JPH0412072A - Production of high-strength porous sic sintered material - Google Patents

Production of high-strength porous sic sintered material

Info

Publication number
JPH0412072A
JPH0412072A JP11146090A JP11146090A JPH0412072A JP H0412072 A JPH0412072 A JP H0412072A JP 11146090 A JP11146090 A JP 11146090A JP 11146090 A JP11146090 A JP 11146090A JP H0412072 A JPH0412072 A JP H0412072A
Authority
JP
Japan
Prior art keywords
sintering
whiskers
sic
powder
carbonaceous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11146090A
Other languages
Japanese (ja)
Inventor
Minoru Fukazawa
深沢 稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP11146090A priority Critical patent/JPH0412072A/en
Publication of JPH0412072A publication Critical patent/JPH0412072A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title sintered material, by using SiC whiskers having formed a carbonaceous surface coating film as an aggregate raw material, blending the SiC whiskers with B powder and subjecting to hot press sintering under a specific condition. CONSTITUTION:A mixture of SiC whiskers having formed a carbonaceous surface coating film with 200-100Angstrom thickness and 0.3-1.0wt.% B powder is subjected to hot press sintering in an inert atmosphere at 1,950-2,100 deg.C under >=100kg/cm<2>. Whiskers are dispersed into a solution of phenol resin, etc., filtered, dried, the resin is cured, heat-treated in a nonoxidizing atmosphere and the thickness of the carbonaceous coating film is adjusted to 20-100Angstrom by controlling conditions such as solution concentration of resin, etc. When the amount of the B powder added is lower than the lower limit, blending effects are not shown and when the amount of the B powder exceeds the upper limit, excessive B remains on the bond interface of the whiskers and causes reduction in strength. When the sintering temperature is lower than the lower limit, the sintering is made unsmooth and when the temperature exceeds the upper limit, deformation can not be suppressed and the mixture is difficult to sinter. When sintering pressure is <100kg/cm<2>, bonding base points can not be formed in the whiskers and the mixture has difficulty in sintering.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、機械的強度性能に優れる多孔質組織のSiC
焼結体を製造するための方法に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention provides SiC with a porous structure that has excellent mechanical strength performance.
The present invention relates to a method for producing a sintered body.

〔従来の技術) SiCのようなセラミックス材質で構成される多孔質構
造体は、耐熱性や化学的安定性に優れているため、溶融
金属用のフィルター、高温断熱材、触媒担体、パーティ
キュレート捕集材などに実用されている。
[Prior art] Porous structures made of ceramic materials such as SiC have excellent heat resistance and chemical stability, so they can be used as filters for molten metals, high-temperature insulation materials, catalyst supports, and particulate traps. It is used for collecting wood, etc.

従来、多孔質セラミックス構造体については多くの製造
技術が提案されているが、工程的に最も簡便な手段は三
次元網目構造を備える有機質多孔体の骨格面にセラミッ
クススラリーを何着させたのち、乾燥、焼成する方法(
特開昭59−3059号公報、同63−1.56084
号公報等)である。この種の手段によるSiC系多孔質
体を対象としたプロセスとしては、有機質繊維の成形体
にSiCスラリを含浸させて固化したのち焼結する方法
(特開昭55−71659号公報)が知られている〔発
明が解決しようとする課題] しかし、有機多孔質体にSiCスラリーを含浸して乾燥
、焼成する従来の方法では、形成されるSiC多孔組織
の結合力が弱いため十分な強度性能が付与されない問題
点がある。
Conventionally, many manufacturing techniques have been proposed for porous ceramic structures, but the simplest method in terms of process is to apply a ceramic slurry on the skeletal surface of an organic porous body with a three-dimensional network structure, and then Drying and firing method (
JP-A-59-3059, JP-A No. 63-1.56084
Publications, etc.). As a process for SiC-based porous bodies using this type of means, a method is known in which an organic fiber molded body is impregnated with SiC slurry, solidified, and then sintered (Japanese Patent Laid-Open No. 71659/1983). [Problems to be Solved by the Invention] However, in the conventional method of impregnating an organic porous body with SiC slurry, drying and firing, the bonding force of the SiC porous structure formed is weak, so that sufficient strength performance cannot be achieved. There are some issues that are not covered.

多孔組織の骨格を強固にして強度性能の向上を図るため
には、骨格原料をSiC粉末に代えて微小繊維状のSi
Cウィスカーを用いて焼結化することが有効と考えられ
る。ところが、SiCウィスカーは1700°C以上の
高温で焼結すると再結晶化による変態を起し、形状変形
を生して元の形態および強度を保持できなくなる難点が
ある。
In order to strengthen the framework of the porous structure and improve its strength performance, it is necessary to use microfibrous Si instead of SiC powder as the framework raw material.
Sintering using C whiskers is considered effective. However, when SiC whiskers are sintered at a high temperature of 1700° C. or higher, they undergo transformation due to recrystallization, resulting in shape deformation and difficulty in maintaining their original shape and strength.

発明者は、SiCウィスカーの熱変態が表面に薄い炭素
質被膜を形成することで防止し得ることに着目して研究
を重ねた結果、前記炭素質被膜を形成したSiCウィス
カーをB粉末と混合した状態で特定の条件によりホット
プレス焼結すると高強度のSiC多孔質体に転化するこ
とを確認するに至った。
The inventor conducted repeated research focusing on the fact that thermal transformation of SiC whiskers can be prevented by forming a thin carbonaceous film on the surface, and as a result, the SiC whiskers with the carbonaceous film formed thereon were mixed with B powder. It has been confirmed that hot press sintering under specific conditions converts the material into a high-strength porous SiC material.

本発明は上記の知見に基づいて開発されたもので、その
目的とするところはSiCウィスカーを骨格とした機械
的強度に優れる多孔質SiC焼結体の製造方法を提供す
るにある。
The present invention was developed based on the above findings, and its purpose is to provide a method for producing a porous SiC sintered body having excellent mechanical strength and having a skeleton of SiC whiskers.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するための本発明による高強度多孔質
SiC焼結体の製造方法は、厚さ20〜100人の炭素
質表面被膜を形成したSiCウィスカーに0.3〜1.
0重量%のB粉末を混合し、該混合物を不活性雰囲気中
で温度1950〜2100°C1圧力100kg/cm
2以上の条件でホットプレス焼結することを構成上の特
徴とする。
In order to achieve the above object, the method for producing a high-strength porous SiC sintered body according to the present invention is based on SiC whiskers having a carbonaceous surface film formed thereon with a thickness of 0.3 to 1.0 mm.
0% by weight of B powder was mixed, and the mixture was heated in an inert atmosphere at a temperature of 1950-2100°C and a pressure of 100kg/cm.
The structural feature is that hot press sintering is performed under two or more conditions.

SiCウィスカーには、直径0.5〜2μm、長さ10
〜100μmのアスペクト性状を有する針状単結晶が用
いられる。このSiCウィスカーに炭素質表面被膜を形
成するには、例えばフェノール樹脂、フラン樹脂などの
炭化可能な熱硬化性樹脂の溶液中にSiCウィスカーを
分散させ、濾過、乾燥および樹脂硬化したのち非酸化性
雰囲気中で800〜1800″Cの温度に熱処理する方
法が適用される。この際、用いる熱硬化性樹脂の溶液濃
度、SiCウィスカーの攪拌混合時間などの条件を制御
することによって形成する炭素質被膜の厚さを20〜1
00人の範囲に調整することができる。
SiC whiskers have a diameter of 0.5 to 2 μm and a length of 10
A needle-like single crystal having an aspect property of ~100 μm is used. To form a carbonaceous surface film on the SiC whiskers, the SiC whiskers are dispersed in a solution of a carbonizable thermosetting resin such as a phenolic resin or a furan resin, and after filtration, drying, and resin curing, a non-oxidizing A method of heat treatment at a temperature of 800 to 1800"C in an atmosphere is applied. At this time, the carbonaceous film is formed by controlling conditions such as the solution concentration of the thermosetting resin used and the stirring and mixing time of the SiC whiskers. The thickness of 20~1
It can be adjusted to a range of 00 people.

炭素質被膜の厚さを20〜100人に設定する理由は、
20人未満ではSiCウィスカーの熱変形が有効に防止
できず、また100人を越すと焼結性が減退するからで
ある。
The reason why the thickness of the carbonaceous film is set to 20 to 100 is as follows.
This is because if there are less than 20 people, thermal deformation of the SiC whiskers cannot be effectively prevented, and if more than 100 people, sinterability will deteriorate.

炭素質表面被膜を形成したSiCウィスカーには、B粉
末が混合される。該B粉末は焼結助剤として機能するも
ので、望ましくは平均粒子径05μm以下の微粉として
SiCウィスカーに対し0.3〜1.0重量%の範囲で
混合する。この添加量が0.3重量%未満の場合には混
合効果が発揮されずに焼結不良が起き、他方1.0重量
%を土建ると余剰B成分がSiCウィスカーの結合界面
に残存していずれも強度低下の原因となる。
B powder is mixed into the SiC whiskers on which the carbonaceous surface coating has been formed. The B powder functions as a sintering aid, and is preferably mixed as a fine powder with an average particle size of 05 μm or less in an amount of 0.3 to 1.0% by weight based on the SiC whisker. If the amount added is less than 0.3% by weight, the mixing effect will not be exhibited and poor sintering will occur, while if the amount added is 1.0% by weight, excess B component will remain at the bonding interface of the SiC whiskers. Both cause a decrease in strength.

SiCウィスカーとB粉末との混合は、例えば適宜な有
機溶媒と共にボールミル中で撹拌混合する方法を用い、
十分に均一になるまでおこなわれる。混合物は、引き続
き乾燥して焼結用素材とする。
The SiC whiskers and the B powder are mixed, for example, by stirring and mixing in a ball mill with an appropriate organic solvent,
This is done until it is completely uniform. The mixture is subsequently dried to form a sintering material.

焼結処理はホットプレスによりおこない、焼結条件を不
活性雰囲気中、温度1950〜2100°C1圧力10
0kg/cm”以上に設定する。焼結系内を不活性雰囲
気に保持することはSiCウィスカーに形成された炭素
質表面被膜の酸化を防くために必要な条件である。また
、系内の雰囲気圧は常圧以上の加圧状態に保つことが好
ましく、真空または減圧系ではSiCうイスカーの変形
が昇華を伴って進行する結果を招く。焼結温度は、19
50°C未満であると焼結が円滑におこなわれず、21
00°Cを越えるとSiCウィスカーの再結晶化が激し
く進むため薄い炭素質表面被膜では変形を抑制し得なく
なる。また、焼結圧力が100kg/cm”を上廻る場
合にはSiCウィスカーに結合基点を形成することがで
きな(なり、焼結化が困難となる。したがって、焼結は
100kg/cm2以上の圧力域において所望の気孔率
になる圧力条件に調整しておこなわれる。
The sintering process was carried out using a hot press, and the sintering conditions were: in an inert atmosphere, temperature 1950-2100°C, pressure 10°C.
0 kg/cm” or more. Maintaining the inside of the sintering system in an inert atmosphere is a necessary condition to prevent oxidation of the carbonaceous surface film formed on the SiC whiskers. It is preferable to maintain the atmospheric pressure at a pressure higher than normal pressure, and in a vacuum or reduced pressure system, the deformation of the SiC iscar will proceed with sublimation.The sintering temperature is 19
If the temperature is less than 50°C, sintering will not be carried out smoothly and 21
If the temperature exceeds 00°C, recrystallization of the SiC whiskers will proceed rapidly, so that a thin carbonaceous surface coating will not be able to suppress the deformation. Furthermore, if the sintering pressure exceeds 100 kg/cm2, bonding points cannot be formed in the SiC whiskers (and sintering becomes difficult. Therefore, sintering is performed at a pressure of 100 kg/cm2 or more. The pressure conditions are adjusted to achieve the desired porosity in the area.

[作 用] 本発明によれば、骨格成分として厚さ20〜100人の
炭素質表面被膜を形成したSiCウィスカーを用い、こ
れを少量の焼結助剤B粉末と混合したのち特定の条件で
ホットプレス焼結するプロセスが採られる。この過程で
、炭素質被膜は焼結時の変態劣化を効果的に抑制し、骨
格となるSiCウィスカー本来の高強度性と相俟って強
固な組織の形成化にを効機能する。SiCウィスカー相
互の結合は、焼結処理時に負荷される100kg/cm
2以上の加圧力でSiCウィスカー相互の接触界面にお
ける炭素質被膜が剥離し、あるいはSiCウィスカーが
折れることにより無数の結合基点が形成され、この結合
基点を介して焼結が進行するため極めて強固となる。
[Function] According to the present invention, SiC whiskers on which a carbonaceous surface film with a thickness of 20 to 100 mm has been formed are used as a skeleton component, and after being mixed with a small amount of sintering aid B powder, the whiskers are heated under specific conditions. A hot press sintering process is used. In this process, the carbonaceous film effectively suppresses transformation deterioration during sintering, and together with the inherent high strength of the SiC whiskers serving as the skeleton, it functions to form a strong structure. Bonding between SiC whiskers is achieved by a load of 100 kg/cm during the sintering process.
The carbonaceous film at the contact interface between the SiC whiskers peels off or the SiC whiskers break under pressure of 2 or more, forming countless bonding points, and sintering progresses through these bonding points, making the product extremely strong. Become.

焼結後の組織は、微小繊維状のSiCウィスカーが結合
基点で結合した多孔質組織となるが、気孔率は主にホッ
トプレスの加圧条件によって調整することができる。
The structure after sintering becomes a porous structure in which fine fibrous SiC whiskers are bonded together at bonding points, and the porosity can be adjusted mainly by the pressurizing conditions of the hot press.

(実施例) 以下、本発明を実施例に基づいて説明する。(Example) Hereinafter, the present invention will be explained based on examples.

実施例1 フェノール樹脂〔群栄化学■製、゛レジト・ノブPGA
−4508′“〕をエタノールに溶解して7日間静置し
、十分に均相化させた濃度の異なる樹脂溶液を作製した
。この溶液に平均直径0.4μm、平均長さ30μmの
SiCウィスカー〔東海カーボン■製、“″トーカウィ
スカー”]を分散して攪拌混合したのち、濾過、乾燥し
てエタノールを揮散除去した。ついで、170°Cの温
度に2時間加熱してフェノール樹脂を硬化し、引き続き
高周波炉に移してAr気流中、1000℃の温度に焼成
してSiCウィスカーの表面に厚さの異なる炭素質被膜
を形成した。
Example 1 Phenol resin [manufactured by Gunei Chemical Co., Ltd., "Resito Nobu PGA"
-4508'"] was dissolved in ethanol and allowed to stand for 7 days to prepare fully homogenized resin solutions with different concentrations. SiC whiskers with an average diameter of 0.4 μm and an average length of 30 μm were added to this solution. "Toka Whisker" (manufactured by Tokai Carbon ■) was dispersed and mixed with stirring, followed by filtration and drying to volatilize and remove ethanol. Next, the phenol resin was cured by heating at a temperature of 170°C for 2 hours, and then transferred to a high frequency furnace and fired at a temperature of 1000°C in an Ar flow to form carbonaceous films of different thicknesses on the surface of the SiC whiskers. Formed.

炭素質被膜を形成した各SiCウィスカーに平均粒径0
.1μ麟の非晶質B粉末を0.7重量%の割合で混合し
、エタノール分散媒とともにボールミルに入れて20時
間回回転台した。
Each SiC whisker with a carbonaceous film has an average particle size of 0.
.. 1 micron of amorphous B powder was mixed at a ratio of 0.7% by weight, and the mixture was placed in a ball mill with an ethanol dispersion medium and rotated for 20 hours.

形成された混合スラリーを濾過、乾燥してエタノール成
分を除去した。得られた混合物を焼結用素材としてその
各40gを黒鉛製モールドに充填し、系内をAr雰囲気
に保持しながら温度2050°C1圧力500kg/c
m”の条件によりホットプレス焼結をおこなった。
The formed mixed slurry was filtered and dried to remove the ethanol component. The obtained mixture was used as a sintering material, and 40 g of each was filled into a graphite mold, and the temperature was 2050° C. and the pressure was 500 kg/c while maintaining the system in an Ar atmosphere.
Hot press sintering was carried out under the conditions of ``m''.

得られた各焼結体につき嵩密度および曲げ強度を測定し
、結果をSiCウィスカーの表面に形成した炭素質被膜
の厚さとの関係グラフとして第1図に示した。
The bulk density and bending strength of each of the obtained sintered bodies were measured, and the results are shown in FIG. 1 as a graph of the relationship with the thickness of the carbonaceous film formed on the surface of the SiC whisker.

第1図から、炭素質表面被膜の厚さが20〜100人の
範囲にある場合には、約15%の気孔率を有し、300
MPaを越える曲げ強度を備える高強度性の多孔質Si
C焼結体が得られたが、炭素質被膜の厚さが20人未満
および100人を越す例では曲げ強度が極端に低くなる
ことが認められた。なお、10人未満の炭素質被膜の例
で形成されたSiC焼結体を顕微鏡観察したところSi
Cウィスカーは粒子状に変形していることがi認された
From FIG. 1, when the thickness of the carbonaceous surface coating is in the range of 20 to 100%, it has a porosity of about 15% and 300%
High strength porous Si with bending strength exceeding MPa
Although a C sintered body was obtained, the bending strength was found to be extremely low in cases where the thickness of the carbonaceous coating was less than 20 or more than 100. In addition, when the SiC sintered body formed in the case of less than 10 carbonaceous coatings was observed under a microscope, it was found that Si
It was observed that the C whiskers were deformed into particles.

実施例2 実施例1の方法で形成した50人の炭素質表面被膜をも
つSiCウィスカーに実施例1と同一手段によりB粉末
を添加量を変えて混合し、焼結処理して多孔質SiC焼
結体を製造した。
Example 2 50 SiC whiskers with a carbonaceous surface coating formed by the method of Example 1 were mixed with varying amounts of B powder by the same means as in Example 1, and sintered to form porous SiC. A body was produced.

得られた各SiC焼結体につき嵩密度および曲げ強度を
測定し、B粉末の添加量との関係をグラフにして第2図
に示した。
The bulk density and bending strength of each SiC sintered body obtained were measured, and the relationship with the amount of B powder added is shown in a graph in FIG.

第2図の結果から、B粉末の添加量が0.3〜1.0重
量%の範囲では嵩密度は2.75g/cm3程度で安定
し、曲げ強度も300MPa以上を高強度域を保持する
が、B粉末添加量を0. 3重量%未満に落とすと嵩密
度、曲げ強度ともに上昇せず、一方、B粉末添加量が1
.0重量%を越すと曲げ強度が極端に低下することが判
る。
From the results shown in Figure 2, when the amount of B powder added is in the range of 0.3 to 1.0% by weight, the bulk density is stable at about 2.75 g/cm3, and the bending strength remains in the high strength range of 300 MPa or more. However, if the amount of B powder added is 0. When the amount of B powder added is less than 3% by weight, neither the bulk density nor the bending strength increases.
.. It can be seen that when the content exceeds 0% by weight, the bending strength is extremely reduced.

実施例3 平均直径1μm、平均長さ40μ鯖のSiCウィスカー
に実施例1の方法を用いて厚さ50人の炭素質表面被膜
を形成した。このSiCウィスカーに実施例1と同一条
件で0.7重量%のB粉末を添加混合して焼結用素材を
作成し、これを温度および圧力条件を変えてホットプレ
ス焼結した。
Example 3 A carbonaceous surface coating having a thickness of 50 μm was formed on SiC whiskers having an average diameter of 1 μm and an average length of 40 μm using the method of Example 1. A sintering material was prepared by adding and mixing 0.7% by weight of B powder to the SiC whiskers under the same conditions as in Example 1, and hot press sintered this material under different temperature and pressure conditions.

得られた各SiC焼結体の嵩密度および曲げ強度を測定
し、結果を適用した焼結条件と対比させて表1に示した
The bulk density and bending strength of each SiC sintered body obtained were measured, and the results are shown in Table 1 in comparison with the applied sintering conditions.

表 本発明の要件を満たすRUN No、1〜5までは約1
5%の気孔率と300MPaを越す曲げ強度を示した。
Table: RUN No. 1 to 5, which meet the requirements of the present invention, are approximately 1
It exhibited a porosity of 5% and a bending strength of over 300 MPa.

しかし、RUN No、6では温度が1950°Cを下
潮るため焼結が円滑に進行せず、嵩密度、曲げ強度とも
に低い、、RUN No、7は温度が2100°Cを第
1 図 炭素質表面被膜の厚さ (人) 越えるため、曲げ強度が低下している。また、IIUN
 No、8は圧力が低いために焼結化が進まず、曲げ強
度が低い。
However, in RUN No. 6, the temperature drops below 1950°C, so sintering does not proceed smoothly, and the bulk density and bending strength are both low. In RUN No. 7, the temperature drops to 2100°C, so sintering does not proceed smoothly. The thickness of the surface coating (human) is exceeded, resulting in a decrease in bending strength. Also, IIUN
In No. 8, sintering did not proceed because the pressure was low, and the bending strength was low.

(発明の効果) 以上のとおり、本発明に従えば骨格原料に炭素質表面被
膜を形成したSiCウィスカーを用い、B粉末と混合し
て選択された条件でホントブレス焼結することによって
強度特性に優れる多孔質SIC焼結体を製造することが
できる。
(Effects of the Invention) As described above, according to the present invention, strength properties are improved by using SiC whiskers with a carbonaceous surface coating formed on the skeletal raw material, mixing them with B powder, and real-breath sintering under selected conditions. An excellent porous SIC sintered body can be manufactured.

したがって、苛酷な環境下で使用される多孔組織の構造
部材として有用性が期待される。
Therefore, it is expected to be useful as a porous structural member used in harsh environments.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1におけるSiCウィスカーの炭素質被
膜の厚さとSjC焼結体の嵩密度および曲げ強度との関
係を示したグラフ、第2図は実施例2におけるB粉末の
添加量と嵩密度および曲げ強度との関係を示したグラフ
である。 出願人  東海カーボン株式会社 代理人 弁理士 高 畑 正 也 第2図 0.5      1.O B粉末の添加量(重量%)
Figure 1 is a graph showing the relationship between the thickness of the carbonaceous film of SiC whiskers and the bulk density and bending strength of the SjC sintered body in Example 1, and Figure 2 is a graph showing the relationship between the amount of B powder added and the bulk density in Example 2. It is a graph showing the relationship between density and bending strength. Applicant Tokai Carbon Co., Ltd. Agent Patent Attorney Masaya Takahata Figure 2 0.5 1. Amount of O B powder added (wt%)

Claims (1)

【特許請求の範囲】[Claims] 1、厚さ20〜100Åの炭素質表面被膜を形成したS
iCウィスカーに0.3〜1.0重量%のB粉末を混合
し、該混合物を不活性雰囲気中で温度1950〜210
0℃、圧力100kg/cm^2以上の条件でホットプ
レス焼結することを特徴とする高強度多孔質SiC焼結
体の製造方法。
1. S with a carbonaceous surface coating of 20 to 100 Å thick
0.3-1.0 wt% B powder is mixed with iC whiskers, and the mixture is heated in an inert atmosphere at a temperature of 1950-210°C.
A method for producing a high-strength porous SiC sintered body, comprising hot press sintering at 0° C. and a pressure of 100 kg/cm^2 or more.
JP11146090A 1990-04-26 1990-04-26 Production of high-strength porous sic sintered material Pending JPH0412072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11146090A JPH0412072A (en) 1990-04-26 1990-04-26 Production of high-strength porous sic sintered material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11146090A JPH0412072A (en) 1990-04-26 1990-04-26 Production of high-strength porous sic sintered material

Publications (1)

Publication Number Publication Date
JPH0412072A true JPH0412072A (en) 1992-01-16

Family

ID=14561799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11146090A Pending JPH0412072A (en) 1990-04-26 1990-04-26 Production of high-strength porous sic sintered material

Country Status (1)

Country Link
JP (1) JPH0412072A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100419780B1 (en) * 2001-02-23 2004-02-21 한국에너지기술연구원 Fabrication method of silicon carbide ceramics filter with coating layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100419780B1 (en) * 2001-02-23 2004-02-21 한국에너지기술연구원 Fabrication method of silicon carbide ceramics filter with coating layer

Similar Documents

Publication Publication Date Title
US20070032371A1 (en) Silicon carbide based, porous structural material being heat-resistant and super-lightweight
JPS58117649A (en) Manufacture of electrode substrate of fuel cell
JP2004018322A (en) Silicon/silicon carbide composite material and method of producing the same
JPH0768066B2 (en) Heat resistant composite and method for producing the same
JPH0555465B2 (en)
KR20030069179A (en) Method for making thin films in metal/ceramic composite
JPH0251863B2 (en)
JP4273195B2 (en) Method for producing silicon carbide heat-resistant lightweight porous structure
KR100419346B1 (en) Method for preparing porous yttria stabilized zirconia
JPH11130558A (en) Porous silicon carbide sintered product and its production
JPH0412072A (en) Production of high-strength porous sic sintered material
JPS60200861A (en) Manufacture of high strength silicon carbide sintered body
JPS6360159A (en) Manufacture of high density silicon carbide sintered body
JPH0224784B2 (en)
JP2001348288A (en) Particle-dispersed silicon material and method of producing the same
JPH0826848A (en) Production of porous sic molding
JPS62287027A (en) Manufacture of porous cu-alloy sintered compact
JPH0244078A (en) Porous ceramic composite material and production thereof
JPS6364967A (en) Silicon carbide base composite body and manufacture
JP2000185979A (en) Production of porous molded article of silicon carbide
JP2652939B2 (en) Graphite-ceramic composite material and manufacturing method
JPH02129071A (en) Production of silicon carbide ceramics
JPS5910979B2 (en) Method for manufacturing heat-resistant composite sintered body
JPS5851911B2 (en) Method for manufacturing fiber-reinforced silicon nitride sintered body
JP2004189551A (en) Method of producing porous silicon carbide sintered compact