JPH04123908A - Pneumatic radial tire - Google Patents

Pneumatic radial tire

Info

Publication number
JPH04123908A
JPH04123908A JP2243870A JP24387090A JPH04123908A JP H04123908 A JPH04123908 A JP H04123908A JP 2243870 A JP2243870 A JP 2243870A JP 24387090 A JP24387090 A JP 24387090A JP H04123908 A JPH04123908 A JP H04123908A
Authority
JP
Japan
Prior art keywords
bead
resin
fiber
tire
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2243870A
Other languages
Japanese (ja)
Other versions
JP2977877B2 (en
Inventor
Shizuo Iwasaki
静雄 岩崎
Norio Inada
稲田 則夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2243870A priority Critical patent/JP2977877B2/en
Publication of JPH04123908A publication Critical patent/JPH04123908A/en
Application granted granted Critical
Publication of JP2977877B2 publication Critical patent/JP2977877B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Tires In General (AREA)

Abstract

PURPOSE:To reduce the weight of a tire and to secure the safety and reliability of a bead by using a bead reinforcing member formed of an organic fiber-resin complex cord meeting a specified condition. CONSTITUTION:A tire is at least provided with a bead 1, bead filler 2, and a carcass ply 3. In this case, an organic fiber-resin complex cord composed of a fiber aggregate formed of an organic fiber practically bundled in mutually parallel and a resin filled in the gap of the fiber aggregate is prepared. In addition to that, the bead 1 is provided with the organic fiber-resin complex cord which has the modulus of longitudinal elasticity of 1000kg/mm<2> or more, tensile strength of 1000kg or more, and the weight ratio of the above resin being within 25-80% by weight to the whole of the organic fiber-resin complex cord as a reinforcing member.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、空気入りラジアルタイヤに関し、詳しくはビ
ード部およびビード部周囲の大幅な軽量化を図ることに
よりタイヤ自体の大幅な軽量化を実現し低燃費性を向上
させた空気入りラジアルタイヤに関するものである。
[Detailed Description of the Invention] (Field of Industrial Application) The present invention relates to a pneumatic radial tire, and more specifically, the tire itself can be significantly reduced in weight by significantly reducing the weight of the bead and the area around the bead. This invention relates to pneumatic radial tires with improved fuel efficiency.

(従来の技術) 従来、タイヤ用のヒート補強体としては、例えばゴムで
被覆した複数本の硬鋼線を並列に押し出し、これを所定
の直径を有するよう積層巻回したものが知られている。
(Prior Art) Conventionally, as a heat reinforcement body for tires, it is known that, for example, a plurality of hard steel wires coated with rubber are extruded in parallel and then laminated and wound to have a predetermined diameter. .

このビート補強体の断面形状は四角形状、六角形状等、
多角形状を有している。また、他の例として、環状の芯
線の周囲に硬鋼線を螺旋状に複数層に巻回した断面円形
状のビ−ドも知られている。
The cross-sectional shape of this beat reinforcement body may be square, hexagonal, etc.
It has a polygonal shape. As another example, a bead with a circular cross section is also known, in which hard steel wire is spirally wound in multiple layers around an annular core wire.

(発明が解決しようとする課題) しかしながら、従来のビード補強体は、いずれもその累
月として比重約7.8の硬鋼線を用いているので、ビー
ド補強体自体の重量が大きくなり、このためタイヤ重量
が大きくなるという問題があった。
(Problems to be Solved by the Invention) However, all conventional bead reinforcements use hard steel wire with a specific gravity of approximately 7.8, which increases the weight of the bead reinforcement itself. Therefore, there was a problem that the tire weight increased.

このため、従来、硬鋼線の破断強度を向上させたり、ビ
ード補強体の平均断面積当りの破断強度を向」ニさせる
ことによってビード補強体全体の重量の軽減を図ること
がなされているが、いずれの場合もビート補強体の重量
の軽減率は高々10%程度であり、タイヤ重量全体に対
する軽減率は0.3%程度でしかなかった。
For this reason, attempts have been made to reduce the overall weight of the bead reinforcement by improving the breaking strength of the hard steel wire or by increasing the breaking strength per average cross-sectional area of the bead reinforcement. In all cases, the weight reduction rate of the bead reinforcement was about 10% at most, and the weight reduction rate relative to the entire tire weight was only about 0.3%.

そこで本発明の目的は、ビード部材に比重の小さい有機
繊維を用いることによりタイヤ重量を軽減して転り抵抗
を改良するとともに、適用する有機繊維ビード部材に適
したビード構造をとることによって、耐久性にも傍れた
空気入りラジアルタイヤを提供することにある。
Therefore, the purpose of the present invention is to reduce tire weight and improve rolling resistance by using organic fibers with low specific gravity for bead members, and to improve durability by adopting a bead structure suitable for the organic fiber bead member to be applied. Our objective is to provide a pneumatic radial tire that is also versatile.

(課題を解決するための手段) 本発明者等は、有機繊維をビート部Hに使用するに際し
て、いかにしてタイヤの耐久性を損うことなく適用する
かにつき鋭意検討した結果、ヒーI・補強体の物性とし
て高い剛性が必要であるとともに、破断強度もある一定
以I−の大きさが必要であることを見出し、本発明を完
成するに至った。
(Means for Solving the Problems) The present inventors have conducted extensive studies on how to use organic fibers in the bead portion H without impairing the durability of the tire. The present invention was completed based on the discovery that the reinforcing body needs to have high rigidity as a physical property, and also needs to have a breaking strength of a certain value or more.

ずなわら、本発明は、イJ機繊糾を実質的に平行に束ね
た繊維集合体と、該繊維集合体の間隙に充填された樹脂
とからなる有機繊維・樹脂複合体:1−ドであって、長
手方i4] 1こ]、000に/mm2以−1−の弾性
率と、1000に++以上の引張り強度を有し、かつ上
記樹脂の重量比率が有機繊維・樹脂複合体コート全体に
対して25〜80重量%の範囲内にある有機繊維・樹脂
複合体コードを補強材としてヒート′部に具(mするこ
とを特徴とする空気入りラジアルタイヤに関するもので
ある。
However, the present invention is directed to an organic fiber/resin composite consisting of a fiber aggregate made of IJ machine fibers bundled substantially in parallel, and a resin filled in the gaps between the fiber aggregates. and has an elastic modulus of 1000 mm2 or more and a tensile strength of 1000 ++ or more, and the weight ratio of the resin is an organic fiber/resin composite coat. The present invention relates to a pneumatic radial tire characterized in that the heat section is provided with an organic fiber/resin composite cord in an amount of 25 to 80% by weight based on the total weight as a reinforcing material.

本発明に係るビート部補強材は、ヒート部のコアにあた
る部分だけをスチール、チタン等金属又は無機質の=1
− ドとし、その周囲に上記有機繊維・樹脂複合体コー
ドを螺旋状に巻きつげて構成してもよい。
In the beat part reinforcing material according to the present invention, only the part corresponding to the core of the heat part is made of metal such as steel, titanium, or inorganic material.
- The organic fiber/resin composite cord may be wound spirally around the cord.

尚、一般にビード部材をスチールコードから有機繊維コ
ードとすることで特に弾性率が低下するために、ビード
部の周囲のビートフィラーゴムのゴム量を増すことが考
えられるが、この場合却ってタイヤ重量増となり、本発
明の本来の目的である軽量化に逆行してしまう結果とな
る。
Generally, changing the bead material from steel cord to organic fiber cord particularly lowers the elastic modulus, so increasing the amount of bead filler rubber around the bead may be considered, but in this case, the weight of the tire will increase. This results in a result that goes against the original purpose of the present invention, which is weight reduction.

そこで、本発明で用いるビートフィラーゴムの弾性率は
高い方がよく、好ましくは0.30kg/mm2以上と
し、またタイヤ中心を通りタイヤ周方向に対して垂直な
平面でカットシた際(第1図参照)のビードフィラーゴ
ムの断面積Sg(mm2)がビード部の断面積S 、 
(mm”)と次式、S −/ S b≦3 の関係を満足し、かつ該ビードフィラーゴムの弾性率1
?、gとビードフィラーゴムの断面積Sgが次式3式%
() の関係を満足することが好ましい。
Therefore, the elastic modulus of the beet filler rubber used in the present invention should be higher, preferably 0.30 kg/mm2 or more, and when cut on a plane passing through the tire center and perpendicular to the tire circumferential direction (see Fig. The cross-sectional area Sg (mm2) of the bead filler rubber (see) is the cross-sectional area S of the bead portion,
(mm”) and the following formula, S − / S b ≦ 3, and the elastic modulus of the bead filler rubber is 1
? , g and the cross-sectional area Sg of the bead filler rubber are expressed by the following formula 3%
It is preferable that the relationship () is satisfied.

尚、第1図中、1はビード、2はヒードフイラ、3はカ
ーカスプライを示す。
In FIG. 1, 1 indicates a bead, 2 indicates a heat filler, and 3 indicates a carcass ply.

本発明においては、有機繊維として芳香族ポリアミド繊
維(アラミド繊維)、高強力・高弾性率PVA繊維、液
晶ポリエステル繊維などの高強力・高弾性の繊維を好適
に使用することができる。
In the present invention, high strength and high elastic fibers such as aromatic polyamide fibers (aramid fibers), high strength and high elastic modulus PVA fibers, and liquid crystal polyester fibers can be suitably used as the organic fibers.

かかる芳香族ポリアミド繊維とは、例えばポリ(]、、
]4−フェニレンテレフタルアミl)繊維、ポリ−14
−フェニレンテレフタルアミド−3,4′ジアミノジフ
工ニルエーテル共重合体繊糾、ポリ(1,4−ベンズア
ミド)繊維、ポリ (1,,3−フェニレンイソフタル
アミド)繊維等である。これら芳香族ポリアミド繊維の
中でも、1)upont社製のKevlar 49. 
Kevlar 1.49(商品名)などは弾性率が夫々
11ll100(/mm2) 、14700(kg/n
+m2) と高く、特に好ましい。
Such aromatic polyamide fibers include, for example, poly(],
] 4-phenylene terephthalamyl) fiber, poly-14
-phenylene terephthalamide-3,4'diaminodiphthalamide copolymer fiber, poly(1,4-benzamide) fiber, poly(1,,3-phenylene isophthalamide) fiber, and the like. Among these aromatic polyamide fibers, 1) Kevlar 49.
Kevlar 1.49 (product name) has an elastic modulus of 11ll100 (/mm2) and 14700 (kg/n), respectively.
+m2), which is particularly preferable.

また高強度・高弾性ボリヒニルアルコール(+)VA)
繊維とは、エチレングリコール、グリセリン等の有機溶
剤系紡糸原液から半乾半湿式紡糸方法によって紡糸し、
延伸して得られる高強度・高弾性のPVA繊維で、従来
のビニロンと区別され、158/d以上の原糸強度を有
する繊維であゲで、さらに繊維の少なくとも表面の一0
11基の一部が脱水酸基処理されているものが耐疲労性
に優れており、好ましい。
In addition, high strength and high elasticity polyhinyl alcohol (+) VA)
Fibers are produced by spinning from organic solvent-based spinning solutions such as ethylene glycol and glycerin using a semi-dry and semi-wet spinning method.
A high-strength, high-elastic PVA fiber obtained by drawing, which is distinguished from conventional vinylon, has a filament strength of 158/d or more, and has a fiber strength of at least 10% on the surface of the fiber.
The one in which some of the 11 groups have been treated with dehydroxyl groups is preferable because it has excellent fatigue resistance.

本発明に係る有機繊維・樹脂複合体コート補強体として
は、例えば単糸繊維を束ね1500デニールになる様に
、これにエポキシ樹脂として液状ビスフェノールA型エ
ポキシ、硬化剤として液状メチルへキサヒドロ無水フタ
ル酸、硬化促進剤としてヘンシルジメチルアミン、さら
にエラストマーとして酸末端液状NBRを一部添加した
ものによく浸透させ、その後150°Cで3分間熱処理
を行い、繊維−樹脂の複合線状体としたものを用いるこ
とができる。
For the organic fiber/resin composite coated reinforcement according to the present invention, for example, single fibers are bundled to have a density of 1,500 deniers, liquid bisphenol A epoxy is used as the epoxy resin, and liquid methylhexahydrophthalic anhydride is used as the curing agent. It was well penetrated into a mixture of hensyl dimethylamine as a curing accelerator and a portion of acid-terminated liquid NBR as an elastomer, and then heat-treated at 150°C for 3 minutes to form a fiber-resin composite linear body. can be used.

該有機繊維を包埋するかかる樹脂の種類としては、熱硬
化性樹脂、熱可塑性樹脂ともに使用することができる。
As the type of resin for embedding the organic fibers, both thermosetting resins and thermoplastic resins can be used.

熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂
、メラミン樹脂、不飽和ポリエステル樹脂、ビニルエス
テル樹脂、ポリイミド樹脂、ビスマレイミド樹脂などが
挙げられる。
Examples of the thermosetting resin include epoxy resin, phenol resin, melamine resin, unsaturated polyester resin, vinyl ester resin, polyimide resin, and bismaleimide resin.

また熱0J塑性樹脂としては、・ノ゛イロン、ポリエス
テル、ポリエーテルエーテルゲトン、ポリカーホネーI
・、ポリアセクール、ポリエーテルスルホン等が挙げら
れる。尚、これら中から2種以トを用いたポリマーブレ
ンド物でも良く、また熱硬化性樹脂と熱iJJ塑性樹脂
のブレンド物でも良い。
In addition, thermal 0J plastic resins include: ・Nylon, polyester, polyetherethergetone, polycarbonate I
-, polyacecool, polyether sulfone, etc. In addition, a polymer blend using two or more of these may be used, or a blend of a thermosetting resin and a thermal iJJ plastic resin may be used.

(作 用) 本発明の空気入りラジアルタイA・にビード材として用
いることのできる有機繊維の物性を他のコードと比較し
″ζ下記の第1表に示す。
(Function) The physical properties of organic fibers that can be used as bead materials in the pneumatic radial tie A of the present invention are compared with those of other cords and are shown in Table 1 below.

第□−、、、!−、、、、、、−,−大箱1表から明ら
かなように、明らかにスチールコートは比重が大きく、
タイヤの軽量化を図る場合の大きな妨げとなる。そこで
比重が小さい有機繊維の適用が望まれるのであるが、弾
性率の低い材料を使用するとビード部の本来の役割りで
ある、タイヤとリムとが動かない様にしっかりと固定す
るというタガ効果が十分発揮されずに、走行中にタイヤ
とリムがずれるというリムずれが生じる。
No. □-,,,! -,,,,,,-,-As is clear from the large box 1 table, steel coat clearly has a high specific gravity;
This is a major hindrance when trying to reduce the weight of tires. Therefore, it is desirable to use organic fibers with a low specific gravity, but using a material with a low modulus of elasticity will reduce the bead's original role of firmly fixing the tire and rim so that they do not move. Rim slippage occurs when the tire and rim become misaligned while driving due to insufficient performance.

即ち、ビード部として引張り剛性が不足することは絶対
に避けなければいけないことである。
That is, it is absolutely necessary to avoid insufficient tensile rigidity in the bead portion.

また、本発明においては有機繊維集合体の間隙に充填さ
れている樹脂の体積がコード樹脂複合体の全体積に対し
て25〜80重量%の範囲内であることが必要である。
Further, in the present invention, it is necessary that the volume of the resin filled in the gaps between the organic fiber aggregates is within the range of 25 to 80% by weight based on the total volume of the cord resin composite.

樹脂の比率が80重量%を超えると引張り強度が低下し
てしまい、同じ強力を得るためには体積がかさ高くなり
過ぎ、好ましくない。好ましくは−1−記樹脂比率が8
0重量%以下であり、更に好ましくは70重量%以下で
ある。逆に樹脂の比率が25重量%未満では有機繊維を
束ねる効果が低く、繊維がほつれ易くなる。繊維フィラ
メントを完全に覆うためには、樹脂の体積比率が25重
量%以l二であることが好ましく、更に好ましくは35
重足%以上である。
If the proportion of resin exceeds 80% by weight, the tensile strength will decrease and the volume will become too bulky to obtain the same strength, which is not preferable. Preferably -1- resin ratio is 8
It is 0% by weight or less, more preferably 70% by weight or less. On the other hand, if the resin ratio is less than 25% by weight, the effect of bundling the organic fibers is low and the fibers tend to fray. In order to completely cover the fiber filaments, the volume ratio of the resin is preferably 25% by weight or more, more preferably 35% by weight.
It is more than Jyuashi%.

また、ビートとしての特性からリムMiノ時にヒート材
は大変形を受けるため、」二連の有機織1i1・樹脂複
合体コートは少なくとも1.000 kg以上の引張り
強度を有することが必要であま。この引張り強度が10
00kg未満であると、す1、組め時にヒートが破断す
ることがあり、この条件を満たずことは極めて重要であ
る。
In addition, because the heating material undergoes large deformation during rimming due to its characteristics as a beet, the double organic woven 1i1/resin composite coat must have a tensile strength of at least 1.000 kg or more. This tensile strength is 10
If the weight is less than 0.00 kg, the heat may break during assembly, so it is extremely important that this condition is not met.

更に、ビードフィラーゴムは、その体積の少ないことが
タイヤの重量軽減に大きく寄与するので、その体積V9
はビード部の体積V、の3倍よりも少ない方が良い。
Furthermore, the small volume of bead filler rubber greatly contributes to reducing the weight of the tire, so its volume V9
is preferably less than three times the volume V of the bead portion.

即ち、L/V、≦3とすることが好ましい。That is, it is preferable that L/V≦3.

ここで、便宜的にタイヤの中心を通りタイヤ周方向に対
して垂直な平面でカッl−した際(第1図参照)のビー
ドフィラーゴムの断面積を39(mm)とし、ビード部
の断面積をS b(mm)とすると、これらは近似的に
V9/V、、=39/Sgとなり、従って39/Sg≦
3とすることが好ましいごとになる。
For convenience, the cross-sectional area of the bead filler rubber when cut on a plane passing through the center of the tire and perpendicular to the tire circumferential direction (see Figure 1) is assumed to be 39 (mm), and the cross-sectional area of the bead portion is assumed to be 39 (mm). If the area is S b (mm), these are approximately V9/V, , = 39/Sg, so 39/Sg≦
It is preferable to set it to 3.

また、ヒートフィラーゴムの弾性率は少なくとも0.3
0kg/mm2以上必要である。ビートの役割りである
タイヤをリムにしっかり固定するという機能をビードフ
ィラーゴムも一部担っているので、これより低い弾性率
であることはビードとしての機能を十分に発揮させる−
1−で好ましくない。
Further, the elastic modulus of the heat filler rubber is at least 0.3.
0 kg/mm2 or more is required. The bead filler rubber also plays a part in the function of the bead, which is to securely fix the tire to the rim, so having an elastic modulus lower than this allows it to fully demonstrate its function as a bead.
1- is unfavorable.

尚、ビードフィラーゴムの引張り弾性率Egが高ければ
、その分だけビードフィラーゴムの断面積Sgは小さく
ても、かかる機能を果たすことができるので、次式、 EgXSg≧15 (kg) の関係を満足する範囲で89を小さくすることが好まし
い。
In addition, if the tensile modulus Eg of the bead filler rubber is high, even if the cross-sectional area Sg of the bead filler rubber is small, it can still perform the function, so the following equation, EgXSg≧15 (kg), can be expressed. It is preferable to reduce 89 within a satisfactory range.

ここで、ビートフィラーゴムの弾性率はJIS規格K 
6301に準じた方法で試験サンプルを準備し、該ゴム
が50%伸長時に生じる応力値をサンプルの断面積で除
した値を示す。
Here, the elastic modulus of beat filler rubber is JIS standard K
A test sample is prepared according to the method according to No. 6301, and the value obtained by dividing the stress value generated when the rubber is elongated by 50% by the cross-sectional area of the sample is shown.

(実施例) 次に、本発明を実施例及び比較例により説明する。(Example) Next, the present invention will be explained with reference to Examples and Comparative Examples.

第2表に示す各種ビード材について、ビード繊維の種類
及び重量、熱硬化性樹脂の比率、弾性率、強度、ビード
フィラーゴム断面積、ビード断面積、ビードフィラーゴ
ム弾性率、リム組み時ビート折れの有無、リムずれの有
無を夫々調べた。
Regarding the various bead materials shown in Table 2, type and weight of bead fiber, ratio of thermosetting resin, elastic modulus, strength, bead filler rubber cross-sectional area, bead cross-sectional area, bead filler rubber elastic modulus, bead breakage during rim assembly. The presence or absence of rim displacement was examined.

強度及び弾性率の測定方法は、ビー1′を構成するスチ
ールコード1本もしくは有機繊維・樹脂複合体コート1
本をタイヤから取り出し、JIS規格Z 2241 :
金属材料引張試験方法に準した方法にて測定し、このう
ち弾性率はその破断時の強度とまた同時に得られる強伸
度曲線から、伸び1%時にお&Jる強伸度曲線の接線の
(q“1きの100%伸びたものと仮定してその時生じ
るであろう応力を、測定した断面積で割った値である。
The strength and modulus of elasticity are measured using one steel cord or organic fiber/resin composite coat 1 that makes up Bea 1'.
Take out the book from the tire and read JIS standard Z 2241:
The elastic modulus is measured using a method similar to the tensile test method for metal materials, and the elastic modulus is calculated from the strength at break and the strength/elongation curve obtained at the same time. This is the value obtained by dividing the stress that would occur under the assumption that the material was elongated by 100% by q"1 by the measured cross-sectional area.

リムずれの有無試験は、タイヤとリムに予め印をつけて
おき、供試ビード材を適用した1、655R13ザイズ
のタイヤを装着した車輌で操縦安定性テストを行うのと
同じ内容でブレーキ、レーンチェンジ、高速旋回等の各
メニューを行った後、タイヤとリムとの間にずれが生じ
ているか否かをチエツクした。
The rim displacement test was performed by marking the tires and rims in advance, and testing the brakes and lanes in the same manner as conducting the steering stability test on a vehicle equipped with 1,655R13 size tires using the sample bead material. After performing various menus such as changing gears and turning at high speed, we checked to see if there was any misalignment between the tire and the rim.

失詣孤上、−ル較側」 ここで、比較例1ば現在使用されている乗用車用タイヤ
の通常のビードであり、一方実施例]はアラミド繊維を
エポキシ樹脂で含浸し、樹脂と繊維の全体の体積に対す
る樹脂の比率を40重量%としたものを内径約13イン
チの円環状に上記樹脂複合繊維コードを適宜数周螺旋状
に巻き付け、更にRIi L液に浸漬し、1.30°C
で乾燥させ、さらに210°Cにて熱処理して165S
R13のタイヤ用のビードを作って、このビード材につ
き試験を行った。
Here, Comparative Example 1 is a normal bead for passenger car tires currently in use, while Example] is an aramid fiber impregnated with an epoxy resin, and the resin and fiber are bonded together. The above-mentioned resin composite fiber cord was spirally wound several times in an annular shape with an inner diameter of approximately 13 inches, with a ratio of resin to the total volume of 40% by weight, and then immersed in RIi L solution and heated at 1.30°C.
165S after drying at 210°C and heat-treating
A bead for an R13 tire was made and a test was conducted on this bead material.

ル較列2−LJk較M立 比較例2は、ビード材としてアラミド繊維の有機繊維・
樹脂複合体コードを用いたものであるが、樹脂の重量比
率がコード樹脂複合体全体に対し10重量%と本発明の
範囲から逸脱している。一方、比較例3は、ビード材と
してポリエステル繊維の有機繊維・樹脂複合体コードを
用いたものである。
Comparative Example 2 uses organic fibers of aramid fibers as the bead material.
Although a resin composite cord is used, the weight ratio of the resin is 10% by weight based on the entire cord resin composite, which is outside the scope of the present invention. On the other hand, in Comparative Example 3, an organic fiber/resin composite cord of polyester fiber was used as the bead material.

ラーゴムの弾性率と量を変えたものを3種作成した。Three types were created with different elastic modulus and amount of rubber.

第2表より次のことが確かめられた。The following was confirmed from Table 2.

比較例2のスチールコードをビード材として使用した場
合と比較して、実施例1のアラミド繊維をビード材とし
て使用したビード重量は約2分の1であった。
Compared to the case where the steel cord of Comparative Example 2 was used as the bead material, the weight of the bead when the aramid fiber of Example 1 was used as the bead material was about half.

比較例2および3ともにビードの軽量化は図れたが、比
較例2の場合引張り強度が低(、リム組み時にビードが
折れてしまった。一方、比較例3は引張り強度は十分だ
ったが、弾性率が低く、走行中にリムずれが生じてしま
った。
Although the bead weight of both Comparative Examples 2 and 3 was reduced, the tensile strength of Comparative Example 2 was low (the bead broke during rim assembly. On the other hand, the tensile strength of Comparative Example 3 was sufficient, but The elastic modulus was low, causing rim misalignment while driving.

実施例2では、ビードフィラーゴムの弾性率を下げ、ビ
ードフィラーゴム量も減らしたため、僅かだがリムずれ
が生じた。これに対し、比較例4は、ビードフィラーゴ
ムの弾性率が低く過ぎるためにリムずれが生じた。また
、比較例5は、ヒートフィラーゴム量を極端に減らした
ため、SgXEgが900kgと低く、リムずれが特に
大きかった。
In Example 2, because the elastic modulus of the bead filler rubber was lowered and the amount of bead filler rubber was also reduced, a slight rim shift occurred. On the other hand, in Comparative Example 4, rim displacement occurred because the elastic modulus of the bead filler rubber was too low. Furthermore, in Comparative Example 5, the amount of heat filler rubber was extremely reduced, so SgXEg was as low as 900 kg, and rim displacement was particularly large.

(発明の効果) 以上説明してきたように、本発明の空気入りラジアルタ
イヤにおいては、特定の条件を満たす有機繊維・樹脂複
合体コードによるビート補強体を使用したごとによりタ
イヤの重用軽減が極めて太き(、かつビードの安全性お
よび信頼性を)11うことかないという効果が1)られ
る。
(Effects of the Invention) As explained above, in the pneumatic radial tire of the present invention, the heavy use of the tire is greatly reduced by using the bead reinforcement made of organic fiber/resin composite cords that meet specific conditions. The following effects are achieved: 1) the safety and reliability of the bead is improved;

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一例空気入りタイヤの、タイヤ中心を
通りタイヤ周方向に対して垂直な゛ド面でカットした右
半分断面図である。 1・・・ヒート       2・・・ビートフィラー
ゴム3・・・カー力スブライ
FIG. 1 is a right half sectional view of a pneumatic tire as an example of the present invention, cut along a diagonal plane passing through the center of the tire and perpendicular to the circumferential direction of the tire. 1...Heat 2...Beat filler rubber 3...Carr force sublime

Claims (1)

【特許請求の範囲】 1、有機繊維を実質的に平行に束ねた繊維集合体と、該
繊維集合体の間隙に充填された樹脂とからなる有機繊維
・樹脂複合体コードであって、長手方向に1000kg
/mm^2以上の弾性率と、1000kg以上の引張り
強度を有し、かつ上記樹脂の重量比率が有機繊維・樹脂
複合体コード全体に対して25〜80重量%の範囲内に
ある有機繊維・樹脂複合体コードを補強材としてビード
部に具備することを特徴とする空気入りラジアルタイヤ
。 2、ビードフィラーゴムの弾性率が0.30kg/mm
^2以上であり、タイヤ中心を通りタイヤ周方向に対し
て垂直な平面でカットした際のビードフィラーゴムの断
面積S_g(mm^2)がビード部の断面積S_b(m
m^2)と次、 S_g/S_b≦3 の関係を満足し、かつ該ビードフィラーゴムの弾性率E
_gとビードフィラーゴムの断面積S_gが次式、 S_g×E_g≧15(kg) の関係を満足することを特徴とする請求項1記載の空気
入りラジアルタイヤ。
[Scope of Claims] 1. An organic fiber/resin composite cord consisting of a fiber aggregate in which organic fibers are bundled substantially in parallel, and a resin filled in the gaps between the fiber aggregates, which 1000kg to
An organic fiber having an elastic modulus of /mm^2 or more and a tensile strength of 1000 kg or more, and in which the weight ratio of the above resin is within the range of 25 to 80% by weight based on the entire organic fiber / resin composite cord. A pneumatic radial tire characterized by having a resin composite cord as a reinforcing material in the bead portion. 2. The elastic modulus of the bead filler rubber is 0.30 kg/mm
^2 or more, and the cross-sectional area S_g (mm^2) of the bead filler rubber when cut along a plane passing through the center of the tire and perpendicular to the tire circumferential direction is equal to the cross-sectional area S_b (m
m^2) and the following: satisfies the relationship S_g/S_b≦3, and the elastic modulus E of the bead filler rubber
The pneumatic radial tire according to claim 1, wherein _g and the cross-sectional area S_g of the bead filler rubber satisfy the following relationship: S_g×E_g≧15 (kg).
JP2243870A 1990-09-17 1990-09-17 Pneumatic radial tire Expired - Lifetime JP2977877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2243870A JP2977877B2 (en) 1990-09-17 1990-09-17 Pneumatic radial tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2243870A JP2977877B2 (en) 1990-09-17 1990-09-17 Pneumatic radial tire

Publications (2)

Publication Number Publication Date
JPH04123908A true JPH04123908A (en) 1992-04-23
JP2977877B2 JP2977877B2 (en) 1999-11-15

Family

ID=17110206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2243870A Expired - Lifetime JP2977877B2 (en) 1990-09-17 1990-09-17 Pneumatic radial tire

Country Status (1)

Country Link
JP (1) JP2977877B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100608083B1 (en) * 2001-09-11 2006-08-02 주식회사 엘지화학 Sound Insulating and Fire Proof Panel For Building
JP2008191013A (en) * 2007-02-05 2008-08-21 Yokohama Rubber Co Ltd:The Rim slippage measuring device and rim slippage measuring method
JP2008309723A (en) * 2007-06-15 2008-12-25 Yokohama Rubber Co Ltd:The Rim slippage measuring device and rim slippage measuring technique

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100608083B1 (en) * 2001-09-11 2006-08-02 주식회사 엘지화학 Sound Insulating and Fire Proof Panel For Building
JP2008191013A (en) * 2007-02-05 2008-08-21 Yokohama Rubber Co Ltd:The Rim slippage measuring device and rim slippage measuring method
JP2008309723A (en) * 2007-06-15 2008-12-25 Yokohama Rubber Co Ltd:The Rim slippage measuring device and rim slippage measuring technique

Also Published As

Publication number Publication date
JP2977877B2 (en) 1999-11-15

Similar Documents

Publication Publication Date Title
US4688615A (en) Reinforcing structure for a rubber article
KR101428644B1 (en) Tire having a light weight belt structure
JP5662997B2 (en) Tire with radial carcass reinforcement
US5246051A (en) Pneumatic radial tires including belt cords with filament resin composite bodies
JP3611395B2 (en) Pneumatic radial tire
JPS6171204A (en) Ply for carcass in pneumatic radial tire
JPS63106103A (en) High pressure pneumatic radial type for heavy load
WO2001076892A1 (en) Composite comprising organic fibers having a low twist multiplier and improved compressive modulus
JP2011218982A (en) Pneumatic radial tire
JP4769613B2 (en) Pneumatic safety tire
US6460586B1 (en) Multi-region band element for run flat tire
US6851463B1 (en) Composite comprising organic fibers having a low twist multiplier and improved compressive modulus
WO2007063875A1 (en) Pneumatic tire for motorcycle
EP0293263B1 (en) Rubber-reinforcing cords and radial-ply tires using the same
US6405773B1 (en) Run flat pneumatic tire and band element therefor
JP5093874B2 (en) Pneumatic tire
JPH04123908A (en) Pneumatic radial tire
US5291930A (en) Pneumatic radial tires including fiber/resin belt cords having elliptical or rectangular cross-sectional shape
EP4228906A1 (en) Non-pneumatic tire having reinforced support structure and method of making same
JPH06143914A (en) Pneumatic radial tire
IT202000014521A1 (en) TIRE FOR VEHICLE WHEELS
JP3345083B2 (en) Pneumatic radial tire
JP2000142019A (en) Pneumatic radial tire for heavy load
JPH058609A (en) Pneumatic radial tire
JPH04110208A (en) Pneumatic radial tyre