JPH0436233A - Sustained release preparation containing physiologically active substance and decomposable and absorbable in living body - Google Patents

Sustained release preparation containing physiologically active substance and decomposable and absorbable in living body

Info

Publication number
JPH0436233A
JPH0436233A JP13889990A JP13889990A JPH0436233A JP H0436233 A JPH0436233 A JP H0436233A JP 13889990 A JP13889990 A JP 13889990A JP 13889990 A JP13889990 A JP 13889990A JP H0436233 A JPH0436233 A JP H0436233A
Authority
JP
Japan
Prior art keywords
sustained release
water
physiologically active
active substance
release preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13889990A
Other languages
Japanese (ja)
Inventor
Jiyoukiyuu Gen
丞烋 玄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BIOMATERIAL UNIVERSE KK
Original Assignee
BIOMATERIAL UNIVERSE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BIOMATERIAL UNIVERSE KK filed Critical BIOMATERIAL UNIVERSE KK
Priority to JP13889990A priority Critical patent/JPH0436233A/en
Publication of JPH0436233A publication Critical patent/JPH0436233A/en
Pending legal-status Critical Current

Links

Landscapes

  • Medicinal Preparation (AREA)

Abstract

PURPOSE:To obtain the subject drug preparation having high uptake ratio and loading ratio of drug, exhibiting suppressed burst at the initial stage of release and capable of slowly releasing the drug over a long period by including a physiologically active substance into a small sphere of a water-soluble polymer and coating the sphere with a polymer decomposable and absorbable in living body. CONSTITUTION:A small sphere having particle size of 0.01-200mum is produced from an aqueous solution of a water-soluble polymeric substance (e.g. sodium polyacrylate, PVA, CMC, gelatin and carrageenan) containing a physiologically active substance by spray-drying, coacervation, fluidized bed process, drying in liquid, freeze-drying, etc. The small sphere is encapsulated with a polymer decomposable and absorbable in living body (e.g. polyglycolic acid, polylactic acid and polyamino acid) by drying in liquid or spray-drying to obtain the objective sustained release preparation having particle size of 0.01-300mum.

Description

【発明の詳細な説明】 〔工業上の利用分野〕 本発明は、lI:、jl!活性物質を含有する生体内分
だ吸収性の徐放性製剤I:関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides lI:, jl! In vivo absorbable sustained release formulations I containing active substances: Relating to.

〔従来の技術〕[Conventional technology]

従来の一般的な注射や経[1投与による薬剤の投与法に
対して、医薬と高分子との複合材料を直接麿、部に挿入
オろ場合、あるいはマイクロカプセルやマイクロスフェ
アなどの注射による局所投与法は、その薬剤の徐放によ
って薬効性を高めるとともに、副作用を抑制しようとす
る。このような医薬の徐放性、あるいは接続性に関する
研究、すなわちドラッグ・デリバリ−・システt、(D
DS)に関する研究が近年活発に進められている。その
DDSにおける薬剤保持マトリックスとして、ゼラチン
やポリ乳酸などの生体内分解吸収性高分子あるいは、マ
イクロカプセル化のマトリックスとしてよく用いられて
いる。このゼラチンの製剤化にはグルタルアルデヒド等
の架橋剤により化学的に架橋されている。一方、ポリ乳
酸や乳Wa/グリコール酸共重合体は疎水性高分子であ
るため、疎水性の薬物であるステロイドホルモン等とは
親和性がよく、徐放性製剤のマトリックスとしてよ〈用
いられている。しがし、ゼラチンの場合は架橋剤である
グルタルアルデヒドなどの毒性の問題が明らかにされて
おらず、また、ゼラチン・マトリックスを用いた場合の
徐放期間が1′A間程度と比較的短期間である。これに
対してポリ乳酸系マトリックスは、その分子尿や共重合
体組成比を変えることによって、分解性と徐放性を比較
的よくコントロールすることができるが、上述したよう
に疎水性であるため水溶性薬物との親和性がわるく、マ
イクロスフェア化よって得られた製剤は初期バーストが
激しくて徐放性に劣るものしが得られていない。
In contrast to conventional drug administration methods, such as single-dose injections or intravenous injections, composite materials of drugs and polymers can be directly inserted into the body, or local injections such as microcapsules and microspheres can be used. The administration method aims to increase drug efficacy and suppress side effects by slow release of the drug. Research on the sustained release or connectivity of such drugs, i.e., drug delivery systems (D
Research on DS) has been actively progressing in recent years. As a drug-retaining matrix in the DDS, biodegradable and absorbable polymers such as gelatin and polylactic acid are often used, or as microencapsulation matrices. This gelatin is chemically crosslinked using a crosslinking agent such as glutaraldehyde to form a formulation. On the other hand, since polylactic acid and milk Wa/glycolic acid copolymer are hydrophobic polymers, they have good affinity with hydrophobic drugs such as steroid hormones, and are often used as matrices for sustained-release preparations. There is. However, in the case of gelatin, toxicity issues such as the cross-linking agent glutaraldehyde have not been clarified, and the sustained release period when using a gelatin matrix is relatively short at about 1'A. It is between. On the other hand, the degradability and sustained release properties of polylactic acid matrix can be controlled relatively well by changing its molecular weight and copolymer composition ratio, but as mentioned above, it is hydrophobic. It has poor affinity with water-soluble drugs, and preparations obtained by microsphere formation have a severe initial burst and have poor sustained release properties.

このような観、直がら4水溶性薬物の1ケ月程度の徐放
化を目的とした試みとして次のような製剤化が知られて
いる。特開昭60−100516号には、水溶性薬物お
よび薬物保持物質を含む液を内水層とし、高分子物質を
含む溶液を油層とするW10型乳化物をつくり、この場
合内水層を粘度約5OOOcP以上に増粘ないし固化し
、ついで−t3られた乳化物を水中乾燥法に付すことを
特徴とする水溶性薬物の徐放型マイクロカプセルの製造
法が述べられる、この方法は、ゼラチン等の薬物保持物
質とポリ乳酸系のカプセル壁から楕成さ九でいるため、
放出初期のバースト現象が改良され約1ケ月間の徐放性
が得られていて興味深いものである6ところが、この明
aSの内容にも記載されているごとく、マイ、クロカプ
セル中への薬物の取り込み率が低く、tth高でも71
.5%程度である。生理活性物質は高価であるのみでな
く、生体にとって毒にもなるものであるため、薬物の取
り込み率が低いと不経済であるのみでなく、未取り込み
物の回収にも労力が必要となる。また、抗悪性腫瘍剤で
あるシ)スブラチンの如く水にも有機溶媒にも電溶であ
る薬物ではローディング率を高めることが国難である。
In view of this, the following formulation is known as an attempt to achieve sustained release of a water-soluble drug for about one month. In JP-A No. 60-100516, a W10 type emulsion is prepared in which the inner water layer is a liquid containing a water-soluble drug and a drug-retaining substance, and the oil layer is a solution containing a polymeric substance. A method for producing sustained release microcapsules for water-soluble drugs is described, which is characterized in that the emulsion is thickened or solidified to about 5000cP or more and then subjected to -t3 drying in water. Because it is made up of a drug-retaining substance and a polylactic acid-based capsule wall,
It is interesting that the burst phenomenon at the initial stage of release has been improved and sustained release for about one month has been obtained.6However, as described in the contents of this Mei-aS, it is difficult to incorporate the drug into microcapsules or microcapsules. Low uptake rate, 71 even with high tth
.. It is about 5%. Physiologically active substances are not only expensive but also poisonous to living organisms, so a low drug uptake rate is not only uneconomical but also requires labor to recover unincorporated substances. Furthermore, it is a national problem to increase the loading rate of drugs that are electrolytic in both water and organic solvents, such as the anti-malignant tumor drug cysubratin.

〔発明が解決しようとするruJM点〕これらの既知の
方法は、を述したように一定の結果も奏するDDSシス
テムを提供するものであるが、製剤中への薬物の取り込
み率を高めることが出来ない等のr′jJM点を有する
[RuJM points to be solved by the invention] These known methods provide a DDS system that achieves certain results as described above, but they do not allow for increasing the rate of drug incorporation into the formulation. There are no r'jJM points.

そこで1本発明者は、調製方法が比較的ff甲でかつ製
剤中の薬物の取り込み率を80%以上と高めることがで
き、また、1!1mから1ケ年の高範戸にわたって安定
な薬剤の徐放性が得られる製剤法を鋭意検討したところ
、生理活性物質と水溶性の高分子物質とからなるマイク
ロスフェアを調製した後、このマイクロスフェアをさら
に疎水性の生体内分解吸収性高分子でカプセル化させる
ことにより、薬物の取り込み率とローディング率を高め
ることが出来たうえに、放出初期のバーストを抑えて長
期間の徐放性をもたせた徐放性製剤が得られることを見
い出し本発明を完成した。
Therefore, the present inventor has developed a drug that is relatively easy to prepare and can increase the drug uptake rate in the preparation to over 80%, and that is stable over a high range of 1.1m to 1 year. After intensive investigation into a formulation method that would provide sustained release, we found that after preparing microspheres made of a physiologically active substance and a water-soluble polymer, these microspheres were further coated with a hydrophobic biodegradable and absorbable polymer. The present invention was based on the discovery that by encapsulation, it was possible to increase the uptake rate and loading rate of the drug, and also to obtain a sustained release preparation that suppressed the initial release burst and had sustained release properties over a long period of time. completed.

で被覆したマイクロカプセルからなり、使用した生理活
性物質のマイクロカプセル中への取り込み率が80%以
上と高く、in vitro溶出試験(p H74、リ
ン酸緩衝溶液中、37℃)において、24時間後の生理
活性物質の溶出量がその含有量に対して40%以下に制
御された、長期間にわたって一定の放出量で徐放が可能
な平均粒子径0.01〜300μmの生体内分解吸収性
徐放性製剤を提供するものである。
The incorporation rate of the physiologically active substance used into the microcapsules was as high as 80% or more, and in an in vitro dissolution test (pH 74, in a phosphate buffer solution, 37°C), after 24 hours. A biodegradable and absorbable material with an average particle diameter of 0.01 to 300 μm that allows sustained release at a constant release amount over a long period of time, with the elution amount of physiologically active substances controlled to 40% or less of its content. It provides a release formulation.

本発明にいう生J21!活性物質とは、親水性が晶く、
油水分配率の小さい薬物を好適なものとして挙げること
ができるが、油−水に相溶性であってもよい。また、水
にも有機溶媒にも難?8性の薬物であってもよい、かか
る薬物としては、親水性あるいは難溶性の抗がん剤、抗
生物質、生理活性を冶するペプチドやタンパク質、解熱
剤、鎮静剤、免玲賦活剤、杭抜症剤、ffl咳剤、抗て
んかん剤、抗ヒスタミン剤、降圧利尿剤−r尿病治療剤
、筋弛緩剤、抗gfH剤、抗うつ剤、抗アレルギー剤1
強心i7−不整脈治療剤、血管拡張剤、抗凝血剤、l拮
抗剤、止血剤、抗結核剤、ホルモン剤などが挙げられる
Raw J21 according to the present invention! Active substances are hydrophilic,
Preferred drugs include drugs with a low oil-water partitioning ratio, but they may also be compatible with oil-water. Also, is it difficult to tolerate both water and organic solvents? Examples of such drugs include hydrophilic or sparingly soluble anticancer drugs, antibiotics, peptides and proteins that modulate physiological activity, antipyretics, sedatives, anti-inflammatory drugs, and antipyretic agents. antihypertensive agent, ffl cough agent, antiepileptic agent, antihistamine, antihypertensive diuretic-rurinary disease treatment agent, muscle relaxant, anti-GFH agent, antidepressant, antiallergic agent 1
Examples include cardiac i7-arrhythmia therapeutic agents, vasodilators, anticoagulants, l antagonists, hemostatic agents, antituberculous agents, and hormonal agents.

本発明で使用される生理活性物質保持体としての水溶性
高分子物質としては、合成のものとしてポリアクリル酸
ソーダ、ポリエチレンイミン、ポリビニルアルコール、
ポリビニルメチルエーテル。
The water-soluble polymeric substances used as physiologically active substance carriers used in the present invention include synthetic ones such as sodium polyacrylate, polyethyleneimine, polyvinyl alcohol,
Polyvinyl methyl ether.

ポリエチレンオキサイド、ポリビニルピロリドンなどが
挙げられる。また、半合成物としてカルボキシメチルセ
ルロース、メチルセルロース、ヒドロキシエチルセルロ
ース、キトサン、ヒドロキシプロピルセルロース、酢酸
フタル酸セルロースなどが挙げら九る。さらに、天然水
溶性高分子としてはゼラチン、コラーゲン、カゼイン、
アルギン酸ソーダ、アルギン酸プロピルグリコールエス
テル、カラギーナン、フ7−セレラン、ペクチン。
Examples include polyethylene oxide and polyvinylpyrrolidone. In addition, examples of semi-synthetic products include carboxymethylcellulose, methylcellulose, hydroxyethylcellulose, chitosan, hydroxypropylcellulose, and cellulose acetate phthalate. Furthermore, natural water-soluble polymers include gelatin, collagen, casein,
Sodium alginate, propyl glycol alginate, carrageenan, 7-celleran, pectin.

アラビアガム、グアーガム、キサンタンガム、トラガン
トガム、デキストラン、アルブミン、寒天。
Gum arabic, guar gum, xanthan gum, gum tragacanth, dextran, albumin, agar.

紹介、および数分誘導体などが挙げられる。これらの水
溶性高分子物質は一種でもよく、また2種チン、アルブ
ミン、デキストラン、あるいは澱粉などが好ましい、ま
た、経口投与や生理等の直腸投与に用いる場合には、非
分解吸収性でよく、4Rえばポリビニルアルコールやヒ
ドロキシプロピルセルロースなどが好ましい。
Introduction, and several minute derivatives. These water-soluble polymeric substances may be of one kind, and preferably two types, such as tin, albumin, dextran, or starch. In addition, when used for oral administration or rectal administration such as during menstruation, non-degradable and absorbable substances may be used. Preferred examples of 4R include polyvinyl alcohol and hydroxypropyl cellulose.

また2本発明で用いられる、生理活性物質を含む上記の
水溶性高分子物質による微粒子をさらに被覆するための
生体内分解吸収性の高分子物質としては、ポリグリコー
ル酸、ポリ乳酸、乳酸/グリコール酸共重合体、ポリ−
ミーカプロラクトン。
In addition, the biodegradable and absorbable polymeric substances used in the present invention for further coating the microparticles with the water-soluble polymeric substance containing a physiologically active substance include polyglycolic acid, polylactic acid, lactic acid/glycol acid copolymer, poly-
Micaprolactone.

乳酸/カプロラクトン共重合体、ポリデプシペプチド、
ポリアミノ酸、ポリアルキルシアノアクリレート、ポリ
酸然水物、ポリオルソエステル、ポリオルガノフォスフ
アゼン、ポリオルソカーボネート、ポリリン酸エステル
、キチン、ポリ−β−ヒドロキシブチレート、ヒドロキ
シブチレート/バリレート共重合体、あるいは、ポリエ
チレングリコール/乳酸共重合体などが好ましい、これ
らの生体内分解吸収性高分子は一種でもよく、ある体内
安全性などの見地からポリ乳酸系の高分子物質が好まし
い。
Lactic acid/caprolactone copolymer, polydepsipeptide,
Polyamino acids, polyalkylcyanoacrylates, polyacid hydrates, polyorthoesters, polyorganophosphazenes, polyorthocarbonates, polyphosphates, chitin, poly-β-hydroxybutyrate, hydroxybutyrate/valerate copolymers Alternatively, a polyethylene glycol/lactic acid copolymer or the like is preferable.One type of these biodegradable and absorbable polymers may be used, and a polylactic acid-based polymer is preferable from the viewpoint of certain in-body safety.

本発明に用いられるこれらの高分子物質の分子量は特に
限定されるものではないが、!l量平均分子i 2,0
00以上 100万までの範囲が好ましいが。
The molecular weight of these polymer substances used in the present invention is not particularly limited, but! l weight average molecule i 2,0
The range is preferably from 00 to 1 million.

より好ましい分子量は 3,000〜20万の領域であ
る。
A more preferable molecular weight range is from 3,000 to 200,000.

本発明の製剤は、薬物保持物質としての水溶性高分子物
質マトリックスと上述の生理活性物質の他に医薬製剤に
通常使用される他の物質、例えば固形希釈剤、担体、結
合剤、賦形剤および補助剤を含有させることができる。
The formulation of the present invention contains a water-soluble polymer matrix as a drug-retaining substance and other substances commonly used in pharmaceutical formulations, such as solid diluents, carriers, binders, and excipients, in addition to the above-mentioned physiologically active substances. and adjuvants may be included.

本発明の徐放性製剤中の生理活性物質のローディング率
(含有量)は、薬物の種類、目的とする薬理効果、およ
び徐放期間によって異なるが、約0.1%〜約80%(
W/W) 、好ましくは1%〜50%(W/W)の範囲
が適している。また、徐放性製剤のサイズは数ナノメー
ターから数百ミクロンまでの範囲が適当であるが、静脈
注射を可能にし。
The loading rate (content) of the physiologically active substance in the sustained release preparation of the present invention varies depending on the type of drug, the desired pharmacological effect, and the sustained release period, but is approximately 0.1% to approximately 80% (
W/W), preferably a range of 1% to 50% (W/W). In addition, the size of sustained-release preparations ranges appropriately from a few nanometers to several hundred microns, allowing intravenous injection.

リンパ指向性、訪中投与、あるいは肝臓、肺、膵臓など
の刷内皮系組織への集積等、tJ的に応じてW4製でき
、また使用できる6本発明の生理活性物質含有生体内分
解吸収性の徐放性製剤の製造法としては、二段階の過程
を経て製造される。それは、先ず、第一段階として生理
活性物質含有水溶性高分子物質の微小球を製造するので
あるが、この微小球は公知の方法、例えばスプレードラ
イ法、コアセルベーシン法、フルイドベッド法、液中乾
燥法、凍結乾燥法などによって製造される。これらの製
造法は徐放性製剤の用途に応して選択できるが、スプレ
ードライ法が最も前便で好ましい、スプレードライ法に
て薬物含有水溶性高分子微小球を製造する場合、薬物と
水溶性高分子を任意の濃度で溶解させた溶液を市販のス
プレードライヤーにて噴tti乾燥することにより得ら
れるが、微小球のサイズは、用いた水溶性高分子溶液の
濃度と噴霧乾燥条件により任意に調製することができる
6. The biodegradable and absorbable bioactive substance containing bioactive substance of the present invention can be made and used depending on TJ, such as lymphotropism, administration to China, or accumulation in endothelial tissues such as the liver, lung, and pancreas. The sustained-release preparation is manufactured through a two-step process. First, as a first step, microspheres of a water-soluble polymeric substance containing a physiologically active substance are produced, and these microspheres are prepared using known methods such as spray drying, core cell basin method, fluid bed method, and submerged drying. It is manufactured by the freeze-drying method, freeze-drying method, etc. These manufacturing methods can be selected depending on the intended use of the sustained-release preparation, but the spray-drying method is the most preferable for pre-treatment.When manufacturing drug-containing water-soluble polymer microspheres using the spray-drying method, The size of the microspheres can be determined depending on the concentration of the water-soluble polymer solution used and the spray drying conditions. It can be prepared as follows.

また、油中乾燥法により薬物含有水溶性高分子微小球を
製造する場合、薬物と水溶性高分子とを水に溶解させた
溶液をシリコーンオイル等のオイル中にてW10型乳化
物を形成させた後、低温に検子微小球を化学的架橋、例
えばグルタルアルデヒドや無水コハク酸等を用いて橋か
けしてもよい。
In addition, when producing drug-containing water-soluble polymer microspheres by drying in oil, a W10 type emulsion is formed by dissolving a solution of the drug and water-soluble polymer in water in an oil such as silicone oil. Thereafter, the probe microspheres may be chemically cross-linked at low temperature using, for example, glutaraldehyde or succinic anhydride.

さらに、アルブミン等の水溶性高分子を用いる場合は、
100℃程度に加熱し、熱変性することにより微小球を
得ることもできる0次に、第二段階として、このように
して得られた医薬含有水溶性高分子微小球をさらに生体
分解吸収性高分子で被覆するのであるが、この場合もス
プレードライ法とか液中乾燥法によって製造することが
出来る。具体的には、上述の医薬含有水溶性高分子微小
球を溶解しなくて、生体分解吸収性高分子を溶解する有
機溶媒、例えば、ポリ乳酸系高分子を使用する場合はク
ロロホルム、アセトニトリルあるいは塩化メチレン等の
有機溶媒に医薬含有水溶性高分子微小球を分散させた溶
液をスプレードライヤ一番こてカプセル化、あるいは、
O10エマルジョンを形成させ液中乾燥法にてカプセル
化することにより得られる。ここで、液中乾燥法により
カプセル化する際に使用される分散媒としては、ポリ乳
酸系高分子の溶媒である塩化メチレンやアセトニトリル
の有機溶媒と実質的に相溶性がなく、製剤後の除去が容
易なものが好ましく、例えばシリコーンオイル、流動パ
ラフィン、あるいは締実油、ゴマ油、ヒマシ油、コーン
油等の植物油や油脂、またはトルエン、キシレン、ヘキ
サン等の有機溶媒が使用できる。また、こ九らのオイル
のかわりに水が使用できるが、水溶性高分子微小球に含
有する水溶性生理活性物質が液中乾燥途中で分散媒中の
水に溶けだしてしまうので好ましくない、このようにカ
プセル化に際して1分散媒として水を使用しないため、
本発明の徐放性製剤の製法は生理活性物質の取り込み率
が極めて高くなるのである。
Furthermore, when using water-soluble polymers such as albumin,
Microspheres can also be obtained by heating to about 100°C and thermally denaturing them. In the second step, the water-soluble polymer microspheres containing the drug thus obtained are further processed into biodegradable and absorbable polymer microspheres. It is coated with molecules, and in this case as well, it can be manufactured by spray drying or submerged drying. Specifically, organic solvents that do not dissolve the water-soluble polymer microspheres containing the drug mentioned above but dissolve biodegradable and absorbable polymers, such as chloroform, acetonitrile, or chloride when using polylactic acid-based polymers, are used. A solution in which water-soluble polymer microspheres containing medicine are dispersed in an organic solvent such as methylene is encapsulated using a spray dryer, or
It is obtained by forming an O10 emulsion and encapsulating it by an in-liquid drying method. Here, the dispersion medium used when encapsulating by the in-liquid drying method is substantially incompatible with organic solvents such as methylene chloride and acetonitrile, which are solvents for polylactic acid polymers, and is removed after formulation. For example, silicone oil, liquid paraffin, vegetable oils and fats such as nut oil, sesame oil, castor oil, and corn oil, and organic solvents such as toluene, xylene, and hexane can be used. Also, water can be used instead of these oils, but this is not preferable because the water-soluble physiologically active substances contained in the water-soluble polymer microspheres will dissolve into the water in the dispersion medium during drying in the liquid. As water is not used as a dispersion medium during encapsulation,
The method for producing sustained-release preparations of the present invention provides an extremely high uptake rate of physiologically active substances.

本発明により得られる生理活性物質含有徐放性要理は医
科用あるいは獣医科用の注射剤、IY:0剤。
The sustained release drug containing a physiologically active substance obtained by the present invention is an injection preparation for medical or veterinary use, and an IY:0 preparation.

経度吸収剤、歯科用製剤、坐剤、経鼻投与剤、口腔投与
剤、あるいは眼内投与剤等に適用される。
It is applied to medicinal absorbents, dental preparations, suppositories, nasal administration agents, buccal administration agents, intraocular administration agents, etc.

〔発明の効果〕〔Effect of the invention〕

本発明により↑5らILる生理活性物質含有の生体内分
解吸収性徐放剤は、徐放剤中への薬物の取り込み率を8
0%以上に向上させることができるのみでなく、製剤か
らの溶出初期バーストを制御するとともに1週間以上か
ら1ケ年までの長期間にわたる徐放性を付与できる。
According to the present invention, the biodegradable and absorbable sustained-release agent containing the physiologically active substance ↑5 IL has a drug incorporation rate into the sustained-release agent of 8.
Not only can the release rate be improved to 0% or more, but also the initial burst of elution from the preparation can be controlled, and sustained release can be provided over a long period of time, from one week or more to one year.

以下に実施例を挙げて本発明の詳細な説明する。The present invention will be explained in detail by giving examples below.

実施例1 1gのテトラサイクリンを、加温によりvs製した5%
ゼラチン水溶液100m1に溶解させた後、ヤマト科学
■製パルビスミニスプレー〇A−32型を用いて噴震乾
燥させることによりテトラサイクリン含有ゼラチン微小
球(平均粒子サイズ約5 メL m )を調製した。こ
の微小球を、あらかじめ作製した乳#/グリコールは共
重合体(組成比80/20m01%1重黛平均分子i 
12,000)の10%アセトニトリル溶液10m1に
スター5−にて撹拌することにより分散させた。この溶
液をあらかじめ作製しておいた1%スパン80(ソルビ
タンモノオレエート)含有流動パラフィン300mL中
に撹拌下で摘下することによりエマルジョンを形成させ
、1昼夜連続撹拌状態でアセトニトリルを蒸発させた。
Example 1 1g of tetracycline was prepared by heating to prepare 5%
Tetracycline-containing gelatin microspheres (average particle size of about 5 ml) were prepared by dissolving the gelatin in 100 ml of an aqueous gelatin solution and drying it by spraying using Parvis Mini Spray Model A-32 manufactured by Yamato Kagaku. These microspheres were prepared in advance using milk #/glycol copolymer (composition ratio 80/20m01% 1-fold average molecular weight
12,000) in 10% acetonitrile by stirring with a star 5-. This solution was poured into 300 mL of liquid paraffin containing 1% Span 80 (sorbitan monooleate) prepared in advance under stirring to form an emulsion, and the acetonitrile was evaporated under continuous stirring all day and night.

その後、遠沈、ロ過分踵、ヘキサン洗滌し乾燥すること
により平均粒子サイズ約10μmのテトラサイクリン含
有生体内分解吸収性のマイクロカプセルを製造した。
Thereafter, biodegradable and absorbable microcapsules containing tetracycline with an average particle size of about 10 μm were produced by centrifugation, fractionation, washing with hexane, and drying.

これらのマイクロカプセル2011gを20m1塩化メ
チレン溶液に溶解した後、2hlの蒸留水で20分it
+振盪することによりテトラサイクリンを抽出し紫外吸
収スペクトル(UV)にて定量し、マイクロカプセル中
に取り込まれている薬物の仕込み量に対する割合を取り
込み率として求めたところ約98%であった。 in 
VitrO溶出実験は、所定量のマイクロカプセルをp
H7,4のリン酸緩衝溶液中で37℃の振どう器付恒温
槽にて行い薬物の潤度p U V測定により評価した。
After dissolving 2011 g of these microcapsules in 20 ml of methylene chloride solution, it was incubated with 2 hl of distilled water for 20 minutes.
Tetracycline was extracted by + shaking and quantified by ultraviolet absorption spectrum (UV), and the uptake rate was determined as the ratio of the drug incorporated into the microcapsules to the charged amount, and was found to be approximately 98%. in
VitrO elution experiments involve plating a predetermined amount of microcapsules into
The test was carried out in a phosphate buffered H7.4 solution at 37° C. in a constant temperature bath with a shaker, and the moisture content of the drug was evaluated by measuring p UV.

IH目の溶出量は約20%で14日間一定量の徐放性を
示した。
The elution amount of IH eye was about 20%, showing sustained release in a constant amount for 14 days.

比較例1 0.1gのテトラサイクリンを加温により調製した20
%ゼラチン水溶液10m1に溶解させた溶液を。
Comparative Example 1 20 prepared by heating 0.1 g of tetracycline
% gelatin solution dissolved in 10 ml of aqueous solution.

あらかじめ調製した乳酸/グリコール酸共重合体(M酸
比80/ 20+no1%1重量平均分子m 12,0
00>の20%塩化メチレン溶液20n+1に加え、超
音波処理(30KHz 、 100 W、 1分間)し
てW10エマルジョンを形成させた後、ただちに水冷し
てゼラチン層を固化させる。このものを、あらかじめ氷
冷′しておいた200m1の0.2%ポリビニルアルコ
ール水溶液中に適下させ、ホモジナイザーにて約10秒
間分散させW10/Wエマルジョンを調製した。
Pre-prepared lactic acid/glycolic acid copolymer (M acid ratio 80/20+no 1% 1 weight average molecule m 12,0
A W10 emulsion is formed by adding 20n+1 of a 20% methylene chloride solution of 00> and ultrasonication (30 KHz, 100 W, 1 minute), and then immediately cooled with water to solidify the gelatin layer. This product was dropped into 200 ml of a 0.2% polyvinyl alcohol aqueous solution that had been previously ice-cooled, and dispersed for about 10 seconds using a homogenizer to prepare a W10/W emulsion.

これを、速やかにロータリーエバポレーターに移し、氷
冷下塩化メチレンを脱離させる。その後加温することに
より有機溶媒の脱離を行いガラスフィルターで口過分取
、洗滌することによりマイクロカプセルを!2造した。
This is immediately transferred to a rotary evaporator to remove methylene chloride under ice cooling. After that, the organic solvent is removed by heating, and the microcapsules are separated by filtration with a glass filter and washed! I built two.

実施例1と同じ方法により取り込み牢シ求めたところ、
約60%であった。
When the incorporation rate was determined using the same method as in Example 1,
It was about 60%.

また、実施例1と同じ方法にて1nvitro溶畠実験
をしたところ、1日目で約50%の溶出がみられ。
Furthermore, when a 1nvitro molten field experiment was conducted in the same manner as in Example 1, approximately 50% elution was observed on the first day.

その後lO日日間徐放性がみられた。After that, sustained release was observed for 10 days.

実施例2 テトラサイクリン含有ゼラチン微/7%球の被覆物質と
して!Sk平均分子[26,000の乳酸/グリコール
酸共重合体(組成比80/20mo1%)を用いた他は
実施例1と全く同じ条件下でテトラサイクリン含有徐放
性マイクロカプセルをm造した。実施例1と同じ方法に
より取り込み率を求めたところ約99%であった。また
、実施例1と同じ方法にて1nvitro溶出実験をし
た。1日目の溶出量は約16%で、その後約】ケ月間一
定量の徐放性を示した。
Example 2 As a coating material for tetracycline-containing gelatin micro/7% spheres! Tetracycline-containing sustained-release microcapsules were manufactured under exactly the same conditions as in Example 1, except that a lactic acid/glycolic acid copolymer (composition ratio 80/20 mo1%) with an Sk average molecular weight of 26,000 was used. The uptake rate was determined by the same method as in Example 1 and was approximately 99%. In addition, a 1n vitro elution experiment was conducted in the same manner as in Example 1. The elution amount on the first day was approximately 16%, and a sustained release was observed for approximately 1 month thereafter.

実施例3 200■のシスプラチンを加温により1g1I製した1
%ゼラチン水溶液200m1に溶解させた後、スプレー
ドライ法にてシスプラチン含有ゼラチン微小球(平均粒
子サイズ約2μff+)を14製した。この微小球をポ
リーD、L−乳酸(重量平均分子量的9,600 )を
用いた他は実施例1と同じ方法によりポリ乳酸マイクロ
カプセルを製造した。実施例1と同じ方法にて取り込み
率(定量は原子吸光)を求めたところ、約97%であっ
た。また、実施例1と同じ方法にてin vitro溶
出実験を行い原子吸光法にて定量したところ、1日で2
5%、その後約2週間一定量の徐法性を示した。
Example 3 1g1I was prepared from 200μ of cisplatin by heating.
After dissolving in 200 ml of % gelatin aqueous solution, 14 cisplatin-containing gelatin microspheres (average particle size of about 2 μff+) were prepared by spray drying. Polylactic acid microcapsules were produced in the same manner as in Example 1, except that poly-D, L-lactic acid (weight average molecular weight: 9,600) was used as the microspheres. The uptake rate was determined using the same method as in Example 1 (quantification was done by atomic absorption) and was approximately 97%. In addition, an in vitro elution experiment was conducted using the same method as in Example 1, and quantification was performed using atomic absorption spectrometry.
5%, and then showed a certain amount of gradual decline for about 2 weeks.

比較例2 200mgのシスプラチンを比較例1と同じ方法でマイ
クロカプセルをtlJ造した。″XX施工1同じ方法に
て取り込み率を求めたところ約38%であった。
Comparative Example 2 Microcapsules were prepared from 200 mg of cisplatin in the same manner as in Comparative Example 1. "XX Construction 1 The uptake rate was determined using the same method and was approximately 38%.

また、実施例3と同じ方法にてin vitro溶出実
験、を行い原子吸光法にて定量したところ、1日目で7
80%、2日目で90%であり、約4日後には 100
%の放出が認められた。
In addition, an in vitro elution experiment was conducted in the same manner as in Example 3, and quantification was performed using atomic absorption spectrometry.
80%, 90% on the second day, and 100% after about 4 days.
% release was observed.

実施例4 200mgの黄体形成ホルモン放出ホルモンLHRHア
ゴニストである酢酸リュープロライドを加温により調製
した4%ゼラチン水溶液50+nlに溶解させた後、ス
プレードライ法にて酢酸リュープロライド含有ゼラチン
微小球(平均粒子サイズ約IOμm)を′p4製した。
Example 4 After dissolving 200 mg of leuprolide acetate, which is a luteinizing hormone-releasing hormone LHRH agonist, in 50+ nl of a 4% aqueous gelatin solution prepared by heating, gelatin microspheres containing leuprolide acetate (average Particle size approximately IO μm) was prepared as 'p4.

この微小球を実施例1と同じ方法によりマイクロカプセ
ルを製造した。実施例1と同じ方法にて取り込み率(但
し、定量はHP I。
Microcapsules were produced from these microspheres in the same manner as in Example 1. Uptake rate was carried out in the same manner as in Example 1 (however, quantification was done using HP I).

Cにて)を求めたところ約93%であった。C) was found to be approximately 93%.

このマイクロカプセルを生理食塩水中に分散させ体重約
300gの成熟雌ラットの皮下に江射(LHRH投与量
として12mg/kg) L−r、)f RHの生体に
及ぼす効果(下垂体−性腺系の脱感受性にもとずく内生
殖系Q器の萎縮)を観察したところ約50日間にわたっ
て、その効果が持続した。
These microcapsules were dispersed in physiological saline and administered subcutaneously to adult female rats weighing approximately 300 g (LHRH dosage: 12 mg/kg). When the atrophy of the Q organ of the internal reproductive system due to desensitization was observed, the effect persisted for about 50 days.

比較例3 200mgの酢酸リュープロライドを比較例1と同じ方
法によりマイクロカプセルを製造した。実施例4と同じ
方法にて取り込み率を求めたところ約62%であった。
Comparative Example 3 Microcapsules were produced using 200 mg of leuprolide acetate in the same manner as in Comparative Example 1. The uptake rate was determined using the same method as in Example 4 and was approximately 62%.

実施例5 200mgのヒト−インシュリンをあらかじめ5I製し
た3%ゼラチン0.1NHC1水溶液200m1に溶解
させた後、スプレードライ法にて什ンシュリン”含有ゼ
ラチン微小球を21i112した。この微小球を実施例
1と同じ方法によりマイクロカプセルをII2造した。
Example 5 After dissolving 200 mg of human insulin in 200 ml of a 3% gelatin 0.1N HCl aqueous solution prepared in advance, gelatin microspheres containing insulin were prepared using a spray drying method. Microcapsules II2 were prepared by the same method.

実施例1と同じ方法により取り込み率(定量は酵素法)
を求めたところ約94%であった。また、実施例1と同
じ方法にてin vilro溶出実験を行ったところ、
1日L1で29%、その後、約4週間一定量の徐放性を
小した。
Uptake rate was determined by the same method as in Example 1 (quantification was performed using an enzyme method)
The result was approximately 94%. In addition, when an in virro elution experiment was conducted in the same manner as in Example 1,
29% at L1 on day 1, then reduced sustained release at a fixed dose for about 4 weeks.

比較例4 200mgのヒト−インシュリンを比較例]と同じ方法
によりマイクロカプセルを製造した。実施例5と同じ方
法にて取り込み率を求めたところ約55%であった。
Comparative Example 4 Microcapsules were produced using 200 mg of human insulin in the same manner as in Comparative Example]. The uptake rate was determined using the same method as in Example 5 and was approximately 55%.

実施例6 10、000単位のカルシトニンをあらかじめ調製した
4%ゼラチン水溶液 100nlに溶解させた後、ス1
、、′jシレードライ法てカルシトユッ含有ゼラチア微
小球を@!製した。この微小球を実施例1と同じ方法に
よりマイクロカプセルをmnした。カルシトニン活性は
、血清カルシウムの低下作用による測定結果により、そ
の活性の低下は認められなかった。実施例1と同じ方法
による取り込み率は約96%であった。(定量は)I 
P L C)また、実施例1と同じ方法にてin vi
tro溶出実験を行ったところ。
Example 6 After dissolving 10,000 units of calcitonin in 100 nl of a 4% gelatin aqueous solution prepared in advance,
,,'J Shire dry method to make gelatia microspheres containing calcitoyut @! Manufactured. Microcapsules were formed from the microspheres using the same method as in Example 1. As for calcitonin activity, no decrease in the activity was observed according to the measurement results based on the serum calcium lowering effect. The uptake rate using the same method as in Example 1 was about 96%. (Quantitative) I
PLC) In addition, in vitro using the same method as in Example 1
A tro elution experiment was conducted.

1日目で約18%、その後約4週間の一定量の徐放性を
示した。
It showed sustained release of about 18% on the first day and a constant amount for about 4 weeks thereafter.

比較例5 10.000単位のカルシトニンを比較例1と同じ方法
によりマイクロカプセル&i造した。実施例6と同じ方
法にて取り込み率を求めたところ約47%であった。
Comparative Example 5 10,000 units of calcitonin were prepared into microcapsules by the same method as in Comparative Example 1. The uptake rate was determined using the same method as in Example 6 and was approximately 47%.

実施例7 1 X 10”単位のヒト−インターフェロンαをあら
かじめ調製した2%ゼラチン水溶液 100m1に溶解
させた後、スプレードライ法にてインターフェロン含有
ゼラチン微小球をg製した。この微小球を実施例]と同
じ方法によりマイクロカプセルを製造した。取り込み率
を酵素抗体法により求めたところ約93%であった。ま
た、in vitro溶出実験を実施例1と同じ方法に
て行ったところ活性が約4週間持続した。
Example 7 After dissolving 1 x 10" units of human interferon α in 100 ml of a 2% aqueous gelatin solution prepared in advance, interferon-containing gelatin microspheres were prepared by spray drying. These microspheres were used in Examples] Microcapsules were manufactured by the same method as in Example 1.The uptake rate was determined by enzyme antibody method and was approximately 93%.In addition, an in vitro elution experiment was conducted using the same method as in Example 1, and the activity remained for approximately 4 weeks. It lasted.

比較例6 IXIO’単位のヒト−インターフェロンαを比較例1
と同じ方法によりマイクロカプセルを製造した。実施例
7と同じ方法にて取り込み牢を求めたところ約50%で
あった。
Comparative Example 6 IXIO' units of human interferon α were added to Comparative Example 1.
Microcapsules were manufactured by the same method. When the uptake rate was determined using the same method as in Example 7, it was approximately 50%.

実施例8 2XIO″弔位のインターロイキンIJ (IL−If
)をあらかじめamした5%ゼラチン水溶#t200m
lに溶解させた後、スプレードライ法にてIL−U含有
ゼラチン微小球を調製した。この微小球を実施例1と同
じ方法によりマイクロカプセルをHMした。得られたマ
イクロカプセルをマウスの血中に投与しIL−IIの血
中′arLを丁L−II依存性のcell 1ineで
あるC T r、 L −2をJlいて測定したところ
約2週間にわたってlX10’単位/m1以上の高濃度
が検出された。また、このマイクロカプセルへの取り込
み率は約90%であった。
Example 8 2XIO″ interleukin IJ (IL-If
) in 5% gelatin water solution #t200m
IL-U containing gelatin microspheres were prepared by spray drying. The microspheres were subjected to HM microcapsules using the same method as in Example 1. The obtained microcapsules were administered into the blood of mice, and the blood levels of IL-II and Ctr, L-2, which are cell lines dependent on L-II, were measured over a period of about 2 weeks. High concentrations of more than 1×10′ units/ml were detected. Moreover, the incorporation rate into the microcapsules was about 90%.

比較例7 2X10’単位のTL−[を比較例1と同じ方法により
マイクロカプセルを製造した。実施例8と同じ方法にて
取り込み率を求めたところ約53%であった。
Comparative Example 7 Microcapsules were prepared using 2×10′ units of TL-[ in the same manner as in Comparative Example 1. The uptake rate was determined using the same method as in Example 8 and was approximately 53%.

実施例9 5 X 10’単位の血栓溶解剤(TPA)をあらかじ
め3g製した3%ゼラチン水溶液 100m1に溶解さ
せた後、スプレードライ法にて”1” P A含有ゼラ
チン微小球を調製した。この微小球を実施例1と同じ方
法によりマイクロカプセルを製造した。このマイクロカ
プセルへの’1’ PΔの取り込み牢は約92%であっ
た。 in vitroの溶出試験を行い、フィブリン
プレート法により酵素活性を測定したところ。
Example 9 After dissolving 5 x 10' units of thrombolytic agent (TPA) in 100 ml of a 3% gelatin aqueous solution prepared in advance, ``1'' P A -containing gelatin microspheres were prepared by a spray drying method. Microcapsules were produced from these microspheres in the same manner as in Example 1. The incorporation of '1' PΔ into this microcapsule was approximately 92%. An in vitro elution test was performed and enzyme activity was measured using a fibrin plate method.

約4週間活性が持続した。The activity lasted for about 4 weeks.

比較例8 5 X 10’単位のTPAを比較例1と同じ方法によ
りマイクロカプセルを製造した。実施例9と同じ方法に
て取り込み率を求めたところ約32%であった。
Comparative Example 8 Microcapsules were prepared using 5 x 10' units of TPA in the same manner as in Comparative Example 1. The uptake rate was determined using the same method as in Example 9 and was approximately 32%.

実施例10 100+mgのウシ−ソマトトロピンをあらかじめ調製
した2%ゼラチン水溶液100m1に溶解させた後。
Example 10 After dissolving 100+ mg of bovine somatotropin in 100 ml of a pre-prepared 2% aqueous gelatin solution.

スプレードライ法にてソマトトロピン含有ゼラチン微小
球をallWした。この微小球を実施例1と同じ方法に
よりマイクロカプセルを製造した。得られたマイクロカ
プセルをウシの圧下に注射し、プラズマ中のソマトトロ
ピンを放射線免疫分析によって測定したところ約40日
にわたってソマトトロピンが検出さ九た。また、取り込
み率は約93%であった。
Somatotropin-containing gelatin microspheres were all-Wed by a spray drying method. Microcapsules were produced from these microspheres in the same manner as in Example 1. The obtained microcapsules were injected under pressure into a cow, and somatotropin in the plasma was measured by radioimmunoassay, and somatotropin was detected for about 40 days. Moreover, the uptake rate was about 93%.

比較例9 100mHのウシ−ツマ1−トロピンを比較例1と同じ
方法によりマイクロカプセルを製造した。実施例IOと
同し方法にて取り込み率を求めたところ約40%であっ
た。
Comparative Example 9 Microcapsules were prepared using 100 mH of bovine tuma 1-tropin in the same manner as in Comparative Example 1. The uptake rate was determined using the same method as in Example IO and was approximately 40%.

実施例11 2gのジクロフェナックナトリウム(ボルタレン)をあ
らかじめ調製した2%ポリビニルアルコ−/L7(1)
VA)(重合度500.ケン化度99.5モ/l/%)
水溶l1lk  100m1に溶解させた後、スプレー
ドライ法にてボルタレン含有PVA微小球を調製した。
Example 11 2g of diclofenac sodium (Voltaren) in pre-prepared 2% polyvinyl alcohol/L7(1)
VA) (Polymerization degree 500. Saponification degree 99.5 mo/l/%)
After dissolving in 100 ml of aqueous solution, Voltaren-containing PVA microspheres were prepared by a spray drying method.

この微小球への被覆物質として乳酸/グリコール酸共重
合体(ffl成比70/ :10 +no1%1重量平
均分子量約3,500)を用いた他は実施例1と全く同
じ条件下でボルタシン含有徐放性マイクロカプセルを製
造した。このマイクロカプセルへのボルタレンの取り込
み率をUvにて測定したところ約99%であった。また
、このマイクロカプセルをカカオ油脂を用いて生理に製
剤し、溶出試験をしたところ48時間のゼロ放出が詔め
られた。
The microspheres were coated with voltacin under exactly the same conditions as in Example 1, except that lactic acid/glycolic acid copolymer (ffl composition ratio 70/:10 + NO 1% 1 weight average molecular weight approximately 3,500) was used. Sustained-release microcapsules were manufactured. The uptake rate of Voltaren into the microcapsules was measured using UV and was found to be approximately 99%. In addition, when this microcapsule was formulated into a physiological formulation using cacao oil and a dissolution test was conducted, zero release was observed for 48 hours.

Claims (1)

【特許請求の範囲】 1)生理活性物質を含有した水溶性高分子物質の水溶液
から微小球を作成した後、この微 小球を、更に、疎水性でしかも生体内分解 吸収性の高分子物質を用いることによりカ プセル化した徐放性製剤。 2)生理活性物質が抗生物質、抗菌性薬物、抗癌剤、解
熱鎮痛剤、鎮咳去たん剤、抗うつ 剤、筋弛緩剤、抗潰瘍剤、抗アレルギー剤、降圧利尿剤
、糖尿病治療剤、強心剤、血管 拡張剤、不整脈治療剤、抗凝血剤、止血剤、麻薬拮抗剤
、抗結核剤、ホルモン剤、免疫 賦活剤、抗てんかん剤、抗ヒスタミン剤、 またはペプチド及び蛋白質系薬物である特 許請求の範囲第1項記載の徐放性製剤。 3)水溶性の高分子物質がポリアクリル酸ソーダ、ポリ
エチレンイミン、ポリビニルアル コール、ポリエチレンオキサイド、ポリビ ニルピロリドン、カルボキシメチルセルロ ース、メチルセルロース、ヒドロキシエチ ルセルロース、キトサン、ヒドロキシプロ ピルセルロース、酢酸フタル酸セルロース、ゼラチン、
コラーゲン、カゼイン、アルギ ン酸ソーダ、アルギン酸プロピレングリコ ール、エステル、カラギーナン、ファーセ レラン、ペクチン、アラビアガム、グァー ガム、キサンタンガム、トラガンドガム、 デキストラン、アルブミン、寒天、澱分お よび澱分誘導体である特許請求の範囲第1 項記載の徐放性製剤。 4)生体内分解吸収性の高分子物質がポリグリコール酸
、ポリ乳酸、乳酸/グリコール酸 共重合体、ポリ−ε−カプロラクトン、乳 酸/ε−カプロラクトン共重合体、ポリデ プシペプチド、ポリアミノ酸、ポリアルキ ルシアノアクリレート、ポリ酸無水物、ポ リオルソエステル、ポリオルガノポスファ ゼン、ポリオルソカーボネート、ポリリン 酸塩エステル、キチン、ポリ−β−ヒドロ キシブチレート、ヒドロキシブチレート/ バリレート共重合体、およびポリエチレン グリコール/乳酸共重合体などである特許 請求の範囲第1項記載の徐放性製剤。 5)生理活性物質含有水溶性高分子物質の微小球をスプ
レードライ法、コアセルベーショ ン法、フルイドベッド法、液中乾燥法、凍 結乾燥法などにより作製することを特徴と する特許請求の範囲第1項記載の徐放性製 剤。 6)特許請求の範囲第5項にて製造された生理活性物質
含有水溶性高分子物質の微小球サ イズが0.01〜200μmの範囲であることを特徴と
する特許請求の範囲第1項記載の徐 放性製剤。 7)特許請求の範囲第5項にて製造された生理活性物質
含有水溶性高分子の微小球を生体 内分解吸収性高分子を用い、液中乾燥法、 あるいはスプレードライ法にてカプセル化 することを特徴とする特許請求の範囲第1 項記載の徐放性製剤。 8)特許請求の範囲第7項により製造された徐放性製剤
のサイズが0.01〜300μmの範囲であることを特
徴とする特許請求の範囲第 1項記載の徐放性製剤。 9)特許請求の範囲第7項において生理活性物質含有水
溶性高分子微小球への生体内分解 吸収性高分子のカプセル化を液中乾燥法に より行う際、水を使用しないことを特徴と する特許請求の範囲第1項記載の徐放性製 剤。 10)特許請求の範囲第7項において製造された徐放性
製剤中への生理活性物質の取り込み 率が80%以上で、またローディング率が0.1〜80
wt%であることを特徴とする特許請求の範囲第1項記
載の徐放性製剤。
[Claims] 1) After creating microspheres from an aqueous solution of a water-soluble polymeric substance containing a physiologically active substance, the microspheres are further coated with a hydrophobic polymeric substance that is biodegradable and absorbable. encapsulated sustained release formulation. 2) The physiologically active substance is an antibiotic, an antibacterial drug, an anticancer drug, an antipyretic analgesic, an antitussive expectorant, an antidepressant, a muscle relaxant, an antiulcer agent, an antiallergic agent, an antihypertensive diuretic, a diabetic agent, a cardiotonic agent, Claim No. 1 is a vasodilator, an antiarrhythmia agent, an anticoagulant, a hemostatic agent, a narcotic antagonist, an antituberculous agent, a hormonal agent, an immunostimulant, an antiepileptic agent, an antihistamine, or a peptide and protein drug. The sustained release preparation according to item 1. 3) Water-soluble polymeric substances include sodium polyacrylate, polyethyleneimine, polyvinyl alcohol, polyethylene oxide, polyvinylpyrrolidone, carboxymethylcellulose, methylcellulose, hydroxyethylcellulose, chitosan, hydroxypropylcellulose, cellulose acetate phthalate, gelatin,
Collagen, casein, sodium alginate, propylene glycol alginate, ester, carrageenan, farcellan, pectin, gum arabic, guar gum, xanthan gum, gum tragando, dextran, albumin, agar, lees, and lees derivatives as described in claim 1 sustained release formulation. 4) Biodegradable and absorbable polymeric substances include polyglycolic acid, polylactic acid, lactic acid/glycolic acid copolymer, poly-ε-caprolactone, lactic acid/ε-caprolactone copolymer, polydepsipeptide, polyamino acid, polyalkyl Cyanoacrylate, polyanhydride, polyorthoester, polyorganoposphazene, polyorthocarbonate, polyphosphate ester, chitin, poly-β-hydroxybutyrate, hydroxybutyrate/valerate copolymer, and polyethylene glycol/ The sustained release preparation according to claim 1, which is a lactic acid copolymer or the like. 5) The scope of the present invention is characterized in that microspheres of a water-soluble polymeric substance containing a physiologically active substance are produced by a spray drying method, a coacervation method, a fluid bed method, an in-liquid drying method, a freeze-drying method, etc. The sustained release preparation according to item 1. 6) Claim 1, characterized in that the physiologically active substance-containing water-soluble polymeric substance produced according to Claim 5 has a microsphere size in the range of 0.01 to 200 μm. sustained release formulation. 7) The microspheres of the water-soluble polymer containing a physiologically active substance produced according to claim 5 are encapsulated using a biodegradable and absorbable polymer by a submerged drying method or a spray drying method. The sustained release preparation according to claim 1, characterized in that: 8) The sustained-release preparation according to claim 1, wherein the sustained-release preparation produced according to claim 7 has a size in the range of 0.01 to 300 μm. 9) Claim 7 is characterized in that water is not used when the biodegradable and absorbable polymer is encapsulated in the water-soluble polymer microspheres containing a physiologically active substance by an in-liquid drying method. A sustained release preparation according to claim 1. 10) The incorporation rate of the physiologically active substance into the sustained release preparation manufactured in claim 7 is 80% or more, and the loading rate is 0.1 to 80%.
The sustained release preparation according to claim 1, characterized in that the amount is wt%.
JP13889990A 1990-05-29 1990-05-29 Sustained release preparation containing physiologically active substance and decomposable and absorbable in living body Pending JPH0436233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13889990A JPH0436233A (en) 1990-05-29 1990-05-29 Sustained release preparation containing physiologically active substance and decomposable and absorbable in living body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13889990A JPH0436233A (en) 1990-05-29 1990-05-29 Sustained release preparation containing physiologically active substance and decomposable and absorbable in living body

Publications (1)

Publication Number Publication Date
JPH0436233A true JPH0436233A (en) 1992-02-06

Family

ID=15232727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13889990A Pending JPH0436233A (en) 1990-05-29 1990-05-29 Sustained release preparation containing physiologically active substance and decomposable and absorbable in living body

Country Status (1)

Country Link
JP (1) JPH0436233A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08507747A (en) * 1992-12-30 1996-08-20 クローバー コンソリデイテッド,リミテッド Reusable macroencapsulation system that protects biologically active material packets and is biocompatible
WO1999036059A3 (en) * 1997-12-30 1999-09-16 Cosmeticos Natural Ind Com Microcapsules; process for preparing microcapsules containing a biologically active compound and liquid solution
JP2001524509A (en) * 1997-12-02 2001-12-04 ウエスト・ファーマシューティカル・サービセズ・ドラッグ・デリバリー・アンド・クリニカル・リサーチ・センター・リミテッド Composition for nasal administration
WO2004094595A2 (en) 2003-04-17 2004-11-04 Alnylam Pharmaceuticals Inc. MODIFIED iRNA AGENTS
WO2004094345A2 (en) 2003-04-17 2004-11-04 Alnylam Pharmaceuticals Inc. Protected monomers
JP2006257080A (en) * 2005-02-18 2006-09-28 Santen Pharmaceut Co Ltd Method for reducing or avoiding adverse effect of steroid compound
JP2007537284A (en) * 2004-05-12 2007-12-20 バクスター インターナショナル インコーポレイテッド Nucleic acid microspheres, their production and delivery
JP2007537288A (en) * 2004-05-12 2007-12-20 バクスター インターナショナル インコーポレイテッド Oligonucleotide-containing microspheres, use thereof for the manufacture of a medicament for treating type 1 diabetes
EP2216407A2 (en) 2003-03-07 2010-08-11 Alnylam Pharmaceuticals, Inc. Therapeutic Compositions
JP2014501252A (en) * 2010-12-24 2014-01-20 サムヤン バイオファーマシューティカルズ コーポレイション MICROPARTICLES CONTAINING BIOACTIVE PEPTIDE, PROCESS FOR PRODUCING THE SAME, AND PHARMACEUTICAL COMPOSITION CONTAINING THE SAME
WO2016057693A1 (en) 2014-10-10 2016-04-14 Alnylam Pharmaceuticals, Inc. Methods and compositions for inhalation delivery of conjugated oligonucleotide
EP3141265A1 (en) 2007-12-04 2017-03-15 Alnylam Pharmaceuticals, Inc. Carbohydrate conjugates as delivery agents for oligonucleotides
US9808030B2 (en) 2011-02-11 2017-11-07 Grain Processing Corporation Salt composition

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08507747A (en) * 1992-12-30 1996-08-20 クローバー コンソリデイテッド,リミテッド Reusable macroencapsulation system that protects biologically active material packets and is biocompatible
JP2001524509A (en) * 1997-12-02 2001-12-04 ウエスト・ファーマシューティカル・サービセズ・ドラッグ・デリバリー・アンド・クリニカル・リサーチ・センター・リミテッド Composition for nasal administration
JP4754067B2 (en) * 1997-12-02 2011-08-24 アルキメデス ディヴェロプメント リミテッド Composition for nasal administration
WO1999036059A3 (en) * 1997-12-30 1999-09-16 Cosmeticos Natural Ind Com Microcapsules; process for preparing microcapsules containing a biologically active compound and liquid solution
EP2216407A2 (en) 2003-03-07 2010-08-11 Alnylam Pharmaceuticals, Inc. Therapeutic Compositions
EP3450559A1 (en) 2003-03-07 2019-03-06 Alnylam Pharmaceuticals, Inc. Therapeutic compositions
EP2239329A1 (en) 2003-03-07 2010-10-13 Alnylam Pharmaceuticals, Inc. Therapeutic compositions
WO2004094595A2 (en) 2003-04-17 2004-11-04 Alnylam Pharmaceuticals Inc. MODIFIED iRNA AGENTS
WO2004094345A2 (en) 2003-04-17 2004-11-04 Alnylam Pharmaceuticals Inc. Protected monomers
EP2660322A2 (en) 2003-04-17 2013-11-06 Alnylam Pharmaceuticals Inc. Modified iRNA agents
EP2664672A1 (en) 2003-04-17 2013-11-20 Alnylam Pharmaceuticals Inc. Modified iRNA agents
EP2666858A1 (en) 2003-04-17 2013-11-27 Alnylam Pharmaceuticals Inc. Modified iRNA agents
EP2669377A2 (en) 2003-04-17 2013-12-04 Alnylam Pharmaceuticals Inc. Modified iRNA agents
JP2007537288A (en) * 2004-05-12 2007-12-20 バクスター インターナショナル インコーポレイテッド Oligonucleotide-containing microspheres, use thereof for the manufacture of a medicament for treating type 1 diabetes
JP2007537284A (en) * 2004-05-12 2007-12-20 バクスター インターナショナル インコーポレイテッド Nucleic acid microspheres, their production and delivery
JP2006257080A (en) * 2005-02-18 2006-09-28 Santen Pharmaceut Co Ltd Method for reducing or avoiding adverse effect of steroid compound
EP3141265A1 (en) 2007-12-04 2017-03-15 Alnylam Pharmaceuticals, Inc. Carbohydrate conjugates as delivery agents for oligonucleotides
US9931411B2 (en) 2010-12-24 2018-04-03 Samyang Biopharmaceuticals Corporation Microparticles containing physiologically active peptide, method for preparing the same, and pharmaceutical composition comprising the same
JP2014501252A (en) * 2010-12-24 2014-01-20 サムヤン バイオファーマシューティカルズ コーポレイション MICROPARTICLES CONTAINING BIOACTIVE PEPTIDE, PROCESS FOR PRODUCING THE SAME, AND PHARMACEUTICAL COMPOSITION CONTAINING THE SAME
US9808030B2 (en) 2011-02-11 2017-11-07 Grain Processing Corporation Salt composition
WO2016057693A1 (en) 2014-10-10 2016-04-14 Alnylam Pharmaceuticals, Inc. Methods and compositions for inhalation delivery of conjugated oligonucleotide

Similar Documents

Publication Publication Date Title
US7927618B2 (en) Implants, particles
NL195027C (en) Process for preparing microparticles for slow release of water-soluble peptides and preparations thereof.
EP0102265B1 (en) Injectable, long-acting microparticle formulation for the delivery of anti-inflammatory agents
US5603960A (en) Preparation of microparticles and method of immunization
TW555569B (en) Biodegradable microparticles for the sustained delivery of therapeutic drugs
US4542025A (en) Injectable, long-acting microparticle formulation for the delivery of anti-inflammatory agents
US5759582A (en) Controlled release of pharmaceutically active substances from coacervate microcapsules
JPH05500961A (en) protein microsphere composition
KR100535319B1 (en) Drug composition with controlled drug release rate
KR19990064267A (en) Sustained-release particles
BG64642B1 (en) Pharmaceutical composition having continuous release of medicamentous forms capsulated in hyluronic acid microparticles
JPH10502673A (en) Formulations and methods for providing sustained local anesthesia
JP4073478B2 (en) Biodegradable controlled-release microspheres and their production
JP2001515862A (en) Controlled release microsphere delivery system
KR20010002589A (en) Process for preparing biodegradable microspheres containing physiologically active agents
JPH0436233A (en) Sustained release preparation containing physiologically active substance and decomposable and absorbable in living body
CN107007875B (en) Enzyme and temperature dual-responsiveness drug-loaded hydrogel and preparation method and application thereof
JP2023506175A (en) Cariprazine release formulation
PT1317254E (en) Sustained release particle dispersion
JPH03163032A (en) Sustained release pharmaceutical for intracephalic administration
US20030125237A1 (en) Controlled release preparation of insulin and its method
Saez et al. Microspheres as delivery systems for the controlled release of peptides and proteins
JPWO2007102447A1 (en) Adhesive microcapsules
WO2006123361A2 (en) Microspheres containing goserelin or a pharmaceutically acceptable salt thereof
US6723347B1 (en) Proces for producing protein powder