%であった。 The average particle size was 55 and the coefficient of variation was 48%. The uptake rate of r r Ε 0 was about 95%.
卖施例 5  卖 Example 5
ボリ乳酸重合体 (重量平均分子量 5,000) 1 gをジク ロ口メ タ ン 5 に溶解し、 有機溶剤溶液とした。 0—じ 3 ? 1 11¾及び 二 ッ ピハイ グレー トゼラチンタイ プ B40mgを 1 ^の日本薬局方 注射用水に溶解し、 孔柽 0.22/OTのメ ンブラ ンフィルターで無菌 濾過して水溶液とした。 ホモジナイザ一によつて攪拌下(28, 000 r P m ) の上記有機溶剤溶液中に上記水溶液を滴下し、 さらに 同回転数で 3 0秒簡攬拌混合することによって W/0型乳化物 を得た。  1 g of poly (lactic acid) polymer (weight average molecular weight 5,000) was dissolved in dichloromethane 5 to obtain an organic solvent solution. 0 to 3-11 mg and Nippi High-Grade Gelatin Type B 40 mg were dissolved in 1 ^ water for injection in the Japanese Pharmacopoeia (1 ^), and sterile-filtered with a membrane filter with a pore size of 0.22 / OT to obtain an aqueous solution. The aqueous solution was dropped into the above organic solvent solution with stirring (28,000 rPm) using a homogenizer, and the mixture was stirred and mixed at the same speed for 30 seconds to form a W / 0 emulsion. Obtained.
次に、 予め別に氷冷しておいた 1 M—塩化力 リ ゥムを舍む 0. δ %—日本薬局方精製ゼラチン水溶液 200ΜΠこ上記 W/0型 乳化物を加え、 ΙΟ,ΟΟΟ Γ p mの速度で 30秒間攪拌混合し、 W/' OZW型乳化物を生成せしめた。 以下、 上記実施例 1 と同様に して r G — C S F含有マイ クロカプセルを得た。 Next, a 1M-chlorinated reamer, which has been separately ice-cooled, is set up. 0. δ% —200 gelatin aqueous solution of purified gelatin in the Japanese Pharmacopoeia. The above-mentioned W / 0 emulsion is added, and ΙΟ, ΟΟΟ pm The mixture was stirred and mixed at the speed described above for 30 seconds to form a W / 'OZW type emulsion. Hereinafter, in the same manner as in Example 1 above, As a result, microcapsules containing rG—CSF were obtained.
得られた r G — C S F舍有マイ クロカプセルは、 その最大粒 径が 60 であって平均粒径が 25 であり、 その変動係数は 44% であった。 また、 r G— C S Fの取込み率は約 90%であった。  The obtained rG-CSF microcapsule had a maximum particle size of 60, an average particle size of 25, and a coefficient of variation of 44%. The uptake rate of rG—CSF was about 90%.
実施例 6  Example 6
ボリ乳酸ダリ コール酸共重合体 (乳酸ダグリ コール酸比率- 75ノ 25、 重量平均分子量 10, 000 ) 250ragをジク ロ ロメ タ ン 5 s?£ に溶解し、 有機溶剤溶液とした。 r E P 0 1 mg及び二ッ ピハイ グレー トゼラチンタイプ B 40mgを 1 ffigの 10m Mリ ン酸緩衝液 ( P H 6.5)に溶解し、 孔径 0.22 のメ ンブラ ンフ ィ ルタ一で無 菌濾過し、 生理活性物質溶液とした。 ホモジナイザーによって 攪拌 (28,000 r p m ) 下の上記有機溶剤溶液中に上記生理活性 物質溶液を滴下し、 さらに同回転数で 30秒間攪拌混合すること によって W/ 0型乳化物を得た。  250 rag of poly (lactic acid dalycholic acid) copolymer (ratio of daglycolic acid-75 to 25, weight average molecular weight 10,000) was dissolved in dichloromethane (5 s? £) to prepare an organic solvent solution. r Dissolve 1 mg of EP 0 and 40 mg of Nippi High-Grade Gelatin Type B in 1 ffig of 10 mM phosphate buffer (PH 6.5), filter aseptically through a 0.22 pore size membrane filter, The active substance solution was used. The physiologically active substance solution was dropped into the organic solvent solution under stirring (28,000 rpm) with a homogenizer, and the mixture was further stirred and mixed at the same rotation speed for 30 seconds to obtain a W / 0 emulsion.
次に、 予め別に氷冷しておいた 0. 1 M—塩化カルシウムを舍 む 0. 5 %—ボリ ビュルアルコール水溶液 200 中に上記 WZ O 型乳化物を加え、 7,500 r p mの速度で 30秒間攪拌混合し、 W /O ZW型乳化物を生成せしめた。 以下、 上記実施例 1 と同様 にして、 r E P O舍有マイ ク ロカブセルを得た。  Next, the above-mentioned WZO-type emulsion was added to a 0.1M calcium chloride solution containing 0.5M calcium chloride aqueous solution 200 which had been separately cooled in advance and stirred at 7,500 rpm for 30 seconds. By mixing, a W / O ZW type emulsion was formed. Thereafter, in the same manner as in Example 1 above, rEPO Shayu Microcrobusel was obtained.
得られた r E P 0舍有マイ ク ロカプセルは、 その最大粒径が The obtained r E P 0 有 own microcapsule has the maximum particle size.
25卿であって平均粒径が 13卿であり、 その変動係数が 47%であ つた。 また、 r E P 0の取込み率は約 9 0 %であつた。 There were 25 lords with an average particle size of 13 lords, and the coefficient of variation was 47%. Also, the uptake rate of rEPO was about 90%.
実施例 7  Example 7
ボリ乳酸グリ コール酸共重合体 (乳酸 グリ コール酸比率 = 75/25, 重量平均分子量 10,000 ) 1 gをジク ロロメ タ ン 5 に 溶解し、 生体適合高分子物質の有機溶剤溶液とした。 r E P O 1 ng及びニッ ビハイグレー トゼラチ ンタ イプ B 40m を 1 i の日 本薬局方注射用水に溶解し、 孔径 0.22卿のメ ンブラ ンフ ィ ルタ 一で無菌濾過し、 生理活性物質の水溶液とした。 ホモジナイザ 一によつて攪拌 (28,000 r p m ) 下の上記有機溶剤溶液中に上 記水溶液を滴下し、 更に同回転数で 30秒間攪拌混合して WZ0 型乳化物を得た。 Polylactic acid glycolic acid copolymer (lactic acid / glycolic acid ratio = 75/25, weight average molecular weight 10,000) 1 g to dichloromethan 5 After dissolution, a solution of a biocompatible polymer substance in an organic solvent was obtained. 1 ng of rPO and 40 m of Nibbi Greater Gelatin Type B were dissolved in 1 i of water for injection in the Japanese Pharmacopoeia, and sterile-filtered through a membrane filter with a pore size of 0.22 to obtain an aqueous solution of a physiologically active substance. The above aqueous solution was dropped into the above organic solvent solution under stirring (28,000 rpm) with a homogenizer, and the mixture was further stirred and mixed at the same rotation speed for 30 seconds to obtain a WZ0 type emulsion.
次に'、 予め別に氷冷しておいた各種濃度の塩化ナ ト リ ウムを 舍む 0.5 %—ボリ ビュルアルコール水溶液 200^中に上記 WZ 0型乳化物をそれぞれ加え、 10,000 r p mの速度で 30秒間攪拌 混合し、 WZ0ZW型乳化物を生成せしめた。  Next, each of the WZ0 emulsions was added to 200% of a 0.5% aqueous solution of sodium borohydride containing sodium chloride of various concentrations, which had been previously ice-cooled separately, and the emulsion was added at a speed of 10,000 rpm. After stirring and mixing for 2 seconds, a WZ0ZW type emulsion was formed.
更に、 これらの WZOZW型乳化物を舍む分散液を引続き室 温で穏和に攆拌するこ とにより、 残存する塩化メチ レ ンを揮散 させ、 かつポリ乳酸グリ コール酸共重合物を固化させた後、 3,000 r p m、 10分間の遠心分離により生成したマイ クロカブ セルを捕集した。  Further, the dispersion containing these WZOZW-type emulsions was gently stirred at room temperature to volatilize the remaining methylene chloride and solidify the polylactic acid-glycolic acid copolymer. Thereafter, microcapsules generated by centrifugation at 3,000 rpm for 10 minutes were collected.
このようにして得られたマイ ク 口カプセルを再び注射用水に 分散し、 更に遠心分離を行う操作を 5回繰り返すことにより、 外水層中のボリ ビュルアルコール、 塩化ナ ト リ ウム及び遊離し た r E P O、 ボリ乳酸グリ コール酸共重合物を洗浄した。  The microcapsules thus obtained were dispersed again in water for injection, and the operation of centrifugation was repeated 5 times to remove the boryl alcohol, sodium chloride and the sodium chloride in the outer water layer. r EPO, polylactic acid glycolic acid copolymer was washed.
最終的に捕集されたマイ ク ロカプセルは 5 %—マ ンニ トール 水溶液 5 に再分散した後、 凍結乾燥に供した。  The microcapsules finally collected were redispersed in 5% aqueous mannitol solution 5 and then freeze-dried.
二次乳化工程での外水層の塩濃度のみを変えて調製した各 r E P ひ舍有マイ クロ力プセルの最大粒径、 平均粒径及び変動係 数を求め、 また、 その形状を観察した。 結果を第 1表に示す。 ¾- » PfiP 37 to f ¾ Zl fl¾ The maximum particle size, average particle size, and variation coefficient of each rEP Hishei micro-power cell prepared by changing only the salt concentration of the outer water layer in the secondary emulsification process were determined, and the shape was observed. . The results are shown in Table 1. ¾- »PfiP 37 to f ¾ Zl fl¾
¾ 2¾ S. nr tiz. 3¾- 1¾ 权ナ  ¾ 2¾ S. nr tiz. 3¾- 1¾ 权 ナ
M 径 im 径 数 % 状  M diameter im diameter several%
Mス J昭 H¾ · · ノヾ― "2 K Ms J Sho H¾
0 80.5 30.6 55.0 し易い 凹凸のあ 0 80.5 30.6 55.0
Ω 1 丄 1丄 1 * 7 f AO q ス  Ω 1 丄 1 丄 1 * 7 f AO q
0,5 17.5 8.9 .43.0 略球状  0,5 17.5 8.9.43.0 Substantially spherical
1.0 15.0 7.7 40.3 完全球状 1.0 15.0 7.7 40.3 Perfect spherical
〔産業上の利用可能性〕 [Industrial applicability]
本発明によれば、 wzozw型乳化物をつく る際の外水層に 所定濃度の塩物質を存在させるこ とにより、 粘度調整や分別整 粒操作を必要とすることな く粒径が微細かつ均一なマイ ク ロ力 プセルを製造することができ、 工業上有利である。 また、 この 方法で製造される本発明の生理活性物質と生体適合高分子物質 とからなるマイ クロ力ブセル型徐放性製剤は、 優れた徐放性を 有しており、 一回の投与により長期間に亘つて生理活性物質の 薬効を発現させることができる。  According to the present invention, the presence of a predetermined concentration of a salt substance in the outer water layer when a wzozw type emulsion is produced allows the particle size to be fine and fine without the need for viscosity adjustment and sorting and sizing. Uniform micro force can be produced, which is industrially advantageous. In addition, the micro-force Busel-type sustained-release preparation comprising the physiologically active substance of the present invention and the biocompatible polymer produced by this method has excellent sustained-release properties, and can be administered by a single administration. The drug effect of the physiologically active substance can be exhibited over a long period of time.

Claims

請求の範囲 The scope of the claims
1 . 生理活性物質を舍有する内包物と生体内分解性及び 又 は生体内組織適.合性を有する生体適合高分子物質で形成され 外殻物質とを有し、 最大粒径力 150卿以下であって平均粒径か 5 〜100 であり、 かつ、 変動係数が 50%以下であることを特 徵とするマイ ク ロカプセル型徐放性製剤。  1. Includes a biologically active substance and an outer shell formed of a biocompatible polymer material having biodegradability and / or tissue compatibility, and has a maximum particle size of 150 or less. A microcapsule-type sustained-release preparation characterized by having an average particle size of 5 to 100 and a coefficient of variation of 50% or less.
2. 生理活性物質を舍有する水溶液と生体内分解性及び/又 は生体内組織適合性の生体適合性高分子物質を舍有する有機溶 剤溶液とで Wノ 0型乳化物を調製し、 次いでこの WZ 0型乳化 物と水溶性高分子物質の水溶液とで二次乳化させて W/0/W 型乳化物を調製じ、 得られた W/OZW型乳化物から上記有機 溶剤を蒸散、 固化させ、 更に洗浄し、 乾燥させて生理活性物質 を内包物とし、 かつ、 生体適合高分子物質を外殻物質とするマ ィ ク口カプセル型徐放性製剤を調製するに際し、 上記二次乳化 工程でその外水層に 0. 1 M濃度ないし飽和濃度の塩物質を存在 させることを特徴とするマイ ク π力ブセル型徐放性製剤の製造 法。  2. A W0-type emulsion is prepared from an aqueous solution containing a physiologically active substance and an organic solvent solution containing a biocompatible polymer substance having biodegradability and / or tissue compatibility in vivo. The W / ZW emulsion is secondarily emulsified with an aqueous solution of a water-soluble polymer substance to prepare a W / 0 / W emulsion, and the organic solvent is evaporated and solidified from the obtained W / OZW emulsion. And then washed and dried to prepare a microcapsule-type sustained-release preparation containing a physiologically active substance as an inclusion substance and a biocompatible polymer substance as an outer shell substance. A method for producing a micron π-force busel-type sustained-release preparation, characterized in that a salt substance having a concentration of 0.1 M or a saturated concentration is present in the outer aqueous layer.
PCT/JP1991/001224 1990-09-14 1991-09-13 Microencapsulated sustained-release preparation and production WO1992004891A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019930700774A KR100202073B1 (en) 1990-09-14 1993-03-13 Microencapsulated sustained-release preparation and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP24278390A JPH04124127A (en) 1990-09-14 1990-09-14 Microcapsule type sustained releasable preparation and its production
JP2/242783 1990-09-14

Publications (1)

Publication Number Publication Date
WO1992004891A1 true WO1992004891A1 (en) 1992-04-02

Family

ID=17094224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1991/001224 WO1992004891A1 (en) 1990-09-14 1991-09-13 Microencapsulated sustained-release preparation and production

Country Status (4)

Country Link
JP (1) JPH04124127A (en)
KR (1) KR100202073B1 (en)
AU (1) AU8491291A (en)
WO (1) WO1992004891A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993025221A1 (en) * 1992-06-11 1993-12-23 Alkermes Controlled Therapeutics, Inc. Erythropoietin drug delivery system
EP0582459A3 (en) * 1992-08-07 1994-06-29 Takeda Chemical Industries Ltd Production of microcapsules of water-soluble drugs
US5599583A (en) * 1994-05-27 1997-02-04 Micro Flo Company Encapsulation with water soluble polymer
GB2316316A (en) * 1996-08-23 1998-02-25 Int Centre Genetic Eng & Bio Sustained release of erythropoietin from microspheres
JP2008184468A (en) * 1995-03-10 2008-08-14 Roche Diagnostics Gmbh Polypeptide-containing pharmaceutical form of administration in the form of microparticle

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4234803B2 (en) * 1997-10-27 2009-03-04 久光製薬株式会社 Pharmaceutical composition with controlled drug release rate
EP0955331B1 (en) * 1998-04-23 2003-09-10 Dainippon Ink And Chemicals, Inc. Self-water dispersible particle made of biodegradable polyester and process for the preparation thereof
EP1291023A1 (en) * 2000-06-14 2003-03-12 Takeda Chemical Industries, Ltd. Sustained release compositions

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4912024A (en) * 1972-05-18 1974-02-02
JPS4933738B1 (en) * 1969-01-16 1974-09-09
JPS5094112A (en) * 1973-12-06 1975-07-26
JPS5793912A (en) * 1980-10-06 1982-06-11 Sutooru Research Ando Dev Corp Manufacture of microcapsule
JPS62201816A (en) * 1985-02-07 1987-09-05 Takeda Chem Ind Ltd Production of microcapsule
JPS63233926A (en) * 1986-08-08 1988-09-29 Takeda Chem Ind Ltd Peptide-containing microcapsule and production thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933738B1 (en) * 1969-01-16 1974-09-09
JPS4912024A (en) * 1972-05-18 1974-02-02
JPS5094112A (en) * 1973-12-06 1975-07-26
JPS5793912A (en) * 1980-10-06 1982-06-11 Sutooru Research Ando Dev Corp Manufacture of microcapsule
JPS62201816A (en) * 1985-02-07 1987-09-05 Takeda Chem Ind Ltd Production of microcapsule
JPS63233926A (en) * 1986-08-08 1988-09-29 Takeda Chem Ind Ltd Peptide-containing microcapsule and production thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993025221A1 (en) * 1992-06-11 1993-12-23 Alkermes Controlled Therapeutics, Inc. Erythropoietin drug delivery system
EP0582459A3 (en) * 1992-08-07 1994-06-29 Takeda Chemical Industries Ltd Production of microcapsules of water-soluble drugs
US5611971A (en) * 1992-08-07 1997-03-18 Takeda Chemical Industries, Ltd. Production of microcapsules of water-soluble drugs
US5599583A (en) * 1994-05-27 1997-02-04 Micro Flo Company Encapsulation with water soluble polymer
JP2008184468A (en) * 1995-03-10 2008-08-14 Roche Diagnostics Gmbh Polypeptide-containing pharmaceutical form of administration in the form of microparticle
GB2316316A (en) * 1996-08-23 1998-02-25 Int Centre Genetic Eng & Bio Sustained release of erythropoietin from microspheres

Also Published As

Publication number Publication date
AU8491291A (en) 1992-04-15
JPH04124127A (en) 1992-04-24
KR100202073B1 (en) 1999-06-15

Similar Documents

Publication Publication Date Title
EP0442671B1 (en) Prolonged release microcapsules
US6706288B2 (en) Microparticles
JP2818704B2 (en) Sustained-release composition and method for producing the same
AU2001294458B2 (en) Biodegradable microparticles for controlled release administration, with purified amylopectin-based starch of reduced molecular weight
JP4073478B2 (en) Biodegradable controlled-release microspheres and their production
JP2003521491A (en) Compacted particles for dry injection
JPH07502990A (en) Production and use of multiphase microspheres
EP2785330B1 (en) Polymeric drug-delivery material, method for manufacturing thereof and method for delivery of a drug-delivery composition
AU2001294458A1 (en) Biodegradable microparticles for controlled release administration, with purified amylopectin-based starch of reduced molecular weight
JP2000510488A (en) Improved dosing unit
KR20220112737A (en) Long-lasting composition comprising rivastigmine and method for preparing the same
JP2526589B2 (en) Peptide-containing microcapsule and method for producing the same
AU2020401182A1 (en) Cariprazine release formulations
US7105181B2 (en) Microparticles
Vervaet et al. Enhancement of in vitro drug release by using polyethylene glycol 400 and PEG-40 hydrogenated castor oil in pellets made by extrusion/spheronisation
WO1992004891A1 (en) Microencapsulated sustained-release preparation and production
Singh et al. In vitro characterization of methotrexate loaded poly (lactic-co-glycolic) acid microspheres and antitumor efficacy in Sarcoma-180 mice bearing tumor
JP2000509403A (en) Pharmaceutical compositions for sustained release of insoluble active ingredients
JP3139913B2 (en) Method for producing dry-processed particles, dry-processed particles produced by the method, and pharmaceutical composition containing the particles
JP3372558B2 (en) Microcapsule type sustained-release preparation and production method thereof
JPS6163613A (en) Sustained release preparation
WO2005099767A1 (en) Use of glycerol dipalmitostearate for improving the bioavailability of protein active ingredients in subcutaneous or intramuscular injectable formulations
JPH05509088A (en) Composition containing particulate matrix
JPH05194253A (en) Sustained release particulate pharmaceutical containing water-soluble polypeptide hormone and its production
JP2837675B2 (en) Sustained-release fine-particle preparation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AT AU BB BG BR CA CH DE DK ES FI GB HU KR LK LU MC MG MW NL NO PL RO SD SE SU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BF BJ CF CG CH CI CM DE DK ES FR GA GB GN GR IT LU ML MR NL SE SN TD TG

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA