JPH0412063A - Production of oxynitride - Google Patents

Production of oxynitride

Info

Publication number
JPH0412063A
JPH0412063A JP2110581A JP11058190A JPH0412063A JP H0412063 A JPH0412063 A JP H0412063A JP 2110581 A JP2110581 A JP 2110581A JP 11058190 A JP11058190 A JP 11058190A JP H0412063 A JPH0412063 A JP H0412063A
Authority
JP
Japan
Prior art keywords
oxynitride
give
oxide gel
gel
aerosol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2110581A
Other languages
Japanese (ja)
Other versions
JPH0717452B2 (en
Inventor
Masahiro Sekine
正裕 関根
Makoto Hori
誠 堀
Shingo Katayama
真吾 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
COLLOID RES KK
Original Assignee
COLLOID RES KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by COLLOID RES KK filed Critical COLLOID RES KK
Priority to JP2110581A priority Critical patent/JPH0717452B2/en
Publication of JPH0412063A publication Critical patent/JPH0412063A/en
Publication of JPH0717452B2 publication Critical patent/JPH0717452B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Ceramic Products (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To readily obtain oxynitride ceramic having excellent hardness, heat resistance, corrosion resistance, elasticity, etc., by hydrolyzing a silicon alkoxide, subjecting to polycondensation to give an oxide gel, drying the oxide gel under a supercritical state to give aerosol and nitriding in an ammonia flow. CONSTITUTION:A raw material comprising a silicon alkoxide (e.g. tetramethoxysilane) as a main component optionally blended with another alkoxide, etc., is hydrolyzed and subjected to polycondensation to produce an oxide gel. Then the oxide gel is dried under a supercritical state to give aerosol. Then the aerosol is burnt in an ammonia flow and nitrided to give oxynitride ceramic. The prepared oxynitride ceramic is suitably used as oxynitride glass, filter material, heat insulating material, etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は酸窒化物セラミックスの製造方法に関するもの
であり、特に、金属アルコキシドを加水分解して得られ
たゲルを窒化焼成することにより、耐熱性、耐食性、弾
性率、硬度等に優れたオキシナイトライドガラスを含む
酸窒化物セラミックスの製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing oxynitride ceramics, and in particular, by nitriding and firing a gel obtained by hydrolyzing a metal alkoxide, heat-resistant The present invention relates to a method for producing oxynitride ceramics containing oxynitride glass that has excellent properties such as hardness, corrosion resistance, elastic modulus, and hardness.

〔従来の技術〕[Conventional technology]

従来、オキシナイトライドガラスは、AIN、5i3N
a 、BN等の窒素化合物を酸化物セラミックスと共に
溶融して調製する溶融法が知られている。
Conventionally, oxynitride glass is AIN, 5i3N
A melting method is known in which nitrogen compounds such as a and BN are melted together with oxide ceramics.

この方法は単純ではあるが、次の問題点がある。Although this method is simple, it has the following problems.

■ 溶融、均質化のために高温を要す。■ Requires high temperature for melting and homogenization.

■ ガラスの酸化を防くために溶融雰囲気は低酸素分圧
にする必要がある。
■ The melting atmosphere must have a low oxygen partial pressure to prevent oxidation of the glass.

■ 非反応性のるつぼ材料の選択が必要である。■ It is necessary to select a non-reactive crucible material.

■ 窒素源となる窒化物の種類が限られており、組成に
制限がある。
■ The types of nitrides that serve as nitrogen sources are limited, and the composition is restricted.

近年、上記問題点を解決しうるものとしてゾル・ゲル法
を応用したものが提案されている。
In recent years, a method applying the sol-gel method has been proposed as a solution to the above-mentioned problems.

これは金属アルコキシドを加水分解して得られたゲルを
アンモニア気流下で窒化焼成し、オキシナイトライドガ
ラスとする方法であり、薄膜のように体積に比して極端
に表面積の大きい形状のものでは多量の窒素が導入され
るものの、板状、ロンド状等のバルク材では、窒素の導
入量を多くすることが出来ない。
This is a method in which the gel obtained by hydrolyzing metal alkoxide is nitrided and fired in an ammonia stream to form oxynitride glass. Although a large amount of nitrogen is introduced, it is not possible to increase the amount of nitrogen introduced in bulk materials such as plate-shaped and rond-shaped materials.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

組成に制限の少ない低温プロセスの可能性のあるゾル・
ゲル法を応用してオキシナイトライドガラスを含む酸窒
化物セラミックスを製造する方法において、バルク状の
ものでも窒素の導入量を多くすることが可能な技術を開
発することにある。
A sol with the potential for low-temperature processes with few restrictions on composition.
The purpose of this project is to develop a technology that can increase the amount of nitrogen introduced even in bulk form in a method of manufacturing oxynitride ceramics including oxynitride glass by applying the gel method.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、シリコンアルコキシドを主たる原料とし、該
原料を加水分解反応に供すと共に、重縮合せしめて得ら
れた酸化物ゲルを超臨界条件下に乾燥してエアロゲルを
得、該エアロゲルをアンモニア気流下で窒化することを
特徴とする酸窒化物セラミンクスの製造方法であり、こ
れにより上記課題を解決できる。
The present invention uses silicon alkoxide as a main raw material, subjects the raw material to a hydrolysis reaction, and polycondenses the resulting oxide gel, which is then dried under supercritical conditions to obtain an aerogel. The present invention is a method for producing oxynitride ceramics characterized by nitriding with nitridation, and thereby the above-mentioned problems can be solved.

本発明において主たる原料として使用されるシリコンア
ルコキシドは、一般式Si (OR) 4 (R:アル
キル基)で表される通常のアルコキシド以外に、R+4
−.1)St(OR’)n (R″:アルキル基、R:
アルキル基またはアリール基、n=1〜3)のアルコキ
シドの使用も可能であり、特に多成分系となった場合に
、窒化温度を比較的低くし、ゲルの繊密化以前に窒素を
導入する上で極めて有用である。
The silicon alkoxide used as the main raw material in the present invention includes, in addition to the usual alkoxide represented by the general formula Si (OR) 4 (R: alkyl group), R+4
−. 1) St(OR')n (R″: alkyl group, R:
It is also possible to use alkoxides with alkyl or aryl groups (n = 1 to 3), especially in the case of a multi-component system, by keeping the nitriding temperature relatively low and introducing nitrogen before the densification of the gel. This is extremely useful.

上記化合物においてRおよびR゛で示されるアルキル基
あるいはアリール基は、メチル、エチル、n−プロピル
、i−プロピル等のアルキル基、アリール基としては、
フェニル基が一般的であり、上記化合物として、具体的
には、テトラメトキシシラン、テトラエトキシシラン、
メチルトリエトキシシラン、メチルトリメトキシシラン
、ジメチルジメトキシシラン、ジメチルジェトキシシラ
ン、トリメチルメトキシシラン、トリメチルエトキシシ
ラン、フェニルトリメトキシシラン、フェニルトリエト
キシシラン等が例示される。1種または2種以上が使用
される。またこれらのシリコンアルコキシドは、あらか
じめ重縮合されたオリゴマーであっても良い。
In the above compounds, the alkyl group or aryl group represented by R and R' includes methyl, ethyl, n-propyl, i-propyl, etc.
Phenyl group is common, and specific examples of the above compounds include tetramethoxysilane, tetraethoxysilane,
Examples include methyltriethoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, dimethyljethoxysilane, trimethylmethoxysilane, trimethylethoxysilane, phenyltrimethoxysilane, and phenyltriethoxysilane. One or more types may be used. Moreover, these silicon alkoxides may be oligomers that have been polycondensed in advance.

出発原料として上記シリコンアルコキシド以外に他の金
属アルコキシドも必要に応じて使用される。
In addition to the silicon alkoxide described above, other metal alkoxides may be used as starting materials, if necessary.

ここで用いられる金属アルコキシドは、−C式M(OR
)rl(M:金属または半金属元素、R:アルキル基、
n:金属または半金属元素の価数)で表されるものであ
り、Rとしては、メチル、エチル、n −プロピル、1
so−プロピル、n−ブチル、secブチル、tert
−ブチル等が例示される。また金属または半金属元素と
しては、A1、Zr、 Ti、 B 、 Ge、Be、
 Mg、 Y等が例示される。ここで、半金属とは、周
期律表上で金属元素との境界付近の元素を意味し、B 
、 Si、 Ge、 As等が例示される。
The metal alkoxide used here has the formula -C M (OR
) rl (M: metal or metalloid element, R: alkyl group,
n: valence of metal or metalloid element), and R is methyl, ethyl, n-propyl, 1
so-propyl, n-butyl, sec-butyl, tert
-butyl etc. are exemplified. In addition, metals or metalloid elements include A1, Zr, Ti, B, Ge, Be,
Examples include Mg and Y. Here, semimetal means an element near the boundary with metal elements on the periodic table, and B
, Si, Ge, As, etc. are exemplified.

出発原料としては、上記各種金属アルコキシドに加えて
、金属アルコキシド以外の化合動程として金属元素成分
を添加することも可能であり、金属単体、酢酸塩、塩化
物、硝酸塩等の使用が例示され、これらは、加水分解可
能でもそうでなくともよいが、焼成後、セラミックス成
分以外の成分が極力残留しないものがよい。
As starting materials, in addition to the various metal alkoxides mentioned above, it is also possible to add metal element components as a compounding process other than metal alkoxides, examples include the use of simple metals, acetates, chlorides, nitrates, etc. These may or may not be hydrolyzable, but it is preferable that components other than ceramic components remain as little as possible after firing.

これらシリコンアルコキシドを主たる原料とするものを
加水分解反応に供すると共に重縮合せしめてゲルを得る
方法としては、公知の手法を応用することが可能であり
、シリコンアルコキシドと水との混和性、反応の面から
有機溶媒存在下で行うのが好ましい。ここで用いる有機
溶媒としては、シリコンアルコキシド、他の添加成分を
溶解するものが好ましく、具体的にはメタノール、エタ
ノール、n−プロパツール、1so−プロパツール、5
ec−ブタノール等に代表されるアルコール類、トルエ
ン、ベンゼン、キシレン等に代表される芳香族系炭化水
素、テトラヒドロフラン、ジメチルホルムアミド、四塩
化炭素等が例示されるが、通常、溶解度の観点また、後
述する超臨界乾燥等の観点からメタノール、エタノール
等の比較的沸点の低いアルコール類が好ましい。
It is possible to apply a known method to obtain a gel by subjecting silicon alkoxide as the main raw material to a hydrolysis reaction and polycondensation. It is preferable to carry out the reaction in the presence of an organic solvent. The organic solvent used here is preferably one that dissolves silicon alkoxide and other additive components, specifically methanol, ethanol, n-propanol, 1so-propatool, 5
Examples include alcohols such as ec-butanol, aromatic hydrocarbons such as toluene, benzene, and xylene, tetrahydrofuran, dimethylformamide, and carbon tetrachloride. Alcohols with relatively low boiling points such as methanol and ethanol are preferred from the viewpoint of supercritical drying.

また、加水分解に使用する水の量も特に制限はなく、比
較的短時間で再現性よくゲルを得るために、使用したシ
リコンアルコキシド等金属アルコキシドの2モル倍以上
の水が使用される。
Further, the amount of water used for hydrolysis is not particularly limited, and in order to obtain a gel with good reproducibility in a relatively short period of time, water is used in an amount of 2 moles or more of the metal alkoxide such as silicon alkoxide used.

また、加水分解、重縮合を速めるために、塩酸、硝酸、
硫酸等の酸、あるいはアンモニア、トリメチルアンモニ
ウム、ピリジン、ピペリジン、水酸化物等の塩基を触媒
として使用しても良い。
In addition, to accelerate hydrolysis and polycondensation, hydrochloric acid, nitric acid,
Acids such as sulfuric acid, or bases such as ammonia, trimethylammonium, pyridine, piperidine, hydroxide, etc. may be used as catalysts.

このようにして得られた湿潤ゲルは、そのゲル中に含ま
れる有機溶媒をその超臨界条件下で気体と置換すること
により乾燥ゲル、すなわちエアロゲルとする。この際、
ゲル合成の際に使用した有機溶媒をそのまま使用して超
臨界条件下で乾燥するのが好ましいが、超臨界乾燥を行
う前に、その処理に適した溶媒に置換してもよい。
The wet gel thus obtained is made into a dry gel, ie, an aerogel, by replacing the organic solvent contained in the gel with gas under supercritical conditions. On this occasion,
Although it is preferable to use the organic solvent used in gel synthesis as it is and dry under supercritical conditions, it may be replaced with a solvent suitable for the treatment before supercritical drying.

この超臨界乾燥は、使用あるいは置換した単一成分に近
い有機溶媒に浸して高圧容器中でその溶媒の臨界温度、
臨界圧力以上のいわゆる超臨界条件で溶媒を除去してエ
アロゲルを得る手法、他の低沸点ガス、例えば、COX
ガス、フレオンガス等を併用して2成分系あるいはそれ
以上の多成分系とし、その多成分系での超臨界条件で溶
媒を除去してエアロゲルを得る手法が挙げられるが、そ
の方法に特に制限はない。
This supercritical drying process involves immersing the single component used or replaced in an organic solvent close to the critical temperature of that solvent in a high-pressure vessel.
A method to obtain an aerogel by removing the solvent under so-called supercritical conditions above the critical pressure, and using other low boiling point gases, such as COX.
One method is to use gas, Freon gas, etc. in combination to create a two-component system or a multi-component system, and then remove the solvent under supercritical conditions in the multi-component system to obtain an airgel, but there are no particular restrictions on this method. do not have.

得られたエアロゲルをアンモニア気流下で焼成すること
により酸窒化物セラミックスかえられる。
Oxynitride ceramics can be converted into oxynitride ceramics by firing the obtained airgel in an ammonia stream.

焼成条件はエアロゲルの組成によって異なるが、400
°C以上、より好ましくは500°C以上の温度領域が
例示され、焼成時間は、特に制限はないが、必要とされ
る窒素導入量、窒化温度により適宜設定される。
The firing conditions vary depending on the composition of the airgel, but 400
A temperature range of .degree. C. or higher, preferably 500.degree. C. or higher is exemplified, and the firing time is not particularly limited, but is appropriately set depending on the required amount of nitrogen introduced and the nitriding temperature.

このアンモニアは窒素、ヘリウム、アルゴン等の不活性
ガスで希釈しても可能である。
This ammonia can also be diluted with an inert gas such as nitrogen, helium, or argon.

また、アンモニア中で焼成して窒化した後、残存する微
細な気孔をなくすため、セラミックスの焼結で通常なさ
れるように、水素、ヘリウム等の拡散速度の速いガス中
で焼成してもよい。
Further, after firing in ammonia and nitriding, in order to eliminate remaining fine pores, firing may be performed in a gas with a fast diffusion rate such as hydrogen or helium, as is usually done in sintering ceramics.

また、完全な緻密性とセず窒素を導入した多孔体のまま
フィルター材、断熱材、耐熱材等の用途に供してもよい
In addition, the porous material with complete density and nitrogen introduced may be used as a filter material, a heat insulating material, a heat resistant material, and the like.

[作用] 酸化物系ゲルの窒化反応は基本的には、固/気の反応で
あり、窒化が進行する温度領域以前に微細気孔が閉し、
緻密体となると窒化が極めて進行しにくくなるものと考
えられる。シリコンアルコキシドを主たる原料として得
られたエアロゲルは比表面積が高く、細孔径も比較的大
きいため、窒化温度領域でも比表面積が高く、高濃度の
窒素の導入が可能になるものと考えられる。
[Function] The nitriding reaction of oxide gel is basically a solid/air reaction, and the fine pores close before the temperature range where nitriding progresses.
It is thought that when the material becomes a dense material, nitridation becomes extremely difficult to proceed. Airgel obtained using silicon alkoxide as the main raw material has a high specific surface area and relatively large pore diameter, so it is thought that it has a high specific surface area even in the nitriding temperature range, making it possible to introduce a high concentration of nitrogen.

〔実施例〕〔Example〕

以下、本発明の具体的実施例を説明するが、本発明はこ
れに限定されるものではない。
Hereinafter, specific examples of the present invention will be described, but the present invention is not limited thereto.

実施例1 平均重合度4のテトラエトキシシランのオリコマ−39
,8重量部、エタノール50.0重量部、水9,7重量
部、ピペリジン0. 5重量部を均一に混合し、容器に
入れて60°Cでゲル化させた。
Example 1 Oricomer-39 of tetraethoxysilane with an average degree of polymerization of 4
, 8 parts by weight, 50.0 parts by weight of ethanol, 9.7 parts by weight of water, 0.8 parts by weight of piperidine. 5 parts by weight were uniformly mixed, placed in a container, and gelatinized at 60°C.

この湿潤ゲルを2週間熟成し、溶媒をメタノールに置換
して超臨界乾燥に供した。超臨界乾燥はC07−メタノ
ール系で行ないCO2を流通させつつ80°C1160
kg/ciflの条件下で行った。得られたシリカエア
ロゲルの比表面積は552 rrf/g、 BET細孔
径ビーク(直は180人であった。
This wet gel was aged for two weeks, the solvent was replaced with methanol, and the gel was subjected to supercritical drying. Supercritical drying is performed in a CO7-methanol system at 80°C1160 while circulating CO2.
The test was carried out under the condition of kg/cifl. The specific surface area of the obtained silica airgel was 552 rrf/g, and the BET pore size peak (direct was 180 rrf/g).

このエアロゲルをアンモニア流量o、sp<i分で12
00°C13時間窒化焼成した。窒素導入量は21..
9eytχで極めて高濃度の窒素が導入された。
This airgel was heated at an ammonia flow rate of o, sp < i min for 12 min.
It was nitrided and fired at 00°C for 13 hours. The amount of nitrogen introduced is 21. ..
An extremely high concentration of nitrogen was introduced at 9eytχ.

焼成されたものは、X線的にアモルファスであり、31
4 rrK/gの比表面積を有する多孔体であった。
The fired product is X-ray amorphous and 31
It was a porous body having a specific surface area of 4 rrK/g.

比較例1 実施例1と同様の方法で湿潤ゲルを得た。このゲルの入
った容器をアルミハクでフタをし、ピンホールを開けて
、60°Cで30日間、常圧乾燥し、キセロゲルを得た
。BET比表面積は、512%/gで肝T細孔径ビーク
値は65人であった。
Comparative Example 1 A wet gel was obtained in the same manner as in Example 1. The container containing this gel was covered with aluminum foil, a pinhole was made, and the container was dried at 60° C. under normal pressure for 30 days to obtain a xerogel. The BET specific surface area was 512%/g, and the liver T pore diameter peak value was 65.

このキセロゲルを実施例1と同一条件下で窒化焼成した
。窒素導入量は、1. 1重量%と少量であった。
This xerogel was nitrided and fired under the same conditions as in Example 1. The amount of nitrogen introduced is 1. The amount was as small as 1% by weight.

実施例2 実施例1のエアロゲルをアンモニア流量0.52/分で
1400°C13時間窒化焼成した。窒素導入量は30
.4重量%と極めて高濃度の窒素が導入された。また、
焼成物は、X線的にアモルファスであり、242.8i
/gの比表面積を有する多孔体であった。
Example 2 The airgel of Example 1 was nitrided and fired at 1400° C. for 13 hours at an ammonia flow rate of 0.52/min. The amount of nitrogen introduced is 30
.. Nitrogen was introduced at an extremely high concentration of 4% by weight. Also,
The fired product is X-ray amorphous, and has a 242.8i
It was a porous body with a specific surface area of /g.

実施例3 ジメチルジェトキシシラン1モル、テトラエトキシシラ
ン1モル、エタノール4モルの混合物に1規定塩酸酸性
に調整された水2モルとエタノール1モルの混合物を添
加し、シリコンアルコキシドを部分的に加水分解した。
Example 3 A mixture of 2 moles of water acidified with 1N hydrochloric acid and 1 mole of ethanol was added to a mixture of 1 mole of dimethyljethoxysilane, 1 mole of tetraethoxysilane, and 4 moles of ethanol, and silicon alkoxide was partially hydrated. Disassembled.

これにテトラエトキシチタン0.2モルとエタノール1
モルの混合物を添加し、均一に混合した後、1規定塩酸
酸性に調整された水6モルとエタノール2モルの混合物
を添加し、ゲル化させた。
To this, 0.2 mol of tetraethoxytitanium and 1 mol of ethanol
After adding a molar mixture and mixing uniformly, a mixture of 6 moles of water and 2 moles of ethanol, which had been acidified with 1N hydrochloric acid, was added to form a gel.

この湿潤ゲルをCO2−エタノール系でCO□を流通さ
せつつ80’C,160kg/c+flの条件下で超臨
界乾燥して、エアロゲルを得た。このエアロゲルの比表
面積は531 rrf/gであった。
This wet gel was supercritically dried under the conditions of 80'C and 160 kg/c+fl while circulating CO□ in a CO2-ethanol system to obtain an airgel. The specific surface area of this airgel was 531 rrf/g.

このエアロゲルをアンモニア流量0.51/分で800
″C13時間窒化焼成した。7.2重量%の窒素が導入
された。
This airgel was heated to 800 ml at ammonia flow rate of 0.51/min
Nitriding was performed for 13 hours. 7.2% by weight of nitrogen was introduced.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、硬度、強度、弾性率、耐熱性、耐食性
等の期待される酸窒化物セラミックスを容易な手法で、
組成の制限少なく製造することが可能となる。また、こ
れまでの方法では、得られなかったような酸窒化物多孔
体の製造も可能であり、窒素導入量と加熱温度を制御す
ることにより緻密体とすることも可能であり、工業的に
極めて有用な製造方法である。
According to the present invention, oxynitride ceramics with expected properties such as hardness, strength, elastic modulus, heat resistance, and corrosion resistance can be produced by an easy method.
It becomes possible to manufacture with fewer restrictions on composition. In addition, it is possible to produce porous oxynitride bodies that could not be obtained using conventional methods, and it is also possible to make dense bodies by controlling the amount of nitrogen introduced and the heating temperature. This is an extremely useful manufacturing method.

Claims (1)

【特許請求の範囲】[Claims]  シリコンアルコキシドを主たる原料とし、該原料を加
水分解反応に供すと共に、重縮合せしめて得られた酸化
物ゲルを超臨界条件下に乾燥してエアロゲルを得、該エ
アロゲルをアンモニア気流下で窒化することを特徴とす
る酸窒化物セラミックスの製造方法。
Using silicon alkoxide as the main raw material, subjecting the raw material to a hydrolysis reaction and polycondensing it, drying the resulting oxide gel under supercritical conditions to obtain an aerogel, and nitriding the aerogel under an ammonia stream. A method for producing oxynitride ceramics characterized by:
JP2110581A 1990-04-27 1990-04-27 Method for producing oxynitride ceramics Expired - Lifetime JPH0717452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2110581A JPH0717452B2 (en) 1990-04-27 1990-04-27 Method for producing oxynitride ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2110581A JPH0717452B2 (en) 1990-04-27 1990-04-27 Method for producing oxynitride ceramics

Publications (2)

Publication Number Publication Date
JPH0412063A true JPH0412063A (en) 1992-01-16
JPH0717452B2 JPH0717452B2 (en) 1995-03-01

Family

ID=14539469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2110581A Expired - Lifetime JPH0717452B2 (en) 1990-04-27 1990-04-27 Method for producing oxynitride ceramics

Country Status (1)

Country Link
JP (1) JPH0717452B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006247524A (en) * 2005-03-10 2006-09-21 National Institute Of Advanced Industrial & Technology Porous composite carrying metal ultra fine particle
US10308541B2 (en) 2014-11-13 2019-06-04 Gerresheimer Glas Gmbh Glass forming machine particle filter, a plunger unit, a blow head, a blow head support and a glass forming machine adapted to or comprising said filter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63242943A (en) * 1987-03-31 1988-10-07 Shimadzu Corp Oxynitride glass and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63242943A (en) * 1987-03-31 1988-10-07 Shimadzu Corp Oxynitride glass and its production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006247524A (en) * 2005-03-10 2006-09-21 National Institute Of Advanced Industrial & Technology Porous composite carrying metal ultra fine particle
US10308541B2 (en) 2014-11-13 2019-06-04 Gerresheimer Glas Gmbh Glass forming machine particle filter, a plunger unit, a blow head, a blow head support and a glass forming machine adapted to or comprising said filter

Also Published As

Publication number Publication date
JPH0717452B2 (en) 1995-03-01

Similar Documents

Publication Publication Date Title
JPH02248335A (en) Preparation of aerogelmonolith
JP2006290667A (en) Aluminum nitride-based powder, its production method, and heat conductive material containing aluminum nitride-based powder
US5229336A (en) Method of producing oxynitride glass
KR102149834B1 (en) A method for manufacturing of a porous silicon carbide sintered body by carbothermal reduction process
US5114887A (en) Process for preparing oxynitride ceramic fibers
JPH0412063A (en) Production of oxynitride
JPS59207812A (en) Production of silicon nitride
JPS6042188B2 (en) Manufacturing method of silicon nitride molded body
JPS6270210A (en) Production of aluminum nitride-silicon carbide composite fine powder
JPH0483711A (en) Production of anhydrous silica
JP2976076B2 (en) Method for producing sialon-silicon carbide composite powder
JP2582281B2 (en) Method for producing metal nitride powder
JPH03265600A (en) Production of mullite whisker
JPH02248340A (en) Glasslike monolith and preparation thereof
JPS61168515A (en) Production of silicon carbide
CN112979316A (en) SiAlOC ceramic and synthesis method thereof
JPS58176109A (en) Production of alpha-type silicon nitride
JPH0733296B2 (en) Method for producing alumina-based porous ceramics
JPS59203714A (en) Manufacture of silicon nitride
JPS6246965A (en) Sic-si3n4 base composite ceramics and manufacture
JPH02102112A (en) Production of silica alumina precursor sol
JPH04281018A (en) Production of porous yarn of silica alumina
JPS61174106A (en) Production of fine silicon nitride powder
JPH03208864A (en) Production of mixed powder of boron nitride and aluminum nitride
JPS59152270A (en) Manufacture of silicon nitride-containing sintered body