JPH0412310A - Automatic focusing device - Google Patents

Automatic focusing device

Info

Publication number
JPH0412310A
JPH0412310A JP11479890A JP11479890A JPH0412310A JP H0412310 A JPH0412310 A JP H0412310A JP 11479890 A JP11479890 A JP 11479890A JP 11479890 A JP11479890 A JP 11479890A JP H0412310 A JPH0412310 A JP H0412310A
Authority
JP
Japan
Prior art keywords
edge
imaging
focus
counting
focusing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11479890A
Other languages
Japanese (ja)
Inventor
Manabu Hashimoto
学 橋本
Yoshikazu Sakagami
坂上 義和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11479890A priority Critical patent/JPH0412310A/en
Publication of JPH0412310A publication Critical patent/JPH0412310A/en
Pending legal-status Critical Current

Links

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To evaluate the extent of focusing at each image pickup position by small edge quantity and to shorten a focusing operation time by counting the number of edge points which are detected by an edge detecting means, finding plural extremal values from an edge quantity-image pickup means position curve, and selecting the best position among them. CONSTITUTION:An image pickup means 2 is moved within a preset range, the edge detecting means 4 detects edges of a picked-up image, and an edge counting means 5 counts the number of edges to find the distribution of the number of edges. An extremal value position detecting means 6a finds plural extremal value positions from its distribution configuration and an optimum position selecting means 6b selects the optimum position which is set previously among them to obtain a focusing position. Consequently, even a subject whose focusing position is hard to decide such as a wafer where a multi-layered pattern is formed can be focused with high reliability and the extent of focusing can be evaluated at each image pickup position by small edge quantity counting to shorten the focusing operation time.

Description

【発明の詳細な説明】 〔産業上の利用分野] この発明は、例えば、ウェハの表面状態をITV(工業
用テレビ)カメラを移動しなから連続撮影して得た複数
の画像情報をもとに自動的に検査する装置において、ウ
ェハの厚さむらや検査ステージの平坦度むらに起因して
生じるウェハ上各位置での焦点ぼけを毎回補正しつつ画
像を順次撮像していく場合に、短時間に焦点合わせを実
現する自動焦点合わせ装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention is based on a plurality of image information obtained by continuously photographing the surface condition of a wafer with an ITV (industrial television) camera while moving. In a device that automatically inspects the wafer, it is necessary to correct the defocus at each position on the wafer due to uneven wafer thickness or uneven flatness of the inspection stage, and capture images sequentially. The present invention relates to an automatic focusing device that realizes focusing in time.

〔従来の技術〕[Conventional technology]

従来の自動焦点合わせ装置に関して、[電子材料198
9年2月号(工業調査会)J記載の「シリコンウェハ法
によるレチクル品質評価装置」の内容をもとに説明する
Regarding conventional automatic focusing devices, [Electronic Materials 198
The explanation will be based on the contents of "Reticle quality evaluation device using silicon wafer method" published in February 1999 issue (Kogyo Kenkyukai) J.

第6図は画像から検出した境界データ、すなわち、エツ
ジ点数と撮像手段位置との関係を示している。合焦位置
はエツジ数が最大を示す撮像手段位置である。
FIG. 6 shows the relationship between the boundary data detected from the image, that is, the number of edge points and the position of the imaging means. The in-focus position is the imaging means position where the number of edges is maximum.

この原理を利用して、合焦位置を求めるには、例えば、
撮像手段位置を予め決められたピッチで何段階か移動さ
せ、その都度エツジ数を計数してエツジ数最大の撮像手
段位置を求める。
To find the in-focus position using this principle, for example,
The position of the imaging means is moved several steps at a predetermined pitch, and the number of edges is counted each time to find the position of the imaging means with the maximum number of edges.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしなから、上記シリコンウェハ法によるレチクル品
質評価装置により、合焦位置を求める方法では、例えば
、多層パターンを形成したウニAの画像では、合焦位置
が複数存在するため、エツジ点数−撮像手段位置曲線は
第6図のようにはならず、第7図のように、第6図の曲
線がいくつか撮像手段位置方向にずれをもって合成され
たような曲線になる。
However, in the method of determining the in-focus position using the reticle quality evaluation apparatus using the silicon wafer method, for example, in the image of sea urchin A on which a multilayer pattern is formed, there are multiple in-focus positions. The position curve will not be as shown in FIG. 6, but will be a curve as shown in FIG. 7, which is a combination of several curves in FIG. 6 with some deviations in the direction of the imaging means position.

このような場合は、合焦位置を決定するのに、単にエツ
ジ点数が最大の位置とすることはできないという第1の
問題点があった。
In such a case, the first problem is that when determining the in-focus position, it is not possible to simply determine the position with the maximum number of edge points.

また、上記シリコンウェハ法による品質評価装置では、
上記のような原理に基づいているため、合焦位置を求め
るためには、ウェハのように厚さむら等の原因によるた
めにグローバルな傾向をもって焦点がぼけていく場合で
も、撮像手段位置を予め決められたピッチで何段階か移
動させ、その都度エツジ数を計数して、エツジ点数−撮
像手段位置曲線の形態から合焦位置を決める必要があり
、合焦時間がかかるという第2の問題点があった。
In addition, in the quality evaluation device using the silicon wafer method described above,
Based on the above principle, in order to find the in-focus position, even if the focus tends to be out of focus globally due to factors such as uneven thickness, such as with wafers, the imaging means position must be determined in advance. The second problem is that it is necessary to move several steps at a predetermined pitch, count the number of edges each time, and determine the focusing position from the form of the edge point-imaging means position curve, which takes a long focusing time. was there.

請求項1の発明は上記のような問題点を解消するために
なされたもので、多層パターンを形成したウェハなど、
合焦位置が決定しにくい被写体でも信頼性の高い焦点合
わせが可能となる自動焦点合わせ装置を得ることを目的
とする。
The invention as claimed in claim 1 has been made to solve the above-mentioned problems, and can be applied to wafers on which multilayer patterns are formed, etc.
To provide an automatic focusing device that enables highly reliable focusing even for a subject whose focusing position is difficult to determine.

また、請求項2の発明は、上記問題点を解消するために
、焦点ずれにグローバルな傾向が見られる場合には、各
撮像位置について少ないエツジ数計数で合焦の度合いを
評価でき、合焦動作時間を短縮できる自動焦点合わせ装
置を得ることを目的とする。
In addition, in order to solve the above problem, the invention of claim 2 makes it possible to evaluate the degree of focus by counting a small number of edges for each imaging position when there is a global trend in defocus. An object of the present invention is to obtain an automatic focusing device that can shorten operation time.

〔課題を解決するための手段〕[Means to solve the problem]

請求項1に係る自動焦点合わせ装置は、エツジ検出手段
で検出したエツジ点数を計数するエツジ計数手段と、エ
ツジ点数−撮像手段位置曲線から複数の極値を求めかつ
その求めた複数の極値の中から最適な位置を選択する手
段を設けたものである。
The automatic focusing device according to claim 1 includes an edge counting means for counting the number of edge points detected by the edge detecting means, and a plurality of extreme values obtained from the edge point number-imaging means position curve. A means is provided for selecting the optimum position from among them.

また、請求項2の発明に係る自動焦点合わせ装置は、前
回焦点合わせ情報を用いることによって現在性じている
焦点ずれ方向を予測して合焦位置を決定する制御手段を
設けたものである。
Further, the automatic focusing device according to the second aspect of the present invention is provided with a control means for predicting the current direction of defocus by using the previous focusing information and determining the focusing position.

〔作 用〕[For production]

請求項1の発明におけるエツジ計数手段はエツジ検出手
段で検出したエツジ点数を計数し、その計数したエツジ
点数から予め設定した撮像手段の移動範囲内におけるエ
ツジ点数−撮像手段位置曲線から複数の極値を求め、こ
の複数の極値から最適な位置を選択して、それを合焦位
置とするように作用する。
The edge counting means in the invention of claim 1 counts the number of edge points detected by the edge detecting means, and calculates a plurality of extreme values from the edge point-imaging means position curve within a preset movement range of the imaging means from the counted number of edge points. is determined, the optimal position is selected from these multiple extreme values, and the optimum position is set as the in-focus position.

また、請求項2の発明における制御手段は、まず、現在
のエツジ点数からエツジ点数−撮像手段位置曲線におい
て現在どの位置にあるかを予測するために、前回の撮像
手段の移動方向と同じ方面に撮像手段を移動させて得た
エツジ点数と2回目の撮像手段の移動によって得たエツ
ジ点数との比較の結果が増加ならば合焦、減少ならば非
合焦として判断して、合焦位置を決定する。
Further, the control means in the invention of claim 2 first moves in the same direction as the previous movement direction of the imaging means in order to predict the current position on the edge point number-imaging means position curve from the current number of edge points. When the number of edge points obtained by moving the imaging means is compared with the number of edge points obtained by moving the imaging means for the second time, if the result increases, it is determined to be in focus, and if it decreases, it is determined to be out of focus, and the in-focus position is determined. decide.

〔実施例〕〔Example〕

以下、この発明の自動焦点合わせ装置の実施例について
図面に基づき説明する。第1図はその一実施例の構成を
示すブロック図である。この第1図において、1は撮像
素子を有する撮像手段としてのカメラである。
Embodiments of the automatic focusing device of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing the configuration of one embodiment. In FIG. 1, reference numeral 1 denotes a camera as an imaging means having an imaging element.

このカメラ1はZテーブル2により光軸に沿って、被写
体3に接近したり、遠ざかったりして、移動することに
より、被写体3に対する合焦を行うようになっている。
This camera 1 is configured to focus on the subject 3 by moving along the optical axis using a Z table 2, approaching or moving away from the subject 3.

この被写体3は第1図の実施例ではウェハの場合が示さ
れており、以下の説明では、ウェハ3として説明を進め
るこ七にする。
In the embodiment shown in FIG. 1, the object 3 is a wafer, and in the following description, the object 3 will be described as the wafer 3.

このウェハ3と撮像手段、すなわち、カメラとの距離対
エツジ点数の関係は第2図に示されている。この第2図
において、21はカメラ1による第1回目の撮像画像の
エツジ点数−撮像手段位置曲線である。
The relationship between the distance between the wafer 3 and the imaging means, that is, the camera, and the number of edge points is shown in FIG. In FIG. 2, reference numeral 21 represents the edge score--imaging means position curve of the first image taken by the camera 1.

第1回目の合焦動作では、被写体3の画像がカメラ1に
よって撮像され、その撮像された画像はエツジ検出手段
4に送られる。
In the first focusing operation, an image of the subject 3 is captured by the camera 1, and the captured image is sent to the edge detection means 4.

このエツジ検出手段4では、入力された画像の撮像対象
の輪郭部分、すなわち、エツジを検出するためのもので
あり、このエツジ検出手段4で検出されたエツジ点数が
エツジ計数手段としてのエツジ点カウンタ5によって計
数され、その時の計数結果は第1の焦点制御手段6に送
られる。
This edge detecting means 4 is for detecting the contour part of the imaging target of the input image, that is, edges, and the number of edge points detected by this edge detecting means 4 is counted by an edge point counter as an edge counting means. 5, and the counting result is sent to the first focus control means 6.

この計数結果に基づき、第1の焦点制御手段6により、
被写体3に対する合焦が行われる。この第1の焦点制御
手段6は極値位置検出手段6aと最適位置選択手段6b
とを併せたものである。
Based on this counting result, the first focus control means 6:
Focusing on the subject 3 is performed. This first focus control means 6 includes an extreme position detection means 6a and an optimum position selection means 6b.
It is a combination of

第2図において、23は第1の焦点制御手段6により測
定されるエツジ点データでおり、20点の設定点におけ
るエツジ点数を計数し、第1回目の撮像画面におけるエ
ツジ点数−撮像手段位置曲線21を作成して、極値位置
検出手段6aによりこのエツジ点数−撮像手段位置曲線
21中の複数の極値を検出し、さらに、最適位置選択手
段6bにより複数の極値から最適な位置を選択して、第
1の焦点制御手段6により決定された任意の合焦位置2
5を決定する。
In FIG. 2, 23 is edge point data measured by the first focus control means 6, the number of edge points at 20 set points is counted, and the edge point number-imaging means position curve in the first imaging screen is calculated. 21, the extreme value position detection means 6a detects a plurality of extreme values in this edge point number-imaging means position curve 21, and the optimum position selection means 6b selects the optimum position from the plurality of extreme values. The arbitrary focus position 2 determined by the first focus control means 6
Determine 5.

また、第2回目の撮像画像のエツジ点数−撮像手段位置
曲線22を作成する場合には、第2の焦点制御手段7に
よって測定されるエツジ点データ24で示されるように
、第1の焦点制御手段6によって決定した合焦位置25
を基にして、決定した近傍の点におけるエツジ点数を計
数し、焦点ずれを補正し、第2の焦点制御手段7によっ
て決定された正しい合焦位置26を得る。
In addition, when creating the edge point number-imaging means position curve 22 of the second captured image, as shown by the edge point data 24 measured by the second focus control means 7, the first focus control Focus position 25 determined by means 6
Based on this, the number of edge points at the determined neighboring points is counted, the focus shift is corrected, and the correct focus position 26 determined by the second focus control means 7 is obtained.

次に、この発明の第2の実施例(請求項2記載の発明)
について説明する。第3図はこの第2の実施例の構成を
示すブロック図である。
Next, a second embodiment of this invention (invention according to claim 2)
I will explain about it. FIG. 3 is a block diagram showing the configuration of this second embodiment.

この第3図において、41は光軸方向に移動可能な移動
機構を持つ撮像手段である。この撮像手段41はカメラ
41aとZテーブル41bとから構成されている。
In FIG. 3, reference numeral 41 denotes an imaging means having a moving mechanism movable in the optical axis direction. This imaging means 41 is composed of a camera 41a and a Z table 41b.

この撮像手段41のカメラ41aで被写体45を撮像し
た画像中のエツジはエツジ検出手段42で検出するよう
になっており、このエツジ検出手段42で検出されたエ
ツジ点数はエツジ計数手段43で計数するようになって
いる。
Edges in the image taken of the subject 45 by the camera 41a of the imaging means 41 are detected by an edge detection means 42, and the number of edges detected by the edge detection means 42 is counted by an edge counting means 43. It looks like this.

エツジ計数手段43で計数されたエツジ点数に基づき、
制御手段44はZテーブル41bに移動命令信号を出力
するようになっている。
Based on the edge points counted by the edge counting means 43,
The control means 44 outputs a movement command signal to the Z table 41b.

第4図はこの第2の実施例を説明するための概念図およ
びエツジ点数−撮像手段位置曲線を示す1□図である。
FIG. 4 is a conceptual diagram for explaining the second embodiment and a 1□ diagram showing a curve of the number of edge points and the position of the imaging means.

図中の311〜313はそれぞれ連続する時間、すなわ
ち(n−1)回目、n回目、(n+1)回目の撮像にお
ける撮像手段41の位置を示している。
311 to 313 in the figure indicate the positions of the imaging means 41 at consecutive times, that is, the (n-1)th, nth, and (n+1)th imaging times.

また、321〜323はそれぞれ各時間、すなわち、(
n−1)回目、n回目、(n+1)回目の撮像における
被写体45の位置(ウェハ上の観察点、以下、観察点と
いう)を示している。
In addition, 321 to 323 are each time, that is, (
The position of the subject 45 (observation point on the wafer, hereinafter referred to as observation point) in the (n−1)th, nth, and (n+1)th imaging is shown.

さらに、331〜333はそれぞれ(n−1)回目、n
回目、(n+1)回目の撮像画像のエツジ点数−撮像手
段位置曲線、341〜343はそれぞれ(n−1)回目
、n回目、(n+1)回目の撮像での合焦位置を示す。
Furthermore, 331 to 333 are the (n-1)th and n
Edge point number-imaging means position curves 341 to 343 for the (n-1)th, n-th, and (n+1)-th times of imaging respectively indicate the in-focus positions of the (n-1)th, n-th, and (n+1)th times of imaging.

第5図はこの第2の実施例に基づ(焦点合わせ動作の流
れを示すフローチャートであり、この第5図のフローチ
ャートに沿って説明する。
FIG. 5 is a flowchart showing the flow of the focusing operation based on this second embodiment, and the description will be made along the flowchart of FIG. 5.

被写体45としてのウェハ12は、第4図の中央部にお
ける斜線で示すように、厚さむらが存在している。前回
、すなわち、(n−1)回目の撮像における撮像手段4
1の位置311で観察した(n−1)回目の撮像におけ
る観察点321では、FAR方向(撮像手段41を被写
体41より遠ざける方向)の焦点補正を行ったものとし
ている。
The wafer 12 as the subject 45 has thickness unevenness, as shown by the hatched area in the center of FIG. The imaging means 4 in the previous time, that is, the (n-1)th imaging
At the observation point 321 in the (n-1)th imaging at the position 311 of 1, focus correction in the FAR direction (direction in which the imaging means 41 is moved away from the subject 41) is performed.

現在、すなわち、n回目の撮像における撮像手段41で
観察した観察点322(ON点)において、焦点合わせ
を行う。
Focusing is performed at the current observation point 322 (ON point) observed by the imaging means 41 during the n-th imaging.

この場合、まず、ステップS1で被写体45の画像を撮
像手段41により取り込み、ステップS2で画像のエツ
ジをエツジ検出手段42で検出し、ステップS3でこの
エツジ検出手段42で検出したエツジ点数N+をエツジ
計数手段43で計数する。
In this case, first, in step S1, an image of the subject 45 is captured by the imaging means 41, in step S2, edges of the image are detected by the edge detection means 42, and in step S3, the number of edge points N+ detected by the edge detection means 42 is detected by the edge detection means 42. The counting means 43 counts.

n回目(今回口)の撮像手段41の撮像位置312に対
応するエツジ点数−撮像手段位置曲線332(Cn)で
あり、計数されたエツジ点数Nlはn回目の撮像での合
焦位置342である。
This is the edge point-imaging means position curve 332 (Cn) corresponding to the imaging position 312 of the imaging means 41 for the nth time (this time), and the counted edge point number Nl is the in-focus position 342 for the nth imaging. .

次に、ステップS4で撮像手段41を光軸に沿って移動
させる方向りを決定する。この方向りはFAR(撮像手
段41を被写体45から遠ざける方向)またはNEAR
(撮像手段41を被写体45から近づける方向)のいず
れかであるが、前回、すなわち、(n−1)回目の撮像
での撮像手段41の位置311の時には、FAR方向に
移動して合焦させていることから、今回もFARである
と予測し、方向りをFARと決定する。
Next, in step S4, the direction in which the imaging means 41 is moved along the optical axis is determined. This direction is FAR (direction that moves the imaging means 41 away from the subject 45) or NEAR.
(a direction in which the imaging means 41 is brought closer to the subject 45), but when the imaging means 41 was at the position 311 in the previous time, that is, the (n-1)th imaging, it moved in the FAR direction and focused. Therefore, this time too, it is predicted to be FAR, and the direction is determined to be FAR.

次に、ステップS5に進み、このステップS5で撮像手
段41を方向D、すなわち、FARの方向に移動させる
。この移動量は予め設定した量ΔP(移動ピッチ)であ
る。
Next, the process proceeds to step S5, and in step S5, the imaging means 41 is moved in the direction D, that is, in the direction of FAR. This amount of movement is a preset amount ΔP (movement pitch).

続いて、ステップS6で新たに画像を撮像し、ステップ
S7で撮像した画像のエツジを、エツジ検出手段42で
検出して、ステップS8でエツジ計数手段43により、
この検出したエツジ点数N2を計測する。その計数値は
n回目の撮像での合焦位置343におけるHnである。
Subsequently, a new image is taken in step S6, the edges of the image taken in step S7 are detected by the edge detection means 42, and the edges of the image taken in step S7 are detected by the edge counting means 43 in step S8.
The number of edge points N2 detected is measured. The count value is Hn at the focus position 343 at the n-th imaging.

次に、ステップS9に進み、ステップS3で計数したエ
ツジ点数N1 とステップS8で計数したエツジ点数N
2とを比較する。この比較の結果、予測が正しく、予め
設定した量ΔPが適当であったならば、N t > N
 +であり、合焦が正しく行われlま たとして、フローチャートはステップS9のN0側に抜
け、動作を終了する。
Next, the process proceeds to step S9, where the number of edge points N1 counted in step S3 and the number of edge points N1 counted in step S8 are calculated.
Compare with 2. As a result of this comparison, if the prediction is correct and the preset amount ΔP is appropriate, N t > N
+, the focus is correctly performed, and the flowchart exits to the N0 side of step S9 to end the operation.

また、ステップS9における計数値N1とN2との比較
の結果、予め設定した量ΔPが適当でなく、予測が誤り
ならば、N + > N zとなり、ステップS9のY
ES側からステップSIOに移り、このステップ310
において、n回目の撮像における撮像手段41の位置3
12は移動前の位置、すなわち、(n−1)回目の撮像
における撮像手段41の位置311に戻るべく、方向り
をFARの方向とは反対の方向NEARに同じく量ΔP
だけ移動する。このΔPは予め焦点ずれ予想範囲と誤差
許容量と撮像手段移動機構により決定される。
Further, as a result of the comparison between the count values N1 and N2 in step S9, if the preset amount ΔP is not appropriate and the prediction is incorrect, N + > N z and Y in step S9 is determined.
Moving from the ES side to step SIO, this step 310
In, position 3 of the imaging means 41 in the n-th imaging
12, in order to return to the position before the movement, that is, the position 311 of the imaging means 41 in the (n-1)th imaging, the direction is changed by the same amount ΔP in the direction NEAR opposite to the direction of FAR.
move only. This ΔP is determined in advance based on the expected defocus range, error tolerance, and imaging means moving mechanism.

撮像手段41が(n+1)回目の撮像における位置31
3の場合も、上記一連の処理を繰り返すことによって合
焦動作が行われる。
Position 31 at the (n+1)th imaging by the imaging means 41
In the case of No. 3 as well, the focusing operation is performed by repeating the above series of processes.

また、一番最初(n=0)の焦点合わせ動作は、従来例
で述べたような手法で行う。
Further, the first focusing operation (n=0) is performed using the method described in the conventional example.

なお、この第2の実施例では、被写体45として、ウェ
ハの場合について記述したが、他の厚さむらなどのある
被写体でも同様の効果を奏する。
In the second embodiment, a wafer is used as the subject 45, but the same effect can be achieved with other subjects having uneven thickness.

〔発明の効果〕〔Effect of the invention〕

以上のように、請求項1の発明によれば、撮像手段を予
め設定された範囲内で移動させて、撮像画像のエツジを
エツジ検出手段で検出し、その検出したエツジ数をエツ
ジ計数手段で計数してエツジ点数の分布を求め、その分
布形態から極値位置検出手段で複数の極値位置を求めて
、複数の極値位置から予め設定した最適位置を最適位置
選択手段で選択して合焦位置とするように構成したので
、多層パターンを形成したウェハ等の合焦位置が決定し
にくい被写体でも、信顛性の高い焦点合わせが可能にな
る。
As described above, according to the invention of claim 1, the imaging means is moved within a preset range, edges of the captured image are detected by the edge detection means, and the number of detected edges is counted by the edge counting means. The distribution of the number of edge points is obtained by counting, the extreme value position detecting means calculates a plurality of extreme value positions from the distribution form, and the optimum position set in advance is selected from the plurality of extreme value positions by the optimum position selecting means. Since the lens is configured to be in focus, highly reliable focusing is possible even for objects for which it is difficult to determine the focus position, such as a wafer on which a multilayer pattern is formed.

また、請求項2の発明によれば、撮像画像の現在のエツ
ジ点数を求めてエツジ点数−撮像手段位置曲線において
現在どの位置にあるかを予測するために、撮像手段を制
御手段により前回と同じ方向に移動させて再度エツジ点
数を求め、この2回のエツジ点数データを比較してその
比較の結果2回目のエツジ点数が増加の場合に合焦、減
少している場合には合焦動作が誤りと判定するように構
成したので、焦点ずれにグローバルな傾向が見られる場
合には、各撮像位置について少ないエツジ数計数で合焦
の度合いを評価でき、合焦動作時間を短縮できる効果が
ある。
Further, according to the invention of claim 2, in order to obtain the current number of edge points of the captured image and predict the current position on the edge point number-imaging means position curve, the imaging means is controlled to be the same as the previous one by the control means. The edge points are calculated again by moving the camera in the direction, and the edge point data of these two times are compared.If the result of the comparison is that the edge points increase in the second time, the focus is focused, and if it decreases, the focus operation is performed. Since the system is configured to detect an error, if there is a global trend in defocus, the degree of focus can be evaluated with a small number of edge counts for each imaging position, which has the effect of shortening the focusing operation time. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の第1の実施例による自動焦点合わせ
装置の構成を示すブロック図、第2図は同上第1の実施
例におけるエツジ点数−撮像手段位置曲線図、第3図は
この発明の第2の実施例による自動焦点合わせ装置の構
成を示すブロック図、第4図は同上第2の実施例を説明
するため撮像手段の移動状況とエツジ点数−撮像手段位
置曲線図、第5図は同上第2の実施例の動作の流れを示
すフローチャート、第6図は従来のシリコンウェハ法に
よるレチクル品質評価装置を説明するためのエツジ点数
−撮像手段位置曲線図、第7図は従来のシリコンウェハ
法によるレクチル品質評価装置により多層パターンが形
成されたウェハ画像で合焦位置を得る場合のエツジ点数
−撮像手段位置曲線図である。 1.41a−カメラ、2.41b・ Zテーブル、3.
45・・・被写体、4.42・・・エツジ検出手段、5
・・・エツジ点カウンタ、6・・・第1の焦点制御手段
、6a・・・極値位置検出手段、6b・・・最適位置検
出手段、7・・・第2の焦点制御手段、41・・・撮像
手段、43・・・エツジ計数手段、44・・・制御手段
FIG. 1 is a block diagram showing the configuration of an automatic focusing device according to a first embodiment of the present invention, FIG. 2 is a curve diagram of the number of edges versus the position of an imaging means in the first embodiment, and FIG. FIG. 4 is a block diagram showing the configuration of an automatic focusing device according to the second embodiment, and FIG. 4 is a diagram showing the moving situation of the imaging means and the edge point-imaging means position curve diagram for explaining the second embodiment. 6 is a flowchart showing the operation flow of the second embodiment, FIG. 6 is an edge point-imaging means position curve diagram for explaining a reticle quality evaluation apparatus using the conventional silicon wafer method, and FIG. 7 is a diagram showing the conventional silicon wafer method. FIG. 4 is a curve diagram showing the number of edge points versus the position of an imaging means when a focusing position is obtained using a wafer image on which a multilayer pattern is formed using a reticle quality evaluation apparatus using a wafer method. 1.41a-Camera, 2.41b-Z table, 3.
45...Subject, 4.42...Edge detection means, 5
... Edge point counter, 6... First focus control means, 6a... Extreme position detection means, 6b... Optimum position detection means, 7... Second focus control means, 41. . . . Imaging means, 43 . . . Edge counting means, 44 . . . Control means.

Claims (2)

【特許請求の範囲】[Claims] (1)光軸に沿って任意に移動可能な撮像素子を有する
撮像手段と、この撮像手段で撮像した画像から撮像対象
の輪郭部分を検出するエッジ検出手段と、このエッジ検
出手段で検出したエッジの数を計数するエッジ計数手段
と、上記撮像手段を予め設定された範囲内で移動させ、
かつ上記エッジ計数手段で計数したエッジ点数の発生分
布の極値位置を求める極値位置検出手段およびこの極値
位置検出手段で求めた複数の極値位置から最適な位置を
選択する最適位置選択手段を有する第1の焦点制御手段
と、第2回目の合焦動作時に上記第1の焦点制御装置に
より決定した合焦位置を基に決定した近傍の点における
エッジ点数を上記エッジ計数手段で計数させてその焦点
ずれを補正して正しい焦点位置を得るように上記撮像手
段の位置制御を行う第2の焦点制御手段とを備えた自動
焦点合わせ装置。
(1) An imaging device having an image sensor that can be moved arbitrarily along the optical axis, an edge detection device that detects the outline of the object to be imaged from an image captured by the imaging device, and an edge detected by the edge detection device an edge counting means for counting the number of edges, and the imaging means are moved within a preset range;
and extreme value position detection means for determining the extreme value position of the occurrence distribution of the number of edge points counted by the edge counting means, and optimal position selection means for selecting the optimal position from the plurality of extreme value positions determined by the extreme value position detection means. and causing the edge counting means to count the number of edge points at a nearby point determined based on the focus position determined by the first focus control device during a second focusing operation. and second focus control means for controlling the position of the imaging means so as to correct the focus shift and obtain a correct focus position.
(2)光軸に沿って任意に移動可能な撮像素子を有する
撮像手段と、この撮像手段で撮像した画像から撮像対象
の輪郭部分を検出するエッジ検出手段と、このエッジ検
出手段で検出したエッジ点数を計数するエッジ計数手段
と、このエッジ計数手段で計数したエッジ点数から画像
の合焦情報を得て上記撮像手段の現在位置を予測するた
めに上記撮像手段を前回の移動方向と同じ方向に移動さ
せて再度上記エッジ計数手段で計数されたエッジ点数と
前回と計数したエッジ点数とを比較して、今回のエッジ
点数が増加ならば合焦と判定する制御手段とを備えた自
動焦点合わせ装置。
(2) an imaging means having an image sensor that can be moved arbitrarily along the optical axis; an edge detection means for detecting the outline of the object from the image taken by the imaging means; and an edge detected by the edge detection means an edge counting means for counting points; and an edge counting means for moving the imaging means in the same direction as the previous movement direction in order to obtain image focus information from the number of edge points counted by the edge counting means and predict the current position of the imaging means. an automatic focusing device comprising: a control means that compares the number of edge points counted by the edge counting means with the number of edge points counted last time after moving the object; and determines that the current number of edge points is in focus if the number of edge points increases; .
JP11479890A 1990-04-28 1990-04-28 Automatic focusing device Pending JPH0412310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11479890A JPH0412310A (en) 1990-04-28 1990-04-28 Automatic focusing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11479890A JPH0412310A (en) 1990-04-28 1990-04-28 Automatic focusing device

Publications (1)

Publication Number Publication Date
JPH0412310A true JPH0412310A (en) 1992-01-16

Family

ID=14646952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11479890A Pending JPH0412310A (en) 1990-04-28 1990-04-28 Automatic focusing device

Country Status (1)

Country Link
JP (1) JPH0412310A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9442847B2 (en) 2012-01-31 2016-09-13 International Business Machines Corporation Increased destaging efficiency by smoothing destaging between current and desired number of destage tasks

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9442847B2 (en) 2012-01-31 2016-09-13 International Business Machines Corporation Increased destaging efficiency by smoothing destaging between current and desired number of destage tasks
US9442848B2 (en) 2012-01-31 2016-09-13 International Business Machines Corporation Increased destaging efficiency by smoothing destaging between current and desired number of destage tasks

Similar Documents

Publication Publication Date Title
TWI474363B (en) Pattern evaluation device and pattern evaluation method
KR20060031649A (en) Pattern comparison inspection method and pattern comparison inspection device
JPH01202607A (en) Detection of difference for repeated fine pattern
JPH04181935A (en) Optical device having automatic focus detecting means
JP2000260704A (en) Aligner and manufacture of device
KR20180025266A (en) Position detection method, position detection apparatus, lithography apparatus, and article manufacturing method
JPH09159904A (en) Automatic focusing device
JPH0412310A (en) Automatic focusing device
JP2011033730A (en) Focusing device and method, and imaging apparatus
JP2011069769A (en) Defect inspection apparatus and method thereof
JP5454392B2 (en) Ranging device and imaging device
CN113805304B (en) Automatic focusing system and method for linear array camera
JP2014095631A (en) Three-dimensional measurement device and three-dimensional measurement method
KR101694390B1 (en) Auto focusing apparatus and the method using multi cameras
JP2011085690A (en) Focus detector and camera
JPH11109218A (en) Automatic focus detector
JPH10256326A (en) Method and equipment for inspecting pattern
JP2000114161A (en) Aligner and manufacture of device
JP2009027020A (en) Inspection apparatus, exposure device and inspection method
JP4629259B2 (en) Automatic focus control device
JP2000047094A (en) Autofocus control method for digital camera
JP3218484B2 (en) Projection exposure apparatus, exposure method, and semiconductor manufacturing method using the same
JP2004184411A (en) Position recognition method
JPH06302490A (en) Method and device for alignment
KR100691210B1 (en) method adjusting focus of an image automatically using multi- resolution skill and system for performing the same