JPH0412025A - Oxide superconductor - Google Patents
Oxide superconductorInfo
- Publication number
- JPH0412025A JPH0412025A JP2110145A JP11014590A JPH0412025A JP H0412025 A JPH0412025 A JP H0412025A JP 2110145 A JP2110145 A JP 2110145A JP 11014590 A JP11014590 A JP 11014590A JP H0412025 A JPH0412025 A JP H0412025A
- Authority
- JP
- Japan
- Prior art keywords
- oxide superconductor
- molar ratio
- oxide
- present
- oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002887 superconductor Substances 0.000 title abstract description 18
- 239000000463 material Substances 0.000 claims abstract description 16
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 4
- 239000001301 oxygen Substances 0.000 claims abstract description 4
- 239000000843 powder Substances 0.000 abstract description 9
- 238000004519 manufacturing process Methods 0.000 abstract description 8
- 239000000470 constituent Substances 0.000 abstract description 7
- 230000007246 mechanism Effects 0.000 abstract description 5
- 238000000034 method Methods 0.000 abstract description 5
- 230000001590 oxidative effect Effects 0.000 abstract description 3
- 239000011369 resultant mixture Substances 0.000 abstract 1
- 239000002994 raw material Substances 0.000 description 11
- 239000000203 mixture Substances 0.000 description 7
- 238000010304 firing Methods 0.000 description 6
- 239000012071 phase Substances 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Chemical compound O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 description 4
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 3
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Chemical compound [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- HFLAMWCKUFHSAZ-UHFFFAOYSA-N niobium dioxide Inorganic materials O=[Nb]=O HFLAMWCKUFHSAZ-UHFFFAOYSA-N 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 150000003891 oxalate salts Chemical class 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001734 carboxylic acid salts Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は酸化物超伝導物質に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to oxide superconducting materials.
[従来の技術とその問題点]
超伝導状態とは抵抗がゼロとなり、電流を損失すること
無く流すことのできる状態であり、この性質は強磁場発
生装置や高効率のエネルギー変換装置、電子デバイスな
ど産業上多岐にわたって利用することのできるものであ
る。[Conventional technology and its problems] A superconducting state is a state in which resistance is zero and current can flow without loss, and this property is suitable for strong magnetic field generators, high-efficiency energy conversion devices, and electronic devices. It can be used in a wide variety of industries.
近年、液体窒素の温度より高い温度での超伝導性を求め
て、Y−Ba−Cu−0系(以下Y系と略称)、B1−
8r−Ca−Cu−0系(以下Bi系と略称) 、Tl
−Ba−Cu−0系(以下Tl系と略称)等の、Cu−
0を含む多元系酸化物を利用した多くの研究が行われて
いる。In recent years, in search of superconductivity at temperatures higher than the temperature of liquid nitrogen, Y-Ba-Cu-0 system (hereinafter abbreviated as Y system), B1-
8r-Ca-Cu-0 system (hereinafter abbreviated as Bi system), Tl
-Cu- such as Ba-Cu-0 system (hereinafter abbreviated as Tl system)
Many studies have been conducted using multi-component oxides containing zero.
これらの系では、いままでのところ、抵抗がゼロになる
臨界温度(Tc)は、Y系は約90 K、 Bi系は約
11.OK 、 Tl系は約130にであることが確認
されている。近時、これらの系の構成元素を部分的に他
の元素に置換することにより更に高いTcを持つものを
求めることが試みられているか、いまのところ上述のT
cよりも高い温度で超伝導性を示す物質は得られていな
い。In these systems, the critical temperature (Tc) at which the resistance becomes zero has so far been determined to be approximately 90 K for the Y system and approximately 11.0 K for the Bi system. OK, the Tl system has been confirmed to be approximately 130. Recently, attempts have been made to obtain compounds with even higher Tc by partially substituting the constituent elements of these systems with other elements;
No material has been obtained that exhibits superconductivity at temperatures higher than c.
従来の酸化物超伝導体であるY系、Bi系、Tl系には
それぞれ次のような問題がある。Conventional oxide superconductors, Y-based, Bi-based, and Tl-based, each have the following problems.
Y系の場合、このものは水等に対して不安定で、かつ希
土類元素は比較的供給量が少なく高価であり、得られる
超伝導体の価格は必然的に増大する。In the case of Y-based materials, they are unstable with respect to water and the like, and rare earth elements are relatively scarce and expensive, so the price of the obtained superconductor inevitably increases.
Bi系の超伝導体は、結晶構造的に3種の相を持つもの
が知られているが、これらの相は一般の作製条外では混
相になりやすく、高いTcを示す相の単相化は、作製条
件を厳密に制御しなければならず工業的に問題となる。Bi-based superconductors are known to have three types of phases in terms of their crystal structure, but these phases tend to form a mixed phase outside of general manufacturing conditions, and it is difficult to convert a phase exhibiting a high Tc into a single phase. This poses an industrial problem as the production conditions must be strictly controlled.
Tl系の場合には、特にTIが人体に害を及はす危険性
か有り、実用化には難があると思われる。In the case of Tl-based materials, there is a danger that TI may be harmful to the human body, and it is thought that it would be difficult to put them into practical use.
また、これらの酸化物系超伝導体は4元系以上の酸化物
であり、構成元素の多さにより、組成の調整、焼成温度
等の作製条件の適正化か難しいものとなっている。加え
て、従来の酸化物超伝導体の超伝導機構においては、C
u−0層がその超伝導性に関与しているものと考えられ
ており、Cu−0層を持った酸化物超伝導体においては
、Tcの大幅な上昇は限界に近付いていると考えられ、
新しい超伝導機構による新規超伝導物質が期待されてい
る。Furthermore, these oxide superconductors are quaternary or higher oxides, and the large number of constituent elements makes it difficult to adjust the composition and optimize manufacturing conditions such as firing temperature. In addition, in the superconducting mechanism of conventional oxide superconductors, C
The u-0 layer is thought to be involved in its superconductivity, and in oxide superconductors with a Cu-0 layer, it is thought that a significant increase in Tc is approaching its limit. ,
New superconducting materials based on new superconducting mechanisms are expected.
[問題点を解決するための手段]
本発明者等は、鋭意検討を行った結果、少なくともNb
を構成成分としかっNbと他の元素との成分比がある範
囲の酸化物が超伝導性を示す物質であることを見出し本
発明を完成するに至った。・即ち本発明は、NbとM(
ただしXはCa、 Sr、 Baより選ばれる少なくと
も一種以上の元素である)および酸素より構成され、N
bとHのモル数の比(Nb/M)が0.2〜10である
酸化物超伝導物質に関するものである。[Means for solving the problem] As a result of intensive studies, the present inventors have determined that at least Nb
The present inventors have discovered that an oxide with a certain range of Nb and other elements as a constituent is a substance that exhibits superconductivity, and has completed the present invention.・That is, the present invention provides Nb and M(
However, X is composed of at least one element selected from Ca, Sr, and Ba) and oxygen;
The present invention relates to an oxide superconducting material in which the molar ratio of b and H (Nb/M) is 0.2 to 10.
本発明の超伝導物質は、従来のY系、Bi系、TI系酸
化物超伝導体と異なり、Cuを含んでいないため、従来
の酸化物超伝導体の超伝導機構の重要な因子と思われて
いるCu−0層が存在していない。Unlike conventional Y-based, Bi-based, and TI-based oxide superconductors, the superconducting material of the present invention does not contain Cu, which is considered to be an important factor in the superconducting mechanism of conventional oxide superconductors. There is no Cu-0 layer.
このことは、従来の酸化物超伝導体と異なった機構によ
り超伝導状態になっているとを伺わせ、必然的に従来の
酸化物超伝導体と異なった特性(臨界温度、臨界磁場、
臨界電流等)を持つことか期待されるものである。This suggests that the superconducting state is achieved by a mechanism different from that of conventional oxide superconductors, and it necessarily has different properties (critical temperature, critical magnetic field,
critical current, etc.).
次に本発明を、その製造法の例も併せて更に詳述する。Next, the present invention will be described in further detail along with examples of its manufacturing method.
本発明を製造する際の原料としては、本発明を構成する
各元素の単体の他に、構成元素群から選択された少なく
とも一種以上の元素の酸化物、炭酸塩、硫酸塩、硝酸塩
または蓚酸塩を使用することができるが、特に純度、調
整の容易さから考えると、酸化物および炭酸塩か好まし
い。また、原料として炭酸塩、硫酸塩、硝酸塩または蓚
酸塩を使用した場合には、焼成に先立って仮焼を実施し
、これらに含まれる炭素、硫黄、窒素等を除去すること
か望ましい。In addition to the individual elements constituting the present invention, raw materials for producing the present invention include oxides, carbonates, sulfates, nitrates, or oxalates of at least one element selected from the constituent element group. However, oxides and carbonates are preferred, especially in terms of purity and ease of preparation. Furthermore, when carbonates, sulfates, nitrates, or oxalates are used as raw materials, it is desirable to perform calcination prior to firing to remove carbon, sulfur, nitrogen, etc. contained in these.
本発明の酸化物超伝導物質は、例えば、以下の方法によ
って作製することができる。The oxide superconducting material of the present invention can be produced, for example, by the following method.
原料としてNb及びM(ただし、阿はCa5Sr、 B
aより選ばれる少なくとも一種以上の元素である)の酸
化物または炭酸塩を用い、まず、それぞれの原料粉末を
所定量秤量し混合する。この際、MとNbのモル比が本
発明で限定した範囲となるように秤量し用いるのが好ま
しいが、後で行う焼成による組成のズレを考慮して、組
成を調整することも好ましい。Nb and M as raw materials (A is Ca5Sr, B
Using an oxide or carbonate of at least one element selected from (a), first, a predetermined amount of each raw material powder is weighed and mixed. At this time, it is preferable to weigh and use so that the molar ratio of M and Nb falls within the range defined in the present invention, but it is also preferable to adjust the composition in consideration of the deviation in composition due to subsequent firing.
本発明では、NbとHのモル数の比(Nb/M)か0.
2〜10であることが必須である。このモル比が0,2
より小では半導体的な挙動を示す酸化物が得られ、また
同化が10より大では、金属的な酸化物は得られるか、
超伝導性を持つものは得られない。更に、本発明を構成
するNbは、その全部または一部が4価のNbで構成さ
れていることが好ましく、これは、後述の方法で得られ
、得られたものの色相(黒)で4価のNbて構成されて
いることが確認できる。In the present invention, the molar ratio of Nb and H (Nb/M) is 0.
It must be between 2 and 10. This molar ratio is 0.2
If the assimilation is smaller, an oxide with semiconductor-like behavior can be obtained, and if the assimilation is larger than 10, a metallic oxide can be obtained.
Nothing with superconductivity can be obtained. Furthermore, it is preferable that all or a part of the Nb constituting the present invention is composed of tetravalent Nb, which is obtained by the method described below, and the hue (black) of the obtained product is tetravalent Nb. It can be confirmed that the structure is made up of Nb.
Nb、!:、 Mとの混合粉末を加圧し圧粉体とした後
、非酸化性雰囲気中にて温度700〜1500℃、保持
時間1〜100時間の条件で熱処理を行う。ここで言う
非酸化性雰囲気は、具体的には、還元雰囲気、不活性雰
囲気、真空状態等である。前記した保持温度、保持時間
は試料の大きさ、原料の混合比なとにより、適当に選択
するか、保持温度は、700°C未満では固相反応か不
十分なため均一な組成のものが得られ難く、1500℃
より高い温度では原料が一部溶融する可能性がある。更
に好ましい保持温度好は900〜1300℃である。Nb,! After the mixed powder with : and M is pressed to form a green compact, heat treatment is performed in a non-oxidizing atmosphere at a temperature of 700 to 1500°C and a holding time of 1 to 100 hours. Specifically, the non-oxidizing atmosphere mentioned here includes a reducing atmosphere, an inert atmosphere, a vacuum state, and the like. The above-mentioned holding temperature and holding time should be selected appropriately depending on the size of the sample and the mixing ratio of raw materials, or if the holding temperature is less than 700°C, the solid phase reaction will be insufficient, so it is necessary to use a product with a uniform composition. Difficult to obtain, 1500℃
Higher temperatures may cause some of the raw material to melt. A more preferable holding temperature is 900 to 1300°C.
焼成物の組成を均一にするために、焼成後の試料をある
程度の粒度に粉砕した後、再び焼成することが好ましい
。In order to make the composition of the fired product uniform, it is preferable to pulverize the fired sample to a certain particle size and then fire it again.
上述の製造方法では、原料粉末をそのまま混合して所定
の組成比に調整する場合について説明したが、沈澱法に
より所定の組成比の蓚酸塩、クエン酸塩等のカルボン酸
塩として沈澱させ焼成原料を調整しこれを用いて前記し
た方法で焼成することによっても、本発明の酸化物超伝
導物質を得ることか可能である。In the above manufacturing method, the raw material powder is mixed as it is and adjusted to a predetermined composition ratio. However, by the precipitation method, carboxylic acid salts such as oxalate and citrate with a predetermined composition ratio are precipitated and the raw material for firing is prepared. It is also possible to obtain the oxide superconducting material of the present invention by adjusting and firing it using the method described above.
[発明の効果コ
本発明は、新規の系の酸化物超伝導物質であり、更に構
成元素を置換、添加し、製造方法、製造条件を適宜選択
することにより、従来の酸化物超伝導体と異なった特性
を示す酸化物超伝導体を得る可能性も考えられる。[Effects of the Invention] The present invention is a new type of oxide superconductor, which can be differentiated from conventional oxide superconductors by further substituting or adding constituent elements and by appropriately selecting the manufacturing method and manufacturing conditions. It is also possible to obtain oxide superconductors with different properties.
[実施例]
以下、実施例により本発明を更に詳しく説明するが、本
発明は何等これらに限定されるものではない。[Examples] Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these in any way.
実施例1
原料粉末として純度99.9%の5rCo3および純度
99.99%のNb2O5を用いた。Nb2O5は還元
雰囲気中(H2: Ar−]、:1)にて、1000℃
、36時間の熱処理を施して、NbO2とした。次に、
SrとNbのモル比か1:2になるように5rC03と
Nb O2を秤量し、乳鉢を用いて大気中で30分間混
合した。Example 1 5rCo3 with a purity of 99.9% and Nb2O5 with a purity of 99.99% were used as raw material powders. Nb2O5 was heated at 1000°C in a reducing atmosphere (H2: Ar-], :1).
, and was subjected to heat treatment for 36 hours to obtain NbO2. next,
5rC03 and NbO2 were weighed so that the molar ratio of Sr to Nb was 1:2, and mixed in a mortar for 30 minutes in the atmosphere.
この混合粉末0.5gを約700kg/cm2て加圧し
、直径約13畦、厚さ約1.+nmの円盤状の圧粉体を
作製した。この圧粉体を直径方向に二つに分割し、直径
8mmの不透明石英管に装填し3XIO−5torrて
真空封入した。同時に、残留ガスの吸着用として純度9
9.6%の金属Zrを石英管に同封した。0.5 g of this mixed powder was pressurized at about 700 kg/cm2, and the diameter was about 13 ridges and the thickness was about 1. A disk-shaped powder compact of +nm was produced. This green compact was divided into two parts in the diameter direction, loaded into an opaque quartz tube with a diameter of 8 mm, and vacuum-sealed at 3XIO-5 torr. At the same time, purity 9 is used for adsorption of residual gas.
9.6% Zr metal was enclosed in a quartz tube.
この試料を以下の条件で熱処理した。This sample was heat treated under the following conditions.
昇温速度 5.6℃ノ分
保持温度 1000℃
保持時間 36時間
降温速度 放冷
焼成後の試料の電気抵抗の温度変化を第1図に示す。本
図からも明らかな通り、この物質の電気抵抗は、12
K以上ではやや半導体的な挙動を示すが、12 Kより
急激に落下しており、超伝導性を示している。5Kにお
いても残留抵抗が見られるが、これは不純物相に因るも
のであり、この物質の本質的な特性とは異なるものであ
る。Temperature increase rate: 5.6°C Holding temperature: 1000°C Holding time: 36 hours Temperature fall rate Figure 1 shows the temperature change in electrical resistance of the sample after cooling and firing. As is clear from this figure, the electrical resistance of this material is 12
At temperatures above K, it exhibits somewhat semiconducting behavior, but below 12 K, the behavior drops sharply, indicating superconductivity. Residual resistance is also seen at 5K, but this is due to the impurity phase and is different from the essential characteristics of this material.
実施例2
原料粉末として純度99.9%のSrOを用いた以外は
実施例1と同様して試料を作製した。Example 2 A sample was prepared in the same manner as in Example 1 except that SrO with a purity of 99.9% was used as the raw material powder.
得られた試料は、実施例1と同様にして電気抵抗の温度
変化を測定した結果、抵抗変化は実施例1と同様の挙動
を示し、Tcは約12 Kであった。The temperature change in electrical resistance of the obtained sample was measured in the same manner as in Example 1. As a result, the resistance change showed the same behavior as in Example 1, and Tc was about 12 K.
実施例3
SrとNbのモル比を2:1とした以外は実施例]と同
様にして試料を作製した。Example 3 A sample was prepared in the same manner as in Example except that the molar ratio of Sr and Nb was 2:1.
得られた試料は、実施例1と同様にして電気抵抗の温度
変化を測定した結果、抵抗変化は実施例1と同様の挙動
を示し、Tcは約12 Kであった。The temperature change in electrical resistance of the obtained sample was measured in the same manner as in Example 1. As a result, the resistance change showed the same behavior as in Example 1, and Tc was about 12 K.
実施例4
原料粉末として純度99.9%のBaCO3を用いた以
外は実施例1と同様して試料を作製した。Example 4 A sample was prepared in the same manner as in Example 1 except that BaCO3 with a purity of 99.9% was used as the raw material powder.
得られた試料は、実施例1と同様にして電気抵抗の温度
変化を測定した結果、抵抗変化は実施例1と同様の挙動
を示し、Tcは約12にであった。The temperature change in electrical resistance of the obtained sample was measured in the same manner as in Example 1. As a result, the resistance change showed the same behavior as in Example 1, and Tc was about 12.
第1図は、実施例1で得た試料の、電機抵抗の温度変化
を示す図である。FIG. 1 is a diagram showing temperature changes in electrical resistance of the sample obtained in Example 1.
Claims (2)
れる少なくとも一種以上の元素である)および酸素より
構成され、NbとMのモル数の比(Nb/M)が0.2
〜10である酸化物超伝導物質。(1) Consists of Nb, M (however, H is at least one element selected from Ca, Sr, and Ba) and oxygen, and the molar ratio of Nb and M (Nb/M) is 0.2
~10 oxide superconducting material.
Nbである特許請求の範囲第(1)項記載の酸化物超伝
導物質。(2) The oxide superconducting material according to claim (1), wherein all or a part of Nb in the superconducting material is tetravalent Nb.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2110145A JP2838312B2 (en) | 1990-04-27 | 1990-04-27 | Oxide superconducting material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2110145A JP2838312B2 (en) | 1990-04-27 | 1990-04-27 | Oxide superconducting material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0412025A true JPH0412025A (en) | 1992-01-16 |
JP2838312B2 JP2838312B2 (en) | 1998-12-16 |
Family
ID=14528185
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2110145A Expired - Fee Related JP2838312B2 (en) | 1990-04-27 | 1990-04-27 | Oxide superconducting material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2838312B2 (en) |
-
1990
- 1990-04-27 JP JP2110145A patent/JP2838312B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2838312B2 (en) | 1998-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH01226737A (en) | Superconductor and its production | |
US5389603A (en) | Oxide superconductors, and devices and systems comprising such a superconductor | |
JP2838312B2 (en) | Oxide superconducting material | |
JP3165770B2 (en) | Manufacturing method of oxide superconductor | |
JP3287028B2 (en) | Tl, Pb-based oxide superconducting material and method for producing the same | |
JP2817170B2 (en) | Manufacturing method of superconducting material | |
JP2597578B2 (en) | Superconductor manufacturing method | |
JP2634187B2 (en) | Method for producing thallium-based oxide superconductor | |
JP2588398B2 (en) | Superconducting ceramics | |
JPH0238359A (en) | Production of superconductor | |
JPS63291317A (en) | Manufacture of oxide superconductive wire rod | |
JPH09502959A (en) | Superconductor containing at least one of barium and strontium and thallium, copper, oxygen and fluorine | |
JPH0230618A (en) | Oxide high-temperature superconductor | |
JPH01183450A (en) | Production of formed oxide superconductor | |
JPH01160821A (en) | Ceramic superconductor and production thereof | |
JPH0333052A (en) | Production of oxide superconducting material | |
JPH01242416A (en) | Production of oxide-based superconducting material | |
JPH0393627A (en) | Oxide superconductor | |
JPH07102968B2 (en) | Manufacturing method of superconducting material | |
JPH04124033A (en) | Vanadium-containing superconducting substance and its production | |
JPH07102967B2 (en) | Manufacturing method of superconducting material | |
JPH0459654A (en) | Oxide superconductor | |
JPH0597435A (en) | Metal oxide material | |
JPH01153565A (en) | Production of oxide superconductor | |
JPH0365512A (en) | High-temperature superconductive material and production thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |