JPH04123424A - Film formation of silicon-based thin film - Google Patents

Film formation of silicon-based thin film

Info

Publication number
JPH04123424A
JPH04123424A JP2242577A JP24257790A JPH04123424A JP H04123424 A JPH04123424 A JP H04123424A JP 2242577 A JP2242577 A JP 2242577A JP 24257790 A JP24257790 A JP 24257790A JP H04123424 A JPH04123424 A JP H04123424A
Authority
JP
Japan
Prior art keywords
gas
film
chamber
discharge
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2242577A
Other languages
Japanese (ja)
Other versions
JP2727532B2 (en
Inventor
Hisatoshi Mori
森 久敏
Naohiro Konya
紺屋 直弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2242577A priority Critical patent/JP2727532B2/en
Priority to US07/690,816 priority patent/US5284789A/en
Priority to DE69128210T priority patent/DE69128210T2/en
Priority to EP91106621A priority patent/EP0454100B1/en
Priority to KR1019910006715A priority patent/KR940008356B1/en
Publication of JPH04123424A publication Critical patent/JPH04123424A/en
Priority to US07/975,282 priority patent/US5367179A/en
Priority to US08/004,641 priority patent/US5243202A/en
Application granted granted Critical
Publication of JP2727532B2 publication Critical patent/JP2727532B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To uniformize film quality over the whole film thickness and to prevent defects such as pin holes and weak spots by starting RF discharge after only the dilute gas of the material gas and the dilute gas is introduced into a chamber to adjust the substrate temperature and the in-chamber pressure and by introducing the material gas into the chamber. CONSTITUTION:Only the dilute gas is introduced into the chamber to adjust the substrate temperature and the in-chamber pressure; then, RF discharge is started, and the material gas is introduced into the chamber. Before RF discharge is started, substance deposited on a substrate by thermolysis does not exist in the chamber; therefore, there is no conventional possibility that the thermolysis substance of the material gas is deposited on the substrate before RF discharge is started. Introducing the material gas into the chamber after RF discharge is started allows a silicon-based thin film formed by plasma CVD to grow uniformly without defects such as pin holes and weak spots over the whole area from the beginning of film formation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、St N (窒化シリコン)膜、510(酸
化シリコン)膜、a−Si:H(水素化アモルファスシ
リコン)膜、n”−a−Si(不純物が添加されたアモ
ルファスシリコン)膜等のシリコン系薄膜をプラズマC
VD法によって成膜するシリコン系薄膜の成膜方法に関
するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention is applicable to StN (silicon nitride) film, 510 (silicon oxide) film, a-Si:H (hydrogenated amorphous silicon) film, n''-a - Silicon-based thin films such as Si (amorphous silicon with added impurities) are heated using plasma C
The present invention relates to a method for forming a silicon-based thin film using a VD method.

〔従来の技術〕[Conventional technology]

例えば薄膜トランジスタは、ガラス等からなる基板上に
、ゲート電極と、ゲート絶縁膜と、n型半導体膜と、n
型半導体膜と、ソースおよびドレイン電極とを積層して
製造されており、一般に、前記ゲート絶縁膜にはSiN
膜あるいはSi膜膜が用いられ、n型半導体膜にはa−
3l:H膜が用いられ、n型半導体膜にはn”−a−S
i膜が用いられている。
For example, a thin film transistor includes a gate electrode, a gate insulating film, an n-type semiconductor film, and an n-type semiconductor film on a substrate made of glass or the like.
It is manufactured by laminating a type semiconductor film and source and drain electrodes, and generally the gate insulating film is made of SiN.
film or Si film is used, and the n-type semiconductor film is a-
A 3l:H film is used, and an n”-a-S film is used as an n-type semiconductor film.
i membrane is used.

これらSiN膜、Si膜膜、a−8t:H膜、n”−a
−8t膜等のシリコン系薄膜は、そのほとんどがプラズ
マCVD法によって基板上に成膜されている。このプラ
ズマCVD法は、原料ガスと希釈ガスをチャンバ内に導
入し、所定の成膜温度に基板を加熱するとともにチャン
バ内の圧力(ガス圧)を所定圧にした状態で、RF放電
により原料ガスおよび希釈ガスをプラズマ状態にして基
板上にシリコン系薄膜を堆積させる方法であり、SiN
膜は、SiH4(シラン)を主原料ガス、NH3(アン
モニア)を副原料ガスとし、N2(窒素)を希釈ガスと
して成膜され、SiO膜は、5IH4を主原料ガス、N
20(笑気ガス)を副原料ガスとし、N2(窒素)を希
釈ガスとして成膜されている。また、a−St:H膜は
、SiH4を原料ガス、N2(水素)を希釈ガスとして
成膜され、n”−a−8t膜は、SiH4を主原料ガス
、PH3(ホスフィン)を副原料ガスとし、N2 (水
素)を希釈ガスとして成膜されている。
These SiN films, Si films, a-8t:H films, n''-a
Most silicon-based thin films such as -8t films are formed on substrates by plasma CVD. In this plasma CVD method, source gas and diluent gas are introduced into a chamber, the substrate is heated to a predetermined film forming temperature, and the pressure inside the chamber (gas pressure) is maintained at a predetermined pressure.The source gas is then heated by RF discharge. This is a method of depositing a silicon-based thin film on a substrate by using diluent gas in a plasma state.
The film is formed using SiH4 (silane) as the main raw material gas, NH3 (ammonia) as the auxiliary raw material gas, and N2 (nitrogen) as the diluent gas.
The film was formed using 20 (laughing gas) as an auxiliary raw material gas and N2 (nitrogen) as a diluent gas. In addition, the a-St:H film is formed using SiH4 as a raw material gas and N2 (hydrogen) as a diluent gas, and the n''-a-8t film is formed using SiH4 as a main raw material gas and PH3 (phosphine) as an auxiliary raw material gas. The film was formed using N2 (hydrogen) as a diluent gas.

このプラズマCVD法によるシリコン系薄膜の成膜は、
従来、次のようにして行なわれている。
The formation of a silicon-based thin film by this plasma CVD method is as follows:
Conventionally, this is done as follows.

第6図は、SiN膜を成膜する場合のガス導入とRF放
電のタイミング図であり、このSiN膜の成膜は、まず
チャンバ内に、主原料ガスであるSiH,ガスと、副原
料ガスであるNH,ガスと、希釈ガスであるN2ガスと
の全てのガスを同時に導入し、この後、基板の温度とチ
ャンバ内の圧力(ガス圧)とを所定の成膜温度および圧
力に調整して、基板温度およびチャンバ内圧力が安定し
た後に、RF放電を開始する方法で行なわれている。な
お、基板温度およびチャンバ内圧力の調整およびその安
定に要する時間は、成膜装置および基板の大きさによっ
て異なるか、15分程度は必要であるため、RF放電は
、ガス導入後15分を経過した時点で開始されている。
FIG. 6 is a timing diagram of gas introduction and RF discharge when forming a SiN film. To form this SiN film, first, SiH, which is the main raw material gas, and an auxiliary raw material gas are placed in the chamber. All gases, NH, gas, and N2 gas, which is a diluent gas, are introduced at the same time, and then the temperature of the substrate and the pressure in the chamber (gas pressure) are adjusted to the predetermined film forming temperature and pressure. In this method, RF discharge is started after the substrate temperature and chamber pressure have stabilized. Note that the time required for adjusting and stabilizing the substrate temperature and chamber pressure varies depending on the film forming apparatus and the size of the substrate, and may take about 15 minutes. It has started at that point.

また、チャンバ内へのガス導入とRF放電は、成膜する
SiN膜の膜厚に応じて決まる成膜時間中継続されてお
り、成膜時間を経過したときに、まずRF放電を停止し
、数秒後に全てのガスの導入を停止している。
In addition, the gas introduction into the chamber and the RF discharge are continued during the film formation time determined according to the thickness of the SiN film to be formed, and when the film formation time has elapsed, the RF discharge is first stopped. After a few seconds, the introduction of all gases was stopped.

なお、ここではSiN膜の成膜について説明したが、S
iO膜や、a−5i :H膜、n”−a−81膜等の他
のシリコン系薄膜の成膜も、従来は、まずチャンバ内に
全てのガスを同時に導入し、基板温度およびチャンバ内
圧力が安定した後にRF放電を開始する方法で行なわれ
ている。
Note that although the formation of the SiN film has been described here, the formation of the SiN film is
Conventionally, when forming other silicon-based thin films such as iO film, a-5i:H film, and n''-a-81 film, all gases are introduced into the chamber at the same time, and the substrate temperature and the inside of the chamber are controlled. This is done by starting RF discharge after the pressure has stabilized.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記従来の成膜方法で成膜されたシリコン系薄
膜は、その膜質が膜厚全体にわたって均一でなく、その
下層部分の膜質が他の部分と異なっていた。なお、この
膜質の異なる下層部分の層厚は極く僅かであり、シリコ
ン系薄膜を比較的厚く成膜した場合はシリコン系薄膜の
特性にはあまり影響を及ぼさないが、シリコン系薄膜を
薄く成膜した場合は、シリコン系薄膜の特性に大きな影
響を及ぼしている。
However, the quality of the silicon-based thin film formed by the above-mentioned conventional film-forming method is not uniform over the entire film thickness, and the film quality of the lower layer portion is different from that of the other portion. Note that the thickness of this lower layer with different film quality is extremely small, and if the silicon-based thin film is formed relatively thick, it will not have much effect on the properties of the silicon-based thin film, but if the silicon-based thin film is formed thin. When it is formed into a film, it has a great influence on the properties of the silicon-based thin film.

しかも、上記従来の成膜方法で成膜されたシリコン系薄
膜は、ピンホールやウィークスポット等の欠陥が散在状
態で存在しており、したがって、シリコン系薄膜の特性
が不安定であった。なお、上記ピンホールやウィークス
ポット等の欠陥は、SiN膜およびSiO膜においては
絶縁破壊耐圧の低下となっており、a−Si:H膜にお
いては半導体特性の悪化となり、またn”−a−8i膜
においては導電特性の悪化となっている。
Moreover, the silicon-based thin film formed by the conventional film-forming method has defects such as pinholes and weak spots scattered therein, and therefore the characteristics of the silicon-based thin film are unstable. It should be noted that defects such as pinholes and weak spots described above cause a decrease in dielectric breakdown voltage in SiN films and SiO films, deteriorate semiconductor characteristics in a-Si:H films, and deteriorate n''-a- The conductive properties of the 8i film deteriorated.

本発明は上記のような実情にかんがみてなされたもので
あって、その目的とするところは、膜質が膜厚全体にわ
たって均一で、かつピンホールやウィークスポット等の
欠陥もない特性の安定したシリコン系薄膜を得ることが
できる、シリコン系薄膜の成膜方法を提供することにあ
る。
The present invention was made in view of the above-mentioned circumstances, and its purpose is to provide stable silicon with uniform film quality throughout the film thickness and free from defects such as pinholes and weak spots. An object of the present invention is to provide a method for forming a silicon-based thin film, which can obtain a silicon-based thin film.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、プラズマCVD法により基板上にシリコン系
薄膜を成膜する方法において、原料ガスと希釈ガスのう
ち、まず希釈ガスだけをチャンバ内に導入し、基板温度
とチャンバ内圧力を調整した後にRF放電を開始して、
この後原料ガスをチャンバ内に導入することを特徴とす
るものである。
In a method for forming a silicon-based thin film on a substrate by plasma CVD, the present invention first introduces only the dilution gas into a chamber out of the source gas and the dilution gas, adjusts the substrate temperature and the chamber pressure, and then Start the RF discharge,
This method is characterized in that the source gas is then introduced into the chamber.

〔作 用〕[For production]

すなわち、本発明は、従来の成膜方法によって成膜した
シリコン系薄膜に発生している、膜質の不均一およびピ
ンホールやウィークスポット等の欠陥の発生要因を解明
し、これに基づいてなされたものである。
That is, the present invention was made based on the clarification of the causes of nonuniform film quality and defects such as pinholes and weak spots that occur in silicon-based thin films formed by conventional film forming methods. It is something.

従来の成膜方法によって成膜したシリコン系薄膜の膜質
が不均一になる要因およびピンホールやウィークスポッ
ト等の欠陥の発生要因は、次のように考えられる。
The factors that cause the film quality of silicon-based thin films formed by conventional film-forming methods to become non-uniform and the causes of defects such as pinholes and weak spots are considered to be as follows.

従来の成膜方法では、まずチャンバ内に全てのガスを同
時に導入し、基板温度およびチャンバ内圧力が安定した
後にRF放電を開始しているため、チャンバ内にガスを
導入してからRF放電を開始するまでの時間、すなわち
、基板温度およびチャンバ内圧力の調整時間中に、活性
ガスである原料ガスが熱分解等を起こして基板上に付着
する。そして、このようにRF放電の開始前に原料ガス
の熱分解物質が基板上に付着すると、この後にRF放電
を開始して成膜されるプラズマCVD堆積膜が、前記熱
分解物質の付着層の上に堆積する。第6図は、従来の成
膜方法によってシリコン系薄膜を成膜した場合の時間の
経過にともなう堆積膜の膜厚変化を示しており、RF放
電開始前の堆積層は、原料ガスの熱分解物質(例えばS
iN膜の成膜においては、主原料ガス中のSt等)の付
着層である。このため、従来の成膜方法で成膜されたシ
リコン系薄膜は、その下層部分の膜質がプラズマCVD
成膜によらない原料ガスの熱分解物質であり、したがっ
て膜厚方向の膜質が不均一である。
In conventional film deposition methods, all gases are first introduced into the chamber at the same time, and RF discharge is started after the substrate temperature and chamber pressure have stabilized. During the time until the start, that is, the time during which the substrate temperature and chamber pressure are adjusted, the raw material gas, which is an active gas, undergoes thermal decomposition and adheres to the substrate. When the pyrolyzed substances of the raw material gas adhere to the substrate before the start of RF discharge, the plasma CVD deposited film that is formed by starting the RF discharge after this will be coated with the deposited layer of the pyrolyzed substances. deposit on top. Figure 6 shows the change in thickness of the deposited film over time when a silicon-based thin film is deposited using the conventional film deposition method. Substances (e.g. S
In forming an iN film, it is an adhesion layer of St (St, etc.) in the main source gas. For this reason, silicon-based thin films formed by conventional film-forming methods have a film quality of the lower layer that is produced by plasma CVD.
It is a thermal decomposition substance of raw material gas that is not caused by film formation, and therefore the film quality in the film thickness direction is non-uniform.

しかも、従来の成膜方法では、RF放電開始前に堆積す
る原料ガスの熱分解物質が、散在状態(平板面にスプレ
ィで水を吹き付けたときの水滴の付着状態に似た状態)
で不均一に基板上に付着するため、この後に堆積するプ
ラズマCVD堆積膜の成長の度合が不均一になって、成
膜されたシリコン系薄膜にピンホールやウィークスポッ
ト等の欠陥が発生し、このシリコン系薄膜の特性が不安
定になる。
Moreover, in the conventional film-forming method, the thermal decomposition substances of the raw material gas deposited before the start of RF discharge are in a scattered state (a state similar to the adhering state of water droplets when water is sprayed on a flat plate surface).
As a result, the degree of growth of the plasma CVD deposited film that is subsequently deposited becomes non-uniform, and defects such as pinholes and weak spots occur in the deposited silicon-based thin film. The characteristics of this silicon-based thin film become unstable.

そこで、本発明では、まず希釈ガスだけをチャンバ内に
導入して基板温度とチャンバ内圧力を調整を行ない、こ
の後、RF放電を開始してから、原料ガスをチャンバ内
に導入したのであり、本発明の成膜方法によってシリコ
ン系薄膜を成膜した場合の時間の経過にともなう堆積膜
の膜厚変化は第5図に示すようになる。そして、本発明
によれば、RF放電の開始前には、熱分解して基板上に
付着する物質はチャンバ内にないため、従来の成膜方法
のようにRF放電の開始前に原料ガスの熱分解物質が基
板上に付着することはなく、またRF放電を開始してか
ら原料ガスをチャンバ内に導入しているため、プラズマ
CVD法により成膜されるシリコン系薄膜は、成膜初期
からその全域にわたって、ピンホールやウィークスポッ
ト等の欠陥を生じることなく均一に成長する。
Therefore, in the present invention, first, only the dilution gas is introduced into the chamber to adjust the substrate temperature and the chamber internal pressure, and then, after starting RF discharge, the source gas is introduced into the chamber. When a silicon-based thin film is formed by the film forming method of the present invention, the thickness change of the deposited film over time is shown in FIG. According to the present invention, before the start of RF discharge, there is no substance in the chamber that thermally decomposes and adheres to the substrate, so unlike the conventional film forming method, before the start of RF discharge, the source gas is removed. Since thermal decomposition substances do not adhere to the substrate, and the raw material gas is introduced into the chamber after starting RF discharge, silicon-based thin films formed by plasma CVD can be deposited from the initial stage of film formation. It grows uniformly over the entire area without producing defects such as pinholes or weak spots.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

(第1の実施例) まず、本発明をSiN膜の成膜に適用した実施例を説明
する。第1図は、SiN膜を成膜する場合のガス導入と
RF放電のタイミング図であり、このSiN膜の成膜は
次のようにして行なう。
(First Example) First, an example in which the present invention is applied to the formation of a SiN film will be described. FIG. 1 is a timing chart of gas introduction and RF discharge when forming a SiN film, and the SiN film is formed as follows.

まずチャンバ内に、希釈ガスであるN2ガスだけを導入
し、この後、基板の温度とチャンバ内の圧力(ガス圧)
とを所定の成膜温度および圧力に調整する。そして、基
板温度およびチャンバ内圧力が安定した後は、まずRF
放電を開始し、その放電状態が安定した後、主原料ガス
であるSiH4ガスと、副原料ガスであるNH,ガスと
をチャンバ内に導入する。このようにRF放電が開始さ
れ、かつチャンバ内にSiN膜の成膜に必要な全てのガ
ス(St H4、NHi 、N2 )が導入されると、
この時点でプラズマCVD法によるSiN膜の成膜が開
始される。
First, only N2 gas, which is a diluent gas, is introduced into the chamber, and then the temperature of the substrate and the pressure inside the chamber (gas pressure) are adjusted.
and are adjusted to a predetermined film-forming temperature and pressure. After the substrate temperature and chamber pressure have stabilized, first RF
After starting the discharge and stabilizing the discharge state, SiH4 gas, which is the main raw material gas, and NH gas, which is the auxiliary raw material gas, are introduced into the chamber. When the RF discharge is started in this way and all the gases (St H4, NHi, N2) necessary for forming the SiN film are introduced into the chamber,
At this point, the formation of the SiN film by the plasma CVD method is started.

なお、基板温度およびチャンバ内圧力の調整およびその
安定に要する時間は、成膜装置および基板の大きさによ
って異なるが、15分程度必要であり、RF放電が安定
状態になるのに要する時間は数十秒を見込んでおけば十
分であるから、RF放電はN2の導入後15分を経過し
た時点で開始でき、SiH,ガスとNH,ガスの導入は
、RF放電開始後1分以内に開始できる。また、前記5
in4ガスとNH,ガスの導入は同時に開始してもよい
が、これら原料ガスの導入によるチャンバ内圧力の変動
を小さくするには、5IH4ガスとNH,ガスとを図示
のように時間をずらして導入するのが望ましく、このよ
うにすれば、ガス導入にともなう圧力変動の補正も容易
に行なうことができる。ただし、5iHnガスとNH,
ガスとの導入時間差は、チャンバ内の圧力を一定に制御
するのに要する時間によって定められるが、この実施例
においては、1分以内で十分である。また、このように
5IH4ガスとNH,ガスとを時間をずらして導入する
場合は、副原料ガスであるNH,ガスを先に導入し、主
原料ガスである5fH4ガスを最後に導入するのが望ま
しい。
The time required for adjusting and stabilizing the substrate temperature and chamber pressure varies depending on the film forming apparatus and the size of the substrate, but approximately 15 minutes is required, and the time required for RF discharge to reach a stable state is several minutes. Since it is sufficient to allow for 10 seconds, RF discharge can be started 15 minutes after the introduction of N2, and introduction of SiH gas and NH gas can be started within 1 minute after the start of RF discharge. . In addition, the above 5
The introduction of the in4 gas and the NH gas may be started at the same time, but in order to reduce the fluctuation in the chamber pressure due to the introduction of these raw material gases, the introduction of the 5IH4 gas and the NH gas may be started at different times as shown in the figure. It is desirable to introduce the gas, and in this way, it is possible to easily correct pressure fluctuations caused by the introduction of the gas. However, 5iHn gas and NH,
The time difference between the introduction of the gas and the gas is determined by the time required to control the pressure in the chamber at a constant level, and in this example, one minute or less is sufficient. In addition, when introducing 5IH4 gas and NH gas at different times in this way, it is best to introduce NH gas, which is an auxiliary raw material gas, first, and introduce 5fH4 gas, which is a main raw material gas, last. desirable.

また、チャンバ内へのガス導入とRF放電は、成膜する
SiN膜の膜厚に応じて決まる成膜時間中継続して行な
い、成膜時間を経過したときに、まずRF放電を停止し
、数秒後に全てのガスの導入を停止する。
In addition, the gas introduction into the chamber and the RF discharge are performed continuously during the film formation time determined according to the thickness of the SiN film to be formed, and when the film formation time has elapsed, the RF discharge is first stopped. After a few seconds, stop introducing all gases.

この実施例では、まず希釈ガスであるN2ガスだけをチ
ャンバ内に導入して基板温度とチャンバ内圧力を調整を
行ない、この後、RF放電を開始してから、主原料ガス
であるSiH4ガスと副原料ガスであるNH,ガスとを
チャンバ内に導入しているため、時間の経過にともなう
堆積膜の膜厚変化は第5図に示したようになる。
In this example, first, only N2 gas, which is a diluent gas, is introduced into the chamber to adjust the substrate temperature and chamber pressure, and then, after starting RF discharge, SiH4 gas, which is the main raw material gas, is introduced into the chamber. Since the auxiliary raw material gas, NH, is introduced into the chamber, the thickness of the deposited film changes over time as shown in FIG. 5.

そして、RF放電の開始前にチャンバ内に導入されてい
るN2ガスには、熱分解して基板上に付着する物質は含
まれていないため、従来の成膜方法のようにRF放電の
開始前に熱分解物質が基板上に付着することはなく、し
たがって、成膜されたSiN膜の膜質は膜厚全体にわた
って均一になる。また、N2ガスだけをチャンバ内に導
入しておいてRF放電を開始しているため、基板上のS
iN膜成膜面膜面板面または基板面に形成されている電
極等の表面)がN2ガスのプラズマでクリーニングされ
る効果もあり、したがってSiN膜は清浄な面の上に成
膜されるから、SiN膜の膜質は、その堆積面との界面
においても均一である。
Since the N2 gas introduced into the chamber before the start of RF discharge does not contain substances that thermally decompose and adhere to the substrate, it is necessary to Thermal decomposition substances do not adhere to the substrate, and therefore the quality of the deposited SiN film becomes uniform throughout the film thickness. In addition, since RF discharge is started with only N2 gas introduced into the chamber, S
There is also the effect that the N2 gas plasma cleans the surface (iN film deposition surface, film surface, plate surface or surface of an electrode formed on the substrate surface), and therefore the SiN film is deposited on a clean surface. The quality of the film is uniform even at the interface with the deposition surface.

また、RF放電を開始してからSiH4ガスとNH3ガ
スをチャンバ内に導入しているため、プラズマCVD法
により成膜されるSiN膜は、成膜初期からその全域に
わたって、ピンホールやウィークスポット等の欠陥を生
じることなく均一に成長するから、成膜されたSiN膜
の絶縁破壊耐圧も十分である。
In addition, since SiH4 gas and NH3 gas are introduced into the chamber after starting RF discharge, the SiN film formed by the plasma CVD method has problems such as pinholes and weak spots throughout the film from the initial stage of film formation. Since the SiN film grows uniformly without any defects, the dielectric breakdown voltage of the formed SiN film is also sufficient.

しかも、従来の成膜方法では、RF放電の開始前に全て
のガスをチャンバ内に導入しているため、RF放電を開
始した直後の不安定な放電状態時に、SiNが散在状態
で基板上に堆積して、これがピンホールやウィークスポ
ット等の欠陥を発生させる原因となるおそれがあったが
、上記実施例では、RF放電を開始し、さらにその放電
状態が安定した後に、原料ガスであるSiH4ガスおよ
びNH,ガスとをチャンバ内に導入しているため、SI
Nが散在状態で基板上に堆積することはなく、したがっ
て、ピンホールやウィークスポット等の欠陥の発生をさ
らに確実に防止することができる。
Moreover, in the conventional film-forming method, all the gases are introduced into the chamber before the start of RF discharge, so during the unstable discharge state immediately after the start of RF discharge, SiN is scattered on the substrate. However, in the above embodiment, after the RF discharge is started and the discharge state is stabilized, SiH4, which is the source gas, is deposited. Since gas, NH, and gas are introduced into the chamber, the SI
N is not deposited on the substrate in a scattered state, and therefore defects such as pinholes and weak spots can be more reliably prevented from occurring.

(第2の実施例) 次に、本発明をSiO膜の成膜に適用した実施例を説明
する。第2図は、S10膜を成膜する場合のガス導入と
RF放電のタイミング図であり、このS10膜の成膜は
次のようにして行なう。
(Second Example) Next, an example in which the present invention is applied to the formation of a SiO film will be described. FIG. 2 is a timing diagram of gas introduction and RF discharge when forming an S10 film, and the S10 film is formed as follows.

まずチャンバ内に、希釈ガスであるN2ガスだけを導入
し、次いで基板温度とチャンバ内圧力とを調整する。そ
して、基板温度およびチャンバ内圧力が安定した後は、
まずRF放電を開始し、その放電状態が安定した後、主
原料ガスである5IH4ガスと副原料ガスであるN20
をチャンバ内に導入して、プラズマCVD法によるSi
O膜の成膜を開始する。なお、この実施例においても、
SiH4ガスとN20ガスの導入は同時に開始してもよ
いが、SiH4ガスとN20ガスとを図示のように時間
をずらして導入すれば、ガス導入による圧力変動を少な
くするとともに、その補正を容易に行なうことができる
。この場合は、副原料ガスであるN20ガスを先に導入
し、主原料ガスであるSiH4ガスを最後に導入するの
が望ましい。また、成膜時間を経過した後のRF放電の
停止とガス導入の停止は、上記第1の実施例と同様にし
て行なう。
First, only N2 gas, which is a diluent gas, is introduced into the chamber, and then the substrate temperature and chamber internal pressure are adjusted. After the substrate temperature and chamber pressure stabilize,
First, RF discharge is started, and after the discharge state is stabilized, 5IH4 gas, which is the main raw material gas, and N2, which is the auxiliary raw material gas, are
is introduced into the chamber, and Si is deposited by plasma CVD method.
Start forming the O film. In addition, also in this example,
Introduction of SiH4 gas and N20 gas may be started at the same time, but if SiH4 gas and N20 gas are introduced at different times as shown in the figure, pressure fluctuations due to gas introduction can be reduced and correction thereof can be made easier. can be done. In this case, it is desirable to introduce the N20 gas, which is the auxiliary raw material gas, first, and to introduce the SiH4 gas, which is the main raw material gas, last. Further, the RF discharge and gas introduction are stopped in the same manner as in the first embodiment described above after the film forming time has elapsed.

この実施例でも、まず希釈ガスであるN2ガスだけをチ
ャンバ内に導入して基板温度とチャンバ内圧力を調整を
行ない、この後、RF放電を開始してから、原料ガスで
あるSiH4ガスとN20ガスをチャンバ内に導入して
いるため、時間の経過にともなう堆積膜の膜厚変化は第
5図に示したようになり、したがって、上記第1の実施
例と同様に、膜質が膜厚全体にわたって均一で、かつ絶
縁破壊耐圧も十分なSi膜膜を成膜することができる。
In this example as well, first, only N2 gas, which is a diluent gas, is introduced into the chamber to adjust the substrate temperature and chamber pressure, and then, after starting RF discharge, SiH4 gas, which is a raw material gas, and N2 gas are introduced into the chamber. Since gas is introduced into the chamber, the thickness of the deposited film changes over time as shown in FIG. It is possible to form a Si film that is uniform over the entire region and has sufficient dielectric breakdown voltage.

(第3の実施例) 次に、本発明をa−3t:H膜の成膜に適用した実施例
を説明する。第3図は、a−5t:H膜を成膜する場合
のガス導入とRF放電のタイミング図であり、このa−
5t:H膜の成膜は次のようにして行なう。
(Third Example) Next, an example in which the present invention is applied to the formation of an a-3t:H film will be described. FIG. 3 is a timing diagram of gas introduction and RF discharge when forming an a-5t:H film.
The 5t:H film is formed as follows.

まずチャンバ内に、希釈ガスであるH2ガスだけを導入
し、次いで基板温度とチャンバ内圧力とを調整する。そ
して、基板温度およびチャンバ内圧力が安定した後は、
まずRF放電を開始し、その放電状態が安定した後、原
料ガスであるSiH4ガスをチャンバ内に導入して、プ
ラズマCVD法によるa−8t:H膜の成膜を開始する
First, only H2 gas, which is a diluent gas, is introduced into the chamber, and then the substrate temperature and chamber internal pressure are adjusted. After the substrate temperature and chamber pressure stabilize,
First, RF discharge is started, and after the discharge state becomes stable, SiH4 gas, which is a raw material gas, is introduced into the chamber, and the formation of an a-8t:H film by plasma CVD is started.

なお、成膜時間を経過した後のRF放電の停止とガス導
入の停止は上記第1の実施例と同様である。
Note that stopping the RF discharge and stopping the gas introduction after the film-forming time has elapsed is the same as in the first embodiment.

この実施例でも、まず希釈ガスであるH2ガスだけをチ
ャンバ内に導入して基板温度とチャンバ内圧力を調整を
行ない、この後、RF放電を開始してから、原料ガスで
あるSiH4ガスをチャンバ内に導入しているため、時
間の経過にともなう堆積膜の膜厚変化は第5図に示した
ようになる。
In this example as well, first, only H2 gas, which is a diluent gas, is introduced into the chamber to adjust the substrate temperature and chamber pressure, and then, after starting RF discharge, SiH4 gas, which is a raw material gas, is introduced into the chamber. Since the deposited film is introduced within the interior, the thickness of the deposited film changes over time as shown in FIG.

そして、RF放電の開始前にチャンバ内に導入されてい
るH2ガスには、熱分解して基板上に付着する物質は含
まれていないため、従来の成膜方法のようにRF放電の
開始前に熱分解物質が基板上に付着することはなく、ま
たRF放電を開始してからSiH4ガスをチャンバ内に
導入しているため、プラズマCVD法により成膜される
SiN膜は、成膜初期からその全域にわたって、ピンホ
ールやウィークスポット等の欠陥を生じることなく均一
に成長する。したがって、この成膜方法で成膜されたa
−5i:H膜は、その膜質が膜厚全体にわたって均一で
、かつ安定した半導体特性をもっている。なお、この実
施例においても、例えばH2ガスのプラズマによる成膜
面のクリーニング効果等、上記第1の実施例と同様な効
果が得られる。
Since the H2 gas introduced into the chamber before the start of RF discharge does not contain substances that thermally decompose and adhere to the substrate, H2 gas is introduced before the start of RF discharge. Since thermal decomposition substances do not adhere to the substrate during the process, and SiH4 gas is introduced into the chamber after starting RF discharge, the SiN film formed by the plasma CVD method is It grows uniformly over the entire area without producing defects such as pinholes or weak spots. Therefore, the a film formed by this film forming method is
The -5i:H film has uniform film quality over its entire thickness and stable semiconductor properties. In this embodiment, the same effects as in the first embodiment can be obtained, such as the effect of cleaning the film-forming surface using H2 gas plasma.

(第4の実施例) 次に、本発明をn”−a−5t膜の成膜に適用した実施
例を説明する。第4図は、n”−a−3l膜を成膜する
場合のガス導入とRF放電のタイミング図であり、この
n”−a−Si膜の成膜は次のようにして行なう。
(Fourth Example) Next, an example in which the present invention is applied to the formation of an n"-a-5t film will be described. FIG. This is a timing diagram of gas introduction and RF discharge, and the formation of this n''-a-Si film is performed as follows.

まずチャンバ内に、希釈ガスであるH2ガスだけを導入
し、次いで基板温度とチャンバ内圧力とを調整する。そ
して、基板温度およびチャンバ内圧力が安定した後は、
まずRF放電を開始し、その放電状態が安定した後、主
原料ガスである5tH4ガスと副原料ガスであるPH,
ガスをチャンバ内に導入して、プラズマCVD法による
n”−a−Si膜の成膜を開始する。なお、この実施例
においても、5tH4ガスとPH3ガスの導入は同時に
開始してもよいが、SiH4ガスとPH3ガスとを図示
のように時間をずらして導入すれば、ガス導入による圧
力変動を少なくするとともに、その補正を容易に行なう
ことができる。
First, only H2 gas, which is a diluent gas, is introduced into the chamber, and then the substrate temperature and chamber internal pressure are adjusted. After the substrate temperature and chamber pressure stabilize,
First, RF discharge is started, and after the discharge state is stabilized, 5tH4 gas, which is the main raw material gas, and PH, which is the auxiliary raw material gas,
Gas is introduced into the chamber and the formation of an n''-a-Si film by plasma CVD is started.Also in this example, the introduction of 5tH4 gas and PH3 gas may be started at the same time. By introducing the SiH4 gas and the PH3 gas at different times as shown in the figure, it is possible to reduce pressure fluctuations due to gas introduction and to easily correct them.

この場合は、副原料ガスであるPH3ガスを先に導入し
、主原料ガスであるSiH4ガスを最後に導入するのが
望ましい。また、成膜時間を経過した後のRF放電の停
止とガス導入の停止は、上記第1の実施例と同様にして
行なう。
In this case, it is desirable to introduce the PH3 gas, which is the sub-source gas, first, and the SiH4 gas, which is the main source gas, last. Further, the RF discharge and gas introduction are stopped in the same manner as in the first embodiment described above after the film forming time has elapsed.

この実施例でも、まず希釈ガスであるH2ガスだけをチ
ャンバ内に導入して基板温度とチャンバ内圧力を調整を
行ない、この後、RF放電を開始してから、原料ガスで
あるSiH4ガスとPH。
In this example as well, first, only H2 gas, which is a diluent gas, is introduced into the chamber to adjust the substrate temperature and chamber pressure, and then, after starting RF discharge, SiH4 gas, which is a raw material gas, and PH gas are introduced into the chamber. .

ガスをチャンバ内に導入しているため、時間の経過にと
もなう堆積膜の膜厚変化は第4図に示したようになり、
したがって、膜質が膜厚全体にわたって均一で、かつ安
定した導電特性をもつn″″−a−8i膜を成膜するこ
とができる。
Because gas is introduced into the chamber, the thickness of the deposited film changes over time as shown in Figure 4.
Therefore, it is possible to form an n''''-a-8i film having uniform film quality over the entire film thickness and stable conductive properties.

なお、本発明は、SiN膜、S10膜、 a −3i:
H膜、n”−a−Si膜に限らず、その他のシリコン系
薄膜のプラズマCVD法による成膜にも適用できること
はもちろんである。
Note that the present invention is applicable to SiN film, S10 film, a-3i:
It goes without saying that the present invention is applicable not only to H films and n''-a-Si films but also to the formation of other silicon-based thin films by plasma CVD.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、原料ガスと希釈ガスのうち、まず希釈
ガスだけをチャンバ内に導入し、基板温度とチャンバ内
圧力を調整した後にRF放電を開始して、この後原料ガ
スをチャンバ内に導入しているから、膜質か膜厚全体に
わたって均一で、かつピンホールやウィークスポット等
の欠陥もない特性の安定したシリコン系薄膜を得ること
ができる。
According to the present invention, of the source gas and diluent gas, only the dilute gas is first introduced into the chamber, and after adjusting the substrate temperature and chamber pressure, RF discharge is started, and then the source gas is introduced into the chamber. Because of this introduction, it is possible to obtain a silicon-based thin film with stable properties, which is uniform over the entire film thickness, and is free from defects such as pinholes and weak spots.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明をSiN膜の成膜に適用した実施例を示
すガス導入とRF放電のタイミング図、第2図は本発明
をSiO膜の成膜に適用した実施例を示すガス導入とR
F放電のタイミング図、第3図は本発明をa−St:H
膜の成膜に適用した実施例を示すガス導入とRF放電の
タイミング図、第4図は本発明をn”−a−3i膜の成
膜に適用した実施例を示すガス導入とRF放電のタイミ
ング図、第5図は本発明の成膜方法によってシリコン系
薄膜を成膜した場合の時間の経過にともなう堆積膜の膜
厚変化を示す図、第6図は従来の成膜方法によってシリ
コン系薄膜を成膜した場合の時間の経過にともなう堆積
膜の膜厚変化を示す図、第7図は従来の成膜方法を示す
S1 N膜を成膜す るときのガス導入とRF放電のタイミング図である。
Fig. 1 is a timing diagram of gas introduction and RF discharge showing an example in which the present invention is applied to the formation of a SiN film, and Fig. 2 is a timing diagram of gas introduction and RF discharge showing an example in which the present invention is applied to the formation of an SiO film. R
The timing diagram of F discharge, FIG. 3 shows the present invention in a-St:H
Fig. 4 is a timing diagram of gas introduction and RF discharge showing an example in which the present invention is applied to film formation. 5 is a timing chart showing the change in thickness of a deposited film over time when a silicon-based thin film is formed using the film-forming method of the present invention, and FIG. A diagram showing changes in the thickness of a deposited film over time when a thin film is deposited. Figure 7 is a timing diagram of gas introduction and RF discharge when depositing an S1N film, showing a conventional film deposition method. It is.

Claims (1)

【特許請求の範囲】[Claims]  プラズマCVD法により基板上にシリコン系薄膜を成
膜する方法において、原料ガスと希釈ガスのうち、まず
希釈ガスだけをチャンバ内に導入し、基板温度とチャン
バ内圧力を調整した後にRF放電を開始して、この後原
料ガスをチャンバ内に導入することを特徴とするシリコ
ン系薄膜の成膜方法。
In a method of forming a silicon-based thin film on a substrate using plasma CVD, only the diluent gas is first introduced into the chamber out of the source gas and diluent gas, and after adjusting the substrate temperature and chamber pressure, RF discharge is started. A method for forming a silicon-based thin film, characterized in that a source gas is introduced into a chamber.
JP2242577A 1990-04-25 1990-09-14 Silicon thin film deposition method Expired - Lifetime JP2727532B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2242577A JP2727532B2 (en) 1990-09-14 1990-09-14 Silicon thin film deposition method
US07/690,816 US5284789A (en) 1990-04-25 1991-04-23 Method of forming silicon-based thin film and method of manufacturing thin film transistor using silicon-based thin film
EP91106621A EP0454100B1 (en) 1990-04-25 1991-04-24 Method of forming silicon nitride thin film and method of manufacturing thin film transistor using silicon nitride thin film
DE69128210T DE69128210T2 (en) 1990-04-25 1991-04-24 Methods of manufacturing silicon nitride thin films and methods of manufacturing a thin film transistor using silicon nitride thin films
KR1019910006715A KR940008356B1 (en) 1990-04-25 1991-04-25 Forming method of thin film using silicon meterial and manufacturing method of thin-film transistor
US07/975,282 US5367179A (en) 1990-04-25 1992-11-12 Thin-film transistor having electrodes made of aluminum, and an active matrix panel using same
US08/004,641 US5243202A (en) 1990-04-25 1993-01-12 Thin-film transistor and a liquid crystal matrix display device using thin-film transistors of this type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2242577A JP2727532B2 (en) 1990-09-14 1990-09-14 Silicon thin film deposition method

Publications (2)

Publication Number Publication Date
JPH04123424A true JPH04123424A (en) 1992-04-23
JP2727532B2 JP2727532B2 (en) 1998-03-11

Family

ID=17091137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2242577A Expired - Lifetime JP2727532B2 (en) 1990-04-25 1990-09-14 Silicon thin film deposition method

Country Status (1)

Country Link
JP (1) JP2727532B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09260371A (en) * 1996-02-09 1997-10-03 Applied Materials Inc Method and apparatus for improving interface quality of plasma excitation cvd film
WO1998007895A1 (en) * 1996-08-19 1998-02-26 Citizen Watch Co., Ltd. Method of forming hard carbon film on inner circumferential surface of guide bush
US6951828B2 (en) 1995-11-10 2005-10-04 Semiconductor Energy Laboratory Co., Ltd. Plasma CVD method
JP2012060148A (en) * 2011-11-14 2012-03-22 Renesas Electronics Corp Manufacturing method of semiconductor integrated circuit device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63288012A (en) * 1987-05-20 1988-11-25 Sanyo Electric Co Ltd Silicon film growth method
JPH01239852A (en) * 1988-03-18 1989-09-25 Canon Inc Formation of thin film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63288012A (en) * 1987-05-20 1988-11-25 Sanyo Electric Co Ltd Silicon film growth method
JPH01239852A (en) * 1988-03-18 1989-09-25 Canon Inc Formation of thin film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6951828B2 (en) 1995-11-10 2005-10-04 Semiconductor Energy Laboratory Co., Ltd. Plasma CVD method
US7071128B2 (en) 1995-11-10 2006-07-04 Semiconductor Energy Laboratory Co., Ltd. Plasma CVD method
US7452829B2 (en) 1995-11-10 2008-11-18 Semiconductor Energy Laboratory Co., Ltd. Plasma CVD method
JPH09260371A (en) * 1996-02-09 1997-10-03 Applied Materials Inc Method and apparatus for improving interface quality of plasma excitation cvd film
WO1998007895A1 (en) * 1996-08-19 1998-02-26 Citizen Watch Co., Ltd. Method of forming hard carbon film on inner circumferential surface of guide bush
US6020036A (en) * 1996-08-19 2000-02-01 Citizen Watch Co., Ltd. Method of forming hard carbon film over the inner surface of guide bush
JP2012060148A (en) * 2011-11-14 2012-03-22 Renesas Electronics Corp Manufacturing method of semiconductor integrated circuit device

Also Published As

Publication number Publication date
JP2727532B2 (en) 1998-03-11

Similar Documents

Publication Publication Date Title
US6972433B2 (en) Fabrication method for a thin film semiconductor device, the thin film semiconductor device itself, liquid crystal display, and electronic device
US5284789A (en) Method of forming silicon-based thin film and method of manufacturing thin film transistor using silicon-based thin film
JPH0773101B2 (en) Plasma enhanced chemical vapor deposition
US5879970A (en) Process of growing polycrystalline silicon-germanium alloy having large silicon content
EP0344863A1 (en) A method of producing a thin film transistor
US6187100B1 (en) Semiconductor device and production thereof
US6395652B2 (en) Method of manufacturing thin film transistor
KR100752559B1 (en) Method of forming a dielectric film
JPH04123424A (en) Film formation of silicon-based thin film
JP3204735B2 (en) Manufacturing method of hydrogenated amorphous silicon thin film transistor
US20130224381A1 (en) Thin-film forming method and thin-film forming apparatus
JPH04286336A (en) Manufacture of semiconductor device
JPH0855804A (en) Method of manufacturing semiconductor film
JPH0351094B2 (en)
JPH05206117A (en) Process for burying of defect in dielectric layer of semiconductor device
JPH04123423A (en) Film-formation of silicon-based thin film
JP2758860B2 (en) Method for manufacturing semiconductor device
JP2844734B2 (en) Thin film manufacturing method
JP2000150815A (en) Manufacture of semiconductor device and semiconductor manufacturing device
JPH10102256A (en) Cvd device
JP3319450B2 (en) Preparation method of semiconductor thin film
KR950008796B1 (en) Method of making a capacitor
JP3245779B2 (en) Method for forming silicon nitride film
KR0160543B1 (en) Method for depositing high quality silicon nitride films
KR0179139B1 (en) Method for forming polycrystalline silicon layer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071212

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 13