JPH0412153A - Controller of two cycle engine - Google Patents

Controller of two cycle engine

Info

Publication number
JPH0412153A
JPH0412153A JP11381290A JP11381290A JPH0412153A JP H0412153 A JPH0412153 A JP H0412153A JP 11381290 A JP11381290 A JP 11381290A JP 11381290 A JP11381290 A JP 11381290A JP H0412153 A JPH0412153 A JP H0412153A
Authority
JP
Japan
Prior art keywords
combustion
fuel injection
timing
load
thinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11381290A
Other languages
Japanese (ja)
Other versions
JP3084040B2 (en
Inventor
Masaru Kurihara
優 栗原
Koji Morikawa
弘二 森川
Akira Akimoto
秋元 晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP02113812A priority Critical patent/JP3084040B2/en
Publication of JPH0412153A publication Critical patent/JPH0412153A/en
Application granted granted Critical
Publication of JP3084040B2 publication Critical patent/JP3084040B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To obtain torque characteristics which correspond to load and decrease fuel consumption by controlling operation in such a manner as switching a combustion type so that layered combustion takes place in low/middle load, uniform combustion take place in high load, intermittent combustion takes place in low load with a specified engine speed or more. CONSTITUTION:In a control unit 50, acting as a control system during fuel injection and ignition timing, a fuel injection pulse width calculation unit 53 is provided, and a fuel injection quantity Gf is map-retrieved according to an engine operation condition. A fuel injection type judgement unit 56 is provided and engine speed Ne gives a standard of judgement whether the present combustion is intermittent combustion of load with more than the specified engine speed or more, layered combustion in low/middle load, or uniform combustion in high load. The judgement signal is inputted to a fuel injection timing setting unit 54, and to an ignition timing determining unit 55. Fuel injection timing map and ignition timing map are selected per combustion type in each case, and proper fuel injection timing and proper ignition timing are determined and outputted. The judgement signal of the combustion type judgement unit 56 is inputted together to the intermission times setting unit 57, and intermission times is determined at the time of intermittent combustion.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、車両用の2サイクルエンジンにおいて運転条
件に応じて燃料噴射量と共に燃焼方式を制御する制御装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a control device for controlling a fuel injection amount and a combustion method according to operating conditions in a two-stroke engine for a vehicle.

〔従来の技術〕[Conventional technology]

一般に車両用2サイクルエンジンとして燃焼室にインジ
ェクタを装着し、少なくとも排気系を閉した後で点火す
る迄の間の圧縮行程において、インジェクタから燃料を
高圧で直接筒内に噴射する。
Generally, an injector is installed in the combustion chamber of a two-stroke vehicle engine, and fuel is injected directly into the cylinder at high pressure at least during the compression stroke after the exhaust system is closed and before ignition.

そして燃料噴射の時期を早く定めて均一燃焼し、遅く定
めて成層燃焼する筒内直接噴射(筒内直噴)方式か本件
出願人により既に提案されている。
The applicant has already proposed an in-cylinder direct injection system in which the timing of fuel injection is set early to achieve uniform combustion, and the timing of fuel injection is set late to achieve stratified combustion.

上記筒内直噴式2サイクルエンジンては、給気系に掃気
ポンプを設けて掃気作用を効率的に行い、排気系に排気
ロータリ弁を設けて燃料噴射領域を拡大し、インジェク
タと点火プラグの電極の位置関係を最適化し、低・中負
荷の成層燃焼、高負荷の均一燃焼を良好に行う技術思想
か開示されている。ここで、低・中負荷の成層、高負荷
の均一の各燃焼方式に円滑に移行するように制御するこ
とが望まれる。
In the above-mentioned in-cylinder direct injection two-stroke engine, a scavenging pump is installed in the air supply system to efficiently perform scavenging, an exhaust rotary valve is installed in the exhaust system to expand the fuel injection area, and the electrodes of the injector and spark plug are installed. A technical idea has been disclosed for optimizing the positional relationship between the two to achieve stratified combustion at low and medium loads and uniform combustion at high loads. Here, it is desired to perform control so as to smoothly shift to the stratified combustion method at low/medium loads and the uniform combustion method at high loads.

そこで従来、この種の燃料噴射と燃焼方式とを共に制御
するエンジンの制御系に関しては、例えば特開昭60−
36719号公報の先行技術がある。ここで、低負荷時
には筒内直噴して成層燃焼し、所定の負荷以上では吸気
系の噴射ノスルにより燃料を分散して供給することで均
一燃焼することが示されている。
Therefore, conventionally, regarding the control system of this type of engine that controls both fuel injection and combustion method, for example,
There is a prior art of Publication No. 36719. Here, it has been shown that when the load is low, stratified combustion occurs through in-cylinder direct injection, and when the load exceeds a predetermined load, uniform combustion is achieved by dispersing and supplying fuel using the injection nostle in the intake system.

〔発明か解決しようとする課題〕[Invention or problem to be solved]

ところで、上記先行技術のものにあっては、低負荷の成
層燃焼時に一定の吸気量に定めて噴射ノズルにより筒内
噴射する方式であるから、本発明のように低・中負荷の
広範囲で成層燃焼するものには適用できない。
By the way, in the prior art described above, the intake air amount is determined to be constant during stratified combustion at low load, and in-cylinder injection is performed by the injection nozzle. It cannot be applied to combustible items.

中・高速領域での低・中負荷時においては、燃圧が高く
なることて燃料噴射量か増大し、エンジントルクは負荷
に見合ったトルクより犬となり、負荷に対応した燃焼方
式に基づくトルク特性のつながりが円滑に移行し難く、
この点て常に燃焼を良好に保ちなから適正に負荷制御す
ることか要求される。
At low and medium loads in the medium and high speed ranges, the fuel pressure increases, which increases the fuel injection amount, and the engine torque becomes more than the torque commensurate with the load, causing the torque characteristics to change based on the combustion method that corresponds to the load. It is difficult for connections to transition smoothly,
In this respect, proper load control is required to maintain good combustion at all times.

本発明は、かかる点に鑑みてなされたもので、その目的
とするところは、アイドリングから高負荷に及ぶ広範囲
で燃焼と共に負荷を最適制御し、滑らかなトルク特性を
得る二とか可能な2サイクルエンジンの制御装置を提供
することにある。
The present invention has been made in view of the above points, and its purpose is to provide a two-stroke engine capable of optimally controlling combustion and load over a wide range from idling to high load, thereby achieving smooth torque characteristics. The purpose of this invention is to provide a control device.

〔課題を解決するだめの手段〕[Failure to solve the problem]

上記目的を達成するため、本発明の2サイクルエンジン
の制御装置は、運転条件により燃焼方式を切換えて負荷
制御する筒内直接噴射式2サイクルエンジンの制御系に
おいて、低・中負荷では成層燃焼を、高負荷では均一燃
焼を、所定エンジン回転数以上の低負荷では間引き燃焼
を、それぞれ判断する燃焼方式判定手段と、燃焼方式の
判定により各燃焼方式毎の燃t・1噴射時期8点火時期
をマツプ検索して出力する燃料噴躬時期決定丁段1点火
時期決定手段と、間引き燃焼時に間引き回数に応じて燃
焼信号を出力する間引き回数設定手段と、燃料噴射パル
ス幅、各燃焼方式の燃料噴射時期間引き燃焼信号に応じ
て燃料噴射信号を出力する燃料噴射タイミング設定手段
とを備えるものである。
In order to achieve the above object, the two-stroke engine control device of the present invention employs stratified combustion at low and medium loads in the control system of an in-cylinder direct injection two-stroke engine that controls the load by switching the combustion method depending on the operating conditions. , combustion method determining means for determining uniform combustion at high loads and thinning combustion at low loads at or above a predetermined engine speed; and combustion method determination means for determining fuel t・1 injection timing 8 ignition timing for each combustion method by determining the combustion method. Fuel injection timing determination stage 1 ignition timing determination means that outputs fuel injection timing by searching the map, decimation number setting means that outputs a combustion signal according to the number of culling times during culling combustion, fuel injection pulse width, fuel injection of each combustion method The fuel injection timing setting means outputs a fuel injection signal in response to the delayed combustion signal.

〔作   用〕[For production]

上記構成に基づき、2サイクルエンジンでは所定エンジ
ン回転数以上の低負荷時に間引き燃焼方式が判断され、
この場合の燃料噴射時期1点火時期、燃焼信号で数回に
1回の割合で点火直前に少量燃料噴射されて、良好に成
層燃焼すると共に負荷に見合ったトルク特性になる。ま
た、低・中負荷では成層燃焼に、高負荷では均一燃焼に
それぞれ切換わり、良好な燃焼を保ってトルク特性か連
続的に変化したものになる。
Based on the above configuration, in a 2-stroke engine, the thinning combustion method is determined at low loads above a predetermined engine speed,
In this case, the fuel injection timing is 1 ignition timing, and a small amount of fuel is injected just before ignition once every few times according to the combustion signal, resulting in good stratified combustion and torque characteristics commensurate with the load. Also, at low and medium loads, the combustion switches to stratified charge combustion, and at high loads, the combustion switches to uniform combustion, maintaining good combustion while continuously changing the torque characteristics.

〔実 施 例〕〔Example〕

以下、本発明の一実施例を図面に基づいて説明する。 Hereinafter, one embodiment of the present invention will be described based on the drawings.

第2図において、2サイクル筒内直噴式ガソリンエンジ
ンの全体の構成について述べると、符号1は2サイクル
エンジンの本体であり、シリンダ2にピストン3が往復
動可能に挿入され、クランク室4のクランク軸5に対し
偏心して設けられたコンロッド6によりピストン3が連
結し、クランク軸5にはピストン3の往復動慣性力を相
殺するようにバランサ7が設けられる。燃焼室8は、半
球型、ウェッジ、カマボコ等の形状であり、中心頂部付
近の高い位置に高圧1流体式インジェクタ10が、パル
ス信号のオン時間(パルス幅)だけ開くようにして設置
される。また点火プラグ9は、電極9aかインジェクタ
IOの噴射方向直下に位置するように傾いて取付けられ
る。
In FIG. 2, the overall configuration of a two-stroke direct injection gasoline engine is described. Reference numeral 1 is the main body of the two-stroke engine, in which a piston 3 is inserted into a cylinder 2 so as to be able to reciprocate, and a crank in a crank chamber 4 is inserted. The piston 3 is connected by a connecting rod 6 provided eccentrically with respect to the shaft 5, and a balancer 7 is provided on the crankshaft 5 so as to offset the reciprocating inertia force of the piston 3. The combustion chamber 8 has a hemispherical, wedge, or semicylindrical shape, and a high-pressure single-fluid injector 10 is installed at a high position near the top of the center so as to be open for the ON time (pulse width) of the pulse signal. Further, the spark plug 9 is installed at an angle so that the electrode 9a is located directly below the injector IO in the injection direction.

インジェクタ10と電極9aとの距離は、低・中負荷で
点火直前に噴射されるコーン型の燃料噴霧を考慮して設
定される。即ち、距離が短い場合は霧化が不足し、長く
なると噴霧か拡散することから、両者の間て噴霧の後端
部に着火して成層燃焼することが可能になっている。ま
た、インジェクタ10はシリンダ2の略中心線上に配置
されていることから、高負荷で早い時期に噴射された多
量の燃料は、シリンダ2の内部中心から全体に迅速に拡
散して均一に予混合し、均一燃焼することか可能になっ
ている。
The distance between the injector 10 and the electrode 9a is set in consideration of the cone-shaped fuel spray that is injected just before ignition at low/medium loads. That is, when the distance is short, atomization is insufficient, and when the distance is long, the spray diffuses, so that between the two, the trailing end of the spray can be ignited and stratified combustion can occur. In addition, since the injector 10 is arranged approximately on the center line of the cylinder 2, a large amount of fuel injected at an early stage under high load quickly diffuses throughout the cylinder 2 from its internal center and is uniformly premixed. This makes it possible to burn evenly.

シリンダ2にはピストン3により所定のタイミングで開
閉する排気ポート11が開口し、排気ポート11からの
排気管12に触媒装置13.マフラI4が設けられる。
An exhaust port 11 that opens and closes at a predetermined timing by a piston 3 is opened in the cylinder 2, and a catalyst device 13. A muffler I4 is provided.

ここて、排気ポー[1には排気ロータリ弁15が設置さ
れ、ベルト手段I6によりクランク軸5に連結して排気
ポート11の開閉を各別に定めている。即ち、ピストン
3の上昇時に下死点側で排気ロータリ弁15により排気
ポー[+を早目に閉じ、高負荷での均一燃焼方式におい
て燃料噴射の時期を早く設定することが可能になってい
る。
Here, an exhaust rotary valve 15 is installed in the exhaust port [1], and is connected to the crankshaft 5 by a belt means I6 to individually determine the opening and closing of the exhaust port 11. That is, when the piston 3 rises, the exhaust port [+ is closed early by the exhaust rotary valve 15 on the bottom dead center side, making it possible to set the timing of fuel injection earlier in the uniform combustion method under high load. .

また、シリンダ2において排気ポート11よりF死点側
で、円周方向に略180度および90度ずれた位置に、
同様にピストン3により所定のタイミングで開閉する掃
気ポート17が開口して設けられる。そして掃気ポート
17の給気管18には、エアクリーナ19.アクセル開
度に応じて開くスロットル弁20が設けられ、スロット
ル弁20の下流には掃気ポンプ21か、ベルト手段22
によりクランク軸5に連結し、エンジン動力により常に
ポンプ駆動して掃気圧が生しるように設けられる。ここ
で、スロットル弁20はアクセル全開でも少し開いて掃
気ポンプ21の吸込みが可能に設定され、この遊び範囲
を越えるとアクセル開度に応しスロットル弁20が開い
て空気量を制御する。そして空気のみの掃気圧で強制的
に掃気作用し、空気を高い充填効率で供給するようにな
っている。
In addition, in the cylinder 2, on the F dead center side from the exhaust port 11, at positions shifted approximately 180 degrees and 90 degrees in the circumferential direction,
Similarly, a scavenging port 17 is opened and provided, which is opened and closed by the piston 3 at a predetermined timing. An air cleaner 19. A throttle valve 20 that opens according to the accelerator opening is provided, and a scavenging pump 21 or a belt means 22 is provided downstream of the throttle valve 20.
The pump is connected to the crankshaft 5 by the pump, and the pump is always driven by the engine power to generate scavenging pressure. Here, the throttle valve 20 is set to open slightly even when the accelerator is fully opened, allowing suction by the scavenging pump 21, and when this play range is exceeded, the throttle valve 20 opens in accordance with the accelerator opening to control the amount of air. The scavenging pressure of air alone is used to forcefully scavenge air, supplying air with high filling efficiency.

即ち、アクセル開度φに対し、スロットル開度φ′は第
3図(a)のように非線形の特性に設定され、このため
充填空気量Gaも第3図(b)のように非線形の特性に
なる。こうして、アクセル開放のアイドリング時にも掃
気ポンプ21による掃気と共に燃焼が良好に確保される
That is, the throttle opening φ' is set to have a nonlinear characteristic as shown in FIG. 3(a) with respect to the accelerator opening φ, and therefore the charged air amount Ga also has a nonlinear characteristic as shown in FIG. 3(b). become. In this way, good combustion is ensured as well as scavenging by the scavenging pump 21 even during idling with the accelerator released.

インジェクタlOの高圧燃料系について述べると、燃料
タンク30が、フィルタ31.燃料ポンプ32、燃圧レ
ギュレータ33.圧力変動を吸収するアキュムレータ3
4を有する燃料通路35を介してインジェクタIOに連
通し、燃圧レギュレータ33からの戻り通路36が燃料
タンク30に連通している。そして燃圧レギュレータ3
3が燃料ポンプ32の高圧燃料の戻りを調整してインジ
ェクタ10の燃圧を制御する。ここで、低負荷の充填空
気量か少ない場合は燃圧が低く、負荷の増大により充填
空気量か多くなると、燃圧も高く制御されている。
Regarding the high pressure fuel system of the injector lO, the fuel tank 30 is connected to the filter 31. Fuel pump 32, fuel pressure regulator 33. Accumulator 3 absorbs pressure fluctuations
4, a return passage 36 from the fuel pressure regulator 33 communicates with the fuel tank 30. and fuel pressure regulator 3
3 adjusts the return of high-pressure fuel from the fuel pump 32 to control the fuel pressure of the injector 10. Here, when the amount of charged air is small at low load, the fuel pressure is low, and when the amount of filled air increases due to an increase in load, the fuel pressure is also controlled to be high.

続いて、第1図において電子制御系として燃料噴射1点
火時期の制御系について述ぺる。
Next, in FIG. 1, a fuel injection 1 ignition timing control system will be described as an electronic control system.

先ず、クランク角センサ40.気筒判別センサ41アク
セル開度センサ42を有し、これらのセンサ信号が制御
ユニット50に入力する。制御ユニット50は、クラン
ク角センサ40のクランク角θか人力するエンジン回転
数検出部51を有し、クランクパルスの時間等によりエ
ンジン回転数Neを検出する。
First, the crank angle sensor 40. It has a cylinder discrimination sensor 41 and an accelerator opening sensor 42, and these sensor signals are input to the control unit 50. The control unit 50 has an engine rotation speed detection section 51 that manually detects the crank angle θ of the crank angle sensor 40, and detects the engine rotation speed Ne based on the time of the crank pulse.

クランク角センサ40.気筒判別センサ41の信号はク
ランク位置検出部52に入力し、各気筒での上死点前の
基準位置を検出する。
Crank angle sensor 40. The signal from the cylinder discrimination sensor 41 is input to a crank position detection section 52, which detects the reference position before the top dead center of each cylinder.

また、エンジン回転数Neとアクセル開度センサ42の
アクセル開度φとか入力する燃料噴射パルス幅算出部5
3を有し、エンジン回転数Ne、 アクセル開度φによ
る各運転条件に応(7て燃料噴射量Gfをマツプ検索す
る。ここで、エンジン回転数Neが一定の場合に、燃料
噴射量Gfはアクセル開度φに対して第3図(C)のよ
うに比例的に設定されており、これと第3図(b)の充
填空気量Gaの特性により、トルク特性は燃焼方式と無
関係にアクセル開度φに応じて増減したものになり得る
Further, the fuel injection pulse width calculation unit 5 inputs the engine rotation speed Ne and the accelerator opening degree φ of the accelerator opening degree sensor 42.
3, and the fuel injection amount Gf is searched on the map according to each operating condition according to the engine speed Ne and the accelerator opening φ (7).Here, when the engine speed Ne is constant, the fuel injection amount Gf is It is set proportionally to the accelerator opening φ as shown in Fig. 3 (C), and due to this and the characteristics of the charged air amount Ga shown in Fig. 3 (b), the torque characteristics are set proportionally to the accelerator opening φ regardless of the combustion method. It can be increased or decreased depending on the opening degree φ.

また、燃料噴射パルス幅の決定要素として、燃料噴射@
Gfの他に燃圧Pfがある。特に、燃圧Pfは高圧燃料
系て給気系と各別に制御され、燃圧Pfが高い場合は同
じ燃料噴射パルス幅でも燃料が多くなる。そこて燃圧P
fに対し、その補正係数Kか減少関数で設定される。こ
うして、燃料噴射パルス幅Tiは、燃料噴射iGf、補
正係数に1.および電圧補正分子sを用いて以下のよう
に算用する。
In addition, as a determining factor of the fuel injection pulse width, the fuel injection @
In addition to Gf, there is fuel pressure Pf. In particular, the fuel pressure Pf is controlled separately from the high-pressure fuel system and the air supply system, and when the fuel pressure Pf is high, the amount of fuel is increased even with the same fuel injection pulse width. There, fuel pressure P
The correction coefficient K for f is set as a decreasing function. In this way, the fuel injection pulse width Ti is determined by the fuel injection iGf and the correction coefficient of 1. and the voltage correction numerator s, it is calculated as follows.

Ti −に−G f +Ts 次いて各運転条件の要素のエンジン回転数NO。Ti - to -G f +Ts Next, the engine speed NO of each driving condition element.

燃料噴射jtGfは、間引きを含む成層、成層および均
一の燃焼方式に分ける燃事4噴射時期決定部54点火時
期決定部55.および燃焼方式判定部56に入力する。
The fuel injection jtGf is divided into stratified, stratified and uniform combustion methods including thinning. and is input to the combustion method determining section 56.

燃料噴射方式判定部56は、エンジン回転数Neが所定
回転数以上での低負荷の間引き燃焼、低・中負荷の成層
燃焼、および高負荷の均一燃焼を判断する。ここで、エ
ンジン回転数Neが、ある−定回転数の場合の各燃焼方
式の最大トルク特性か得られる充填空気量を示すと第4
図(a)のX、 Y。
The fuel injection method determination unit 56 determines low-load thinning combustion, low/medium-load stratified combustion, and high-load uniform combustion when the engine rotational speed Ne is equal to or higher than a predetermined rotational speed. Here, the amount of charged air obtained from the maximum torque characteristic of each combustion method when the engine rotation speed Ne is a certain - constant rotation speed is expressed as follows.
X, Y in figure (a).

Zようになり、アクセル全開状態で燃料噴射量Gfを変
化した場合のトルク特性は第4図(b)のようになる。
The torque characteristic when the fuel injection amount Gf is changed with the accelerator fully open is as shown in FIG. 4(b).

これにより、均一燃焼では燃料噴射量Gfに対し最大ト
ルクが得られる充填空気量Gaとに対し、実線Xて示さ
れる特性となり、この場合の可燃限界の特性は一点鎖線
2′となる。成層燃焼の最大トルクは実線Yで示される
充填空気量て得られ、可燃限界は一点鎖線2′となり、
間引き燃焼の最大トルクは実線Zて示される充填空気量
で得られ、可燃限界は一点鎖線2′となる。そしてアク
セル開度φの全閉から全開まての動作に対する充填空気
量Gaと燃料噴射tGfとの関係に基づく作動ラインは
、太い実線りて示すようになる。
As a result, in uniform combustion, the characteristics shown by the solid line X are obtained with respect to the charged air amount Ga at which the maximum torque can be obtained with respect to the fuel injection amount Gf, and the characteristics of the flammability limit in this case are shown by the dashed-dotted line 2'. The maximum torque of stratified combustion is obtained by the amount of charged air shown by the solid line Y, and the flammability limit is the dashed line 2'.
The maximum torque of thinning combustion is obtained with the amount of charged air indicated by the solid line Z, and the flammability limit is indicated by the dashed-dotted line 2'. The operation line based on the relationship between the charged air amount Ga and the fuel injection tGf for the operation of the accelerator opening degree φ from fully closed to fully open is shown by a thick solid line.

そこで、間引きと成層の燃焼方式の切換点Cと、成層と
均一の燃焼方式の切換点C2における燃料噴射量Gf、
、Gf2は、第5図(a)のように予めマツプにより設
定されている。そして、切換点C,,C2は、第4図(
a)の点線Cて示す特性に設定される。従って、燃焼方
式判定部56ては、第5図(a)のマツプより燃焼方式
を切換える点の燃料噴射IGf、、Gf2と要求燃料噴
射量Gfとをエンジン回転数に基づいて比較して、Gf
≦Gf、の場合に間引き燃焼を、Gf工<Gf≦Gf2
の場合に成層燃焼を、Gf2≦Gfの場合に均一燃焼を
それぞれ判断するのであり、この判定信号が燃料噴射時
期決定部541点火時期決定部55に入力する。
Therefore, the fuel injection amount Gf at the switching point C between thinning and stratified combustion methods and the switching point C2 between stratified and uniform combustion methods,
, Gf2 are set in advance using a map as shown in FIG. 5(a). The switching points C, , C2 are shown in Fig. 4 (
The characteristics are set as shown by the dotted line C in a). Therefore, the combustion method determination unit 56 compares the fuel injection amount IGf, , Gf2 at the point at which the combustion method is changed based on the map of FIG.
When ≦Gf, thinning combustion is performed, and when Gf<Gf≦Gf2
Stratified combustion is determined when Gf2≦Gf, and uniform combustion is determined when Gf2≦Gf. This determination signal is input to the fuel injection timing determining section 541 and the ignition timing determining section 55.

燃料噴射時期決定部54は、各燃焼す式毎の燃料噴射時
期マツプを有し、このマツプを燃焼方式判定信号により
選択してエンジン回転数Nc、燃料噴射量Gfに応した
最適燃料噴射時期の信号を出力する。ここで成層燃焼で
は、点火直前に所定の霧化時間を残して噴射終了する必
要かあるため、この燃焼式では第5図(C)のように、
最適燃料噴射開始時期θiEが設定される。均一燃焼で
は、V[銀系が閉した後の早い時期に噴射開始する必要
があるため、この場合は最適燃料噴射開始時期θ1sが
第5図(d)のように設定される。一方、間引き燃焼で
は、燃料噴射量Gfが少ないことで成層と類似の燃焼方
式になるが、数回に1回間引く場合の最適燃料噴射時期
θ1eか第5図(b)のように設定される。こうして、
これらの各燃焼方式のマツプで燃料噴射時期θte、 
 θiEまたはθisを出力することで、実質的に燃焼
方式を切換える。
The fuel injection timing determination unit 54 has a fuel injection timing map for each combustion method, and selects this map based on the combustion method determination signal to determine the optimal fuel injection timing according to the engine speed Nc and the fuel injection amount Gf. Output a signal. In stratified charge combustion, it is necessary to leave a predetermined atomization time before ignition to finish the injection, so in this combustion method, as shown in Figure 5 (C),
The optimal fuel injection start timing θiE is set. In uniform combustion, it is necessary to start injection early after the V[silver system closes, so in this case, the optimal fuel injection start timing θ1s is set as shown in FIG. 5(d). On the other hand, in thinning combustion, the fuel injection amount Gf is small, resulting in a combustion method similar to stratified combustion, but the optimal fuel injection timing θ1e when thinning out once every few times is set as shown in Figure 5 (b). . thus,
In the maps of these combustion methods, the fuel injection timing θte,
By outputting θiE or θis, the combustion method is essentially switched.

点火時期決定部55は、最適点火時期θgを決定して出
ツノする。ここで、エンジン回転数NQと燃料噴射量G
fとにより最適な点火時期θgは1つ決定されるか、燃
焼方式か異なると各燃焼方式毎に点火時期θgも異なっ
たものになる。従って、第5図(b) 、 (c) =
 (d)のように間引き、成層、および均一の各燃焼方
式でそれぞれ点火時期θgがマツプで各別に設定されて
おり、こうして各燃焼方式で最適な点火時期θgを出力
する。
The ignition timing determination unit 55 determines and determines the optimum ignition timing θg. Here, engine speed NQ and fuel injection amount G
Depending on f, one optimum ignition timing θg is determined, or if the combustion method is different, the ignition timing θg will be different for each combustion method. Therefore, Fig. 5 (b), (c) =
As shown in (d), the ignition timing θg is set separately on the map for each of the thinning, stratified, and uniform combustion methods, and thus the optimum ignition timing θg is output for each combustion method.

燃焼方式t11定部56の判定信号は更に間引き回数設
定部57に人力し、間引き燃焼時の間引き回数を定める
。ここて、例えば4気筒の場合は第5図(e)のように
、各気筒および全体として3回に1回成層燃焼し、残り
の2回は燃料カットするように定め、この3回に1回の
燃焼信号を出力する。
The determination signal from the combustion method t11 fixed section 56 is further inputted to a thinning number setting section 57 to determine the number of thinnings during thinning combustion. For example, in the case of a 4-cylinder engine, as shown in Fig. 5(e), it is determined that stratified combustion is performed once every three times in each cylinder and as a whole, and fuel is cut off the remaining two times. Outputs the combustion signal once.

上記燃料噴射パルス幅Ti、燃料噴射時期θicθtE
またはθis  および間引きの燃焼信号は、燃料噴射
タイミング設定部58に入力する。そしてクランク角基
準位置に基づき燃料噴射パルス幅Tiと燃料噴射時期θ
iEまたはθisに応した燃料噴射信号を1ザイクル毎
に駆動部59を介してインジェクタ10に出力する。一
方、燃料噴射時期θicが入力する間引き燃焼時は、燃
料噴射パルス幅Tiと燃料噴射時期θicによる燃料噴
射信号を燃焼信号に同期して出力する。
The above fuel injection pulse width Ti, fuel injection timing θicθtE
Alternatively, θis and the thinned-out combustion signal are input to the fuel injection timing setting section 58. Based on the crank angle reference position, the fuel injection pulse width Ti and the fuel injection timing θ are determined based on the crank angle reference position.
A fuel injection signal corresponding to iE or θis is outputted to the injector 10 via the drive unit 59 every cycle. On the other hand, during thinning combustion when the fuel injection timing θic is input, a fuel injection signal based on the fuel injection pulse width Ti and the fuel injection timing θic is output in synchronization with the combustion signal.

点火時期θgは点火タイミング設定部60に入力し、ク
ランク角基準位置に基づき点火時期θgに応した点火タ
イミング、トエル時間等の点火信号を駆動部61を介し
て点火プラグ9に出力するように構成される。
The ignition timing θg is input to the ignition timing setting section 60, and the ignition timing θg is configured to output ignition signals such as ignition timing and toll time to the spark plug 9 via the drive section 61 based on the crank angle reference position. be done.

次いで、かかる構成の2サイクルエンジンの制御装置の
作用についてべろ。
Next, let's talk about the operation of the control device for a two-stroke engine with this configuration.

先ず、エンジン運転時に、アクセル開度に応しスロット
ル弁20が開いて空気が掃気ポンプ21に吸入されて所
定の掃気圧が生じており、ピストン3の下降時に排気ポ
ートl+が開き、次に掃気ボート17も開くと、この加
圧空気が掃気ポート17からシリンダ2の内部に流入す
る。そしてこの給気の縦スワール流によりシリンダ2の
残留ガスを排気ホト11から押し出し、給気を高い充填
効率で満すように掃気作用される。一方、ピストン3が
下死点から上昇し始めると、排気ロータリ弁15が閉じ
て掃気が終了し、燃料の吹き抜けが生じること無く燃料
噴射することが可能になり、次いて掃気ホト17か閉し
、て圧縮行程に移行する。一方、このときインジェクタ
10の高圧燃料系では運転条件に応じて燃圧レギュレー
タ33て燃圧が制御され、この燃料かインジェクタ10
に導かれている。
First, during engine operation, the throttle valve 20 opens in response to the accelerator opening and air is sucked into the scavenging pump 21 to generate a predetermined scavenging pressure.When the piston 3 descends, the exhaust port l+ opens, and then the scavenging air is When the boat 17 is also opened, this pressurized air flows into the cylinder 2 through the scavenging port 17. This vertical swirl flow of the supply air pushes out the residual gas in the cylinder 2 from the exhaust hole 11, and performs a scavenging action to fill the supply air with high filling efficiency. On the other hand, when the piston 3 begins to rise from the bottom dead center, the exhaust rotary valve 15 closes and scavenging ends, making it possible to inject fuel without causing fuel blow-through, and then the scavenging valve 17 closes. , and move on to the compression stroke. On the other hand, at this time, in the high-pressure fuel system of the injector 10, the fuel pressure is controlled by the fuel pressure regulator 33 according to the operating conditions, and this fuel is supplied to the injector 10.
guided by.

また、制御ユニット50の燃料噴射パルス幅等出部53
ては、エンジン回転数Ne、 アクセル開度φに応じて
燃料噴射量Gfがマツプ検索され、更に燃料噴射量Gf
に基づいて燃料噴射パルス幅Tiが算出される。同時に
燃焼方式判定部56では、燃焼方式が判断され、燃料噴
射時期決定部541点火時期決定部55のマツプかこの
判断により選択される。
Further, the fuel injection pulse width output section 53 of the control unit 50
Then, the fuel injection amount Gf is searched on the map according to the engine speed Ne and the accelerator opening degree φ, and the fuel injection amount Gf is also searched.
The fuel injection pulse width Ti is calculated based on . At the same time, the combustion method determining section 56 determines the combustion method, and the map of the fuel injection timing determining section 541 and the ignition timing determining section 55 is selected based on this determination.

そこで、エンジン回転数が所定回転数以上の低負荷時1
例えば第5図(a)に示されるエンジン回転数NeがN
e2以上で、アクセル開度φが所定開度の時には、燃焼
方式判定部56で要求燃料噴射MGfと切換点C1にお
ける燃料噴射@G f 、との比較により、Gf≦Gf
、の時には間引き燃焼が判断される。このため、燃料噴
射時期決定部54て第5図(b)の間引き燃焼用マツプ
を選択して燃料噴射時期θieか点火時期の直前に決定
され、点火時期決定部55て第5図(e)の間引き燃焼
方式の最適点火時期θgかマツプ検索され、更に間引き
回数設定部57から3回に1回の燃焼信号が出力する。
Therefore, when the engine speed is low load above the predetermined speed, 1
For example, the engine speed Ne shown in FIG. 5(a) is N
e2 or more, and when the accelerator opening φ is a predetermined opening, the combustion method determination unit 56 compares the required fuel injection MGf with the fuel injection @G f at the switching point C1, and determines that Gf≦Gf.
When , thinning combustion is determined. Therefore, the fuel injection timing determining section 54 selects the thinning combustion map shown in FIG. 5(b) to determine the fuel injection timing θie immediately before the ignition timing, and the ignition timing determining section 55 selects the thinning combustion map shown in FIG. 5(e). The optimum ignition timing θg of the thinning combustion method is searched on a map, and the thinning number setting section 57 outputs a combustion signal once every three times.

そしてこれらの燃料噴射パルス幅Ti、燃料噴射時期θ
1eによる燃す一1噴射信号か、燃料噴射タイミング設
定部58からインジェクタ10に燃焼信号に同期して出
力するのであり、このため第6図(a)のように、点火
直前に少量の燃料か点火プラグ9の電極9aに向けて噴
射される。そして燃t4噴霧の後端部に電極9aにより
着火されるのであり、こうして3回に1回間引いて成層
燃焼される。この成層燃焼方式では、スロットル弁20
が開き掃気ポンプ2Iにより充分に掃気されて充填空気
ff1Gaも比較的多いことで良好に燃焼される。従っ
て、間引き燃焼時のトルク特性は、第4図(b) −(
c) 、(d)に示すトルク曲線T1のように低くて緩
やかに変化した特性になる。
And these fuel injection pulse width Ti, fuel injection timing θ
1e, or the fuel injection timing setting unit 58 outputs the combustion signal to the injector 10 in synchronization with the combustion signal. Therefore, as shown in FIG. 6(a), just before ignition, a small amount of fuel or It is injected toward the electrode 9a of the plug 9. Then, the rear end of the fuel t4 spray is ignited by the electrode 9a, and in this way, the fuel is thinned out once every three times to perform stratified combustion. In this stratified combustion method, the throttle valve 20
is opened, sufficient scavenging is performed by the scavenging pump 2I, and the amount of charged air ff1Ga is relatively large, resulting in good combustion. Therefore, the torque characteristics during thinning combustion are as shown in Fig. 4(b) - (
c) The torque curve T1 shown in (d) has a low and gradually changing characteristic.

次いで、アクセル開度φが一定状態で負荷が増大するこ
とにより燃料噴射量Gfが増大し、切換点C1の燃料噴
射量Gf、より大きくなった低・中負荷時には、成層燃
焼が判断される。そこで、燃料噴射時期決定部54で成
層燃焼用マツプが選択され、これにより燃料噴射時期θ
iEが点火時期の近くに決定され、点火時期決定部55
でも成層燃焼用マツプにより最適点火時期θgか比較的
上死点に近く決定される。そして燃料噴射パルス幅Tf
Next, when the load increases while the accelerator opening degree φ is constant, the fuel injection amount Gf increases, and when the fuel injection amount Gf at the switching point C1 becomes larger at low/medium load, stratified combustion is determined. Therefore, the fuel injection timing determination unit 54 selects the stratified combustion map, and thereby the fuel injection timing θ
iE is determined to be close to the ignition timing, and the ignition timing determining section 55
However, the optimum ignition timing θg is determined relatively close to top dead center by the stratified combustion map. and fuel injection pulse width Tf
.

燃料噴射時期θieによる噴射信号が1サイクル毎にイ
ンジェクタIOに出力することて、第6図(b)のよう
に、圧縮後期に比較的少量の燃料が点火プラグ9の電極
9aに向けて噴射され、その直後に点火時期θgによる
点火信号が点火プラグ9に出力する。このため、コーン
型の燃料噴霧が拡散する前にその後端部に電極9aで着
火して成層燃焼に切換わるのであり、こうして空気量に
比べて燃料か非常に少なくても、燃料の濃混合気を有効
利用して安定した成層燃焼か行われる。
Since the injection signal based on the fuel injection timing θie is output to the injector IO every cycle, a relatively small amount of fuel is injected toward the electrode 9a of the spark plug 9 in the late stage of compression, as shown in FIG. 6(b). , immediately after that, an ignition signal based on the ignition timing θg is output to the spark plug 9. For this reason, before the cone-shaped fuel spray diffuses, it is ignited by the electrode 9a at its rear end and switches to stratified combustion.In this way, even if the fuel is very small compared to the amount of air, a rich mixture of fuel is created. Stable stratified combustion is carried out by making effective use of this.

かかる成層燃焼では、充填空気量Ga、燃料噴射@Gf
が増し、更に毎回燃焼されることで、第4図(b) 、
(c) 、 (d)に示すトルク曲線T2のようにトル
クが増す。そして間引きの場合と燃焼方式か路間−のた
め、トルク曲線T1に対し滑らかにトルク曲線T2に移
行することになる。
In such stratified charge combustion, the charging air amount Ga, the fuel injection @Gf
increases and is further burned each time, as shown in Figure 4(b),
Torque increases as shown in torque curve T2 shown in (c) and (d). In the case of thinning and because of the combustion method, the torque curve T1 smoothly transitions to the torque curve T2.

更に、燃料噴射量Gfか切換点C2の燃料噴射量Gf2
以上に増大した高負荷時には、均一燃焼が判断される。
Furthermore, the fuel injection amount Gf or the fuel injection amount Gf2 at the switching point C2
At the time of high load increased above, uniform combustion is determined.

そこで燃料噴射時期決定部541点火時期決定部55て
は、均一燃焼方式のマツプ選択され、燃料噴射時期θi
sが排気ロータリ弁15の閉後の早い時期に、点火時期
θgが最適値に決定されることになる。このため第6図
(C)のように、圧縮初期にインジェクタlOから多量
の燃料がシリンダ2内に噴射され、圧縮中に燃料と空気
とが充分混合する。そしてこの均一に混合した後に点火
プラグ9で着火して、均一燃焼に切換わる。かかる均一
燃焼方式では、多量の燃料が高い空気利用率で良好に燃
焼し、第4図(b) 、(c) 、 (d)のトルク曲
線T3のようにトルクが更に増大する。また、切換点C
2では、設定値Gf2により成層と均一の燃焼方式のト
ルクか等しくなるように設定されているので、トルク曲
線T2からT3に滑らかに移行することになる。
Therefore, the fuel injection timing determining section 541 and the ignition timing determining section 55 select a map for the uniform combustion method, and the fuel injection timing θi
The ignition timing θg is determined to be the optimum value at an early stage after the exhaust rotary valve 15 is closed. Therefore, as shown in FIG. 6(C), a large amount of fuel is injected into the cylinder 2 from the injector IO at the beginning of compression, and the fuel and air are sufficiently mixed during compression. After this uniform mixing, the spark plug 9 ignites and switches to uniform combustion. In such a uniform combustion method, a large amount of fuel is burnt satisfactorily with a high air utilization rate, and the torque further increases as shown by the torque curve T3 in FIGS. 4(b), (c), and (d). Also, switching point C
2, the set value Gf2 is set so that the torque of the stratified combustion method and that of the uniform combustion method are equal, so there is a smooth transition from the torque curve T2 to T3.

なお、アクセル開度φが減少し燃料噴射ff1Gfを減
少すると、上述の場合と逆に燃焼方式か切換わり、エン
ジントルクは切換点C2,C,て滑らかに燃焼方式に対
応じて変化する。
Note that when the accelerator opening degree φ decreases and the fuel injection ff1Gf decreases, the combustion method is switched, contrary to the above case, and the engine torque changes smoothly in accordance with the combustion method at switching points C2 and C.

以上、本発明の実施例について述べたが、これのみに限
定されない。
Although the embodiments of the present invention have been described above, the present invention is not limited thereto.

〔発明の効果〕〔Effect of the invention〕

以上述べてきたように、本発明によれば、2サイクルの
筒内直噴式エンジンにおいて、低・中負荷では成層燃焼
し、高負荷では均一燃焼し、所定エンジン回転数以上の
低負荷では間引き燃焼するように、それぞれ燃焼方式を
切換えて運転するように制御されるので、特に所定エン
ジン回転数以上の低負荷では間引き燃焼が行われるため
、負荷に対応したトルク特性が得られると共に、燃料消
費量も少ない。
As described above, according to the present invention, in a two-cycle direct injection engine, stratified combustion occurs at low and medium loads, uniform combustion occurs at high loads, and thinned combustion occurs at low loads above a predetermined engine speed. Since the combustion method is controlled to switch and operate, especially at low loads above a predetermined engine speed, thinning combustion is performed, so torque characteristics corresponding to the load can be obtained, and fuel consumption can be reduced. There are also few.

さらに、低負荷時にはスロットル弁が所定開度間いて充
分掃気するように設定され、品い充填効率の状態で成層
燃焼されるので、気負6;j時に安定した燃焼が行われ
るため、高いトルク特性をH77ることがてきる。
Furthermore, when the load is low, the throttle valve is set to sufficiently scavenge air between the predetermined opening degrees, and stratified combustion is performed with high charging efficiency, so stable combustion occurs at low load, resulting in high torque. The characteristics can be adjusted to H77.

さらにまた、低負荷の間引き燃焼と成層燃焼とは、燃焼
方式が路間−のため燃焼やトルク特性か連続的に切換わ
る。
Furthermore, since the combustion method of low-load thinning combustion and stratified combustion is interstitial combustion, the combustion and torque characteristics are continuously switched.

また、間引き、成層、および均一の燃焼方式の切換点か
、エンジン回転数と燃料噴射量とてトルク特性が一致す
るように設定されているので、全体のトルク特性が連続
的に変化したものになる。
In addition, the switching points of thinning, stratified, and uniform combustion methods are set so that the torque characteristics match the engine speed and fuel injection amount, so the overall torque characteristics change continuously. Become.

さらにまた、燃料噴射時期1点火時期は各燃焼方式毎に
設定されることで、最適に各燃焼を行い得る。
Furthermore, by setting the fuel injection timing and ignition timing for each combustion method, each combustion can be performed optimally.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の2サイクルエンンンの制御装置の実施
例を示す電子制御系のブロフク図、第2図は本発明の2
サイクルエンンンの全体の概略を示す構成図、 第3図(a)ないしくC)は各種特性図、第4図は間引
き、成層、および均一の燃焼方式のトルク特性図、 第5図(a)ないしくd)は各燃焼方式の燃料噴射量、
燃料噴射時期と点火時期のマツプを示す図。 (e)は4気筒の場合の間引き燃焼状態を示す図、第6
図は各燃焼方式の燃料噴射状態を示す図である。 1・・・2サイクル工ンジン本体、9・・・点火プラグ
、10・・・インジェクタ、50・・制御ユニット、5
3・・・燃料噴射パルス幅算出部、54・・・燃料噴射
時期決定部、55・・−点火時期決定部、56・・・燃
焼方式判定部、57・・・間引き回数設定部、58・・
燃料噴射タイミング設定部 特許出願人  富士重工業株式会#1 代理人 弁理士  小 橋 信 浮 量
FIG. 1 is a block diagram of an electronic control system showing an embodiment of a control device for a two-cycle engine according to the present invention, and FIG.
Figure 3 (a) to C) is a diagram showing various characteristics, Figure 4 is a torque characteristic diagram of thinning, stratified, and uniform combustion methods, Figure 5 (a) ) or d) is the fuel injection amount for each combustion method,
A diagram showing a map of fuel injection timing and ignition timing. (e) is a diagram showing the thinned combustion state in the case of 4 cylinders,
The figure is a diagram showing fuel injection states of each combustion method. 1... 2-cycle engine body, 9... Spark plug, 10... Injector, 50... Control unit, 5
3... Fuel injection pulse width calculation unit, 54... Fuel injection timing determination unit, 55...-Ignition timing determination unit, 56... Combustion method determination unit, 57... Thinning number setting unit, 58.・
Fuel injection timing setting unit patent applicant: Fuji Heavy Industries Co., Ltd. #1 Agent: Nobu Kobashi, patent attorney

Claims (6)

【特許請求の範囲】[Claims] (1)運転条件により燃焼方式を切換えて負荷制御する
筒内直接噴射式2サイクルエンジンの制御系において、 低・中負荷では成層燃焼を、高負荷では均一燃焼を、所
定エンジン回転数以上の低負荷では間引き燃焼を、それ
ぞれ判断する燃焼方式判定手段と、燃焼方式の判定によ
り各燃焼方式毎の燃料噴射時期、点火時期をマップ検索
して出力する燃料噴射時期決定手段、点火時期決定手段
と、 間引き燃焼時に間引き回数に応じて燃焼信号を出力する
間引き回数設定手段と、 燃料噴射パルス幅、各燃焼方式の燃料噴射時期、間引き
燃焼信号に応じて燃料噴射信号を出力する燃料噴射タイ
ミング設定手段とを備えることを特徴とする2サイクル
エンジンの制御装置。
(1) In the control system of a direct injection two-stroke engine, which controls the load by switching the combustion method depending on operating conditions, stratified combustion is performed at low and medium loads, uniform combustion is performed at high loads, and combustion is performed at low and Combustion method determining means for determining thinning combustion for each load; fuel injection timing determining means and ignition timing determining means for searching a map and outputting fuel injection timing and ignition timing for each combustion method based on combustion method determination; A thinning number setting means for outputting a combustion signal according to the number of times of thinning during thinning combustion; a fuel injection timing setting means for outputting a fuel injection signal according to the fuel injection pulse width, the fuel injection timing of each combustion method, and the thinning combustion signal. A two-stroke engine control device comprising:
(2)燃焼方式判定手段は、間引き成層、成層と均一の
燃焼方式の切換点を、各エンジン回転数の燃料噴射量で
トルクが一致するように定め、 運転条件の燃料噴射量を切換点のものと比較して燃焼方
式を判断することを特徴とする請求項(1)記載の2サ
イクルエンジンの制御装置。
(2) The combustion method determining means determines the switching point between the thinned stratified, stratified and uniform combustion methods so that the torque matches the fuel injection amount at each engine speed, and determines the fuel injection amount under the operating condition at the switching point. 2. The two-stroke engine control device according to claim 1, wherein the combustion method is determined by comparing the combustion method with the combustion method.
(3)燃料噴射時期決定手段は、各燃焼方式の燃料噴射
時期をエンジン回転数と燃料噴射量のマップで定め、 間引き、成層燃焼では点火直前に、均一燃焼では排気系
閉直後に燃料噴射時期を設定することを特徴とする請求
項(1)記載の2サイクルエンジンの制御装置。
(3) The fuel injection timing determination means determines the fuel injection timing for each combustion method using a map of engine speed and fuel injection amount, and determines the fuel injection timing immediately before ignition for thinning and stratified combustion, and immediately after exhaust system closure for uniform combustion. 2. The two-stroke engine control device according to claim 1, wherein:
(4)燃料噴射タイミング設定手段は、燃料噴射パルス
幅と燃料噴射時期とによる燃料噴射信号を、成層と均一
燃焼では1サイクル毎に、間引き燃焼では燃焼信号と同
期して出力することを特徴とする請求項(1)記載の2
サイクルエンジンの制御装置。
(4) The fuel injection timing setting means is characterized in that it outputs a fuel injection signal based on the fuel injection pulse width and fuel injection timing every cycle in stratified combustion and uniform combustion, and in synchronization with the combustion signal in thinning combustion. 2 of claim (1)
Cycle engine control device.
(5)給気系で掃気ポンプの上流にスロットル弁を配置
し、 アクセル開放付近で上記スロットル弁を所定量開いた状
態に設定することを特徴とする請求項(1)記載の2サ
イクルエンジンの制御装置。
(5) A two-stroke engine according to claim (1), characterized in that a throttle valve is disposed upstream of the scavenging pump in the air supply system, and the throttle valve is set to be opened by a predetermined amount near the opening of the accelerator. Control device.
(6)燃料噴射パルス幅は、アクセル開度とエンジン回
転数とにより燃料噴射量を定め、燃圧に応じた係数を用
いて算出することを特徴とする請求項(1)記載の2サ
イクルエンジンの制御装置。
(6) The fuel injection pulse width of the two-stroke engine according to claim (1) is characterized in that the fuel injection amount is determined based on the accelerator opening degree and the engine speed, and is calculated using a coefficient depending on the fuel pressure. Control device.
JP02113812A 1990-04-27 1990-04-27 Control device for two-stroke engine Expired - Fee Related JP3084040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02113812A JP3084040B2 (en) 1990-04-27 1990-04-27 Control device for two-stroke engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02113812A JP3084040B2 (en) 1990-04-27 1990-04-27 Control device for two-stroke engine

Publications (2)

Publication Number Publication Date
JPH0412153A true JPH0412153A (en) 1992-01-16
JP3084040B2 JP3084040B2 (en) 2000-09-04

Family

ID=14621674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02113812A Expired - Fee Related JP3084040B2 (en) 1990-04-27 1990-04-27 Control device for two-stroke engine

Country Status (1)

Country Link
JP (1) JP3084040B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6456457B1 (en) 1999-05-10 2002-09-24 Matsushita Electric Industrial Co., Ltd. Information recording/reproducing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6456457B1 (en) 1999-05-10 2002-09-24 Matsushita Electric Industrial Co., Ltd. Information recording/reproducing device

Also Published As

Publication number Publication date
JP3084040B2 (en) 2000-09-04

Similar Documents

Publication Publication Date Title
US5078107A (en) Fuel injection control system for an internal combustion engine
US6619242B2 (en) Combustion control apparatus for engine
US6574961B2 (en) Direct-injection engine with turbocharger and method of controlling the same
US4995354A (en) Two-cycle engine
US5553579A (en) Fuel injection system for two-cycle engine
EP1223321A2 (en) Internal combustion engine and fuel injection control device therefor
AU2011345296B2 (en) Stratified charge port injection engine and method
JP2002206446A5 (en)
JPH0233439A (en) Fuel injection control device for two-cycle direct injection engine
US5975045A (en) Apparatus and method for controlling direct injection engines
JPH0240052A (en) Number of idle revolutions control device for 2-cycle direct injection engine
US5954023A (en) Apparatus and method for controlling combustion in internal combustion engines
JPH04370343A (en) Idle rotation speed control device for two-cycle engine
EP0884461A2 (en) Intake control system for engine
JPH03281965A (en) Control device for two-cycle engine
JP4518251B2 (en) Control device for internal combustion engine
JPH0412153A (en) Controller of two cycle engine
JPH033934A (en) Fuel injection control device for two-cycle engine
JPH09291827A (en) Two-cycle engine
JP3065093B2 (en) Fuel injection control device for two-cycle engine
JP2631940B2 (en) Control device for in-cylinder direct injection engine
JPH10274072A (en) Cylinder injection type engine with supercharger
JPH0571768B2 (en)
JPH03286123A (en) Controller of two-cycle engine
JPH0599032A (en) Idling controller of inter-cylinder injection type internal combustion engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees