JPH04120253A - Permanent magnet alloy and bond magnet using same - Google Patents

Permanent magnet alloy and bond magnet using same

Info

Publication number
JPH04120253A
JPH04120253A JP2239468A JP23946890A JPH04120253A JP H04120253 A JPH04120253 A JP H04120253A JP 2239468 A JP2239468 A JP 2239468A JP 23946890 A JP23946890 A JP 23946890A JP H04120253 A JPH04120253 A JP H04120253A
Authority
JP
Japan
Prior art keywords
alloy
rare earth
metal
earth metal
flux density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2239468A
Other languages
Japanese (ja)
Inventor
Toshiharu Suzuki
俊治 鈴木
Shinya Suzuki
信也 鈴木
Hiroshi Yamamoto
洋 山元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minebea Co Ltd
Original Assignee
Minebea Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minebea Co Ltd filed Critical Minebea Co Ltd
Priority to JP2239468A priority Critical patent/JPH04120253A/en
Publication of JPH04120253A publication Critical patent/JPH04120253A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes

Abstract

PURPOSE:To obtain a permanent magnet alloy having high residual magnetic flux density by providing a thin slab prepared by subjecting a molten metal consisting of specific percentages of rare earth metal, transition metal, B, and V to direct rapid cooling, specifying the total content of Nd and Pr in the above rare earth metal, and using an Fe-base alloy containing specific amounts of Co as the above transition metal. CONSTITUTION:A molten metal having a composition which contains rare earth metal (R), transition metal (T), B, and V in the proportion, by atom. of X% R-(100-X-Y-Z)%T-Y%B-Z%V (where 5<=X<9, 3<=Y<15, 0.5<=Z<5) and in which the above rare earth metal (R) is composed of lanthanoide series elements including >=50%, in total, of Nd and/or Pr and also the above transition metal (T) is composed of an Fe-base alloy containing 5-<30% Co is directly subjected to rapid cooling so as to be formed into thin slab or powder. By this method, the permanent magnet alloy in which residual magnetic flux density Br and maximum magnetic energy product BHmax are regulated to about 10-12KG and about 18-22MGOe can be obtained. This alloy is useful for bond magnet.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、希土類金属・鉄・ホウ素系永久磁石用合金の
改良および該合金の粉末を樹脂で固めて成るボンド磁石
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to improvements in rare earth metal/iron/boron alloys for permanent magnets, and to bonded magnets made by solidifying powder of the alloys with resin.

(従来の技術) 近年開発された希土類金属・鉄・ホウ素系の永久磁石は
、従来の希土類コバルト磁石に比べて磁気特性に優れて
いるとこ′ろから、その利用範囲が拡大しつSある。一
方、希土類金属・鉄・ホウ素系合金粉末を樹脂で固めて
成るボンド磁石は、一般に熱硬化性樹脂を用いる圧縮成
形磁石−と熱可塑性樹脂を用いる射出成形磁石に分G+
へねるHs−庸T丑シ仕の自由麻りけ矢く、寸注精度に
優れ、他部品との複合成形が可能であるなどの理由によ
り、近年モーター用などに市場拡大が図られている。
(Prior Art) Permanent magnets based on rare earth metals, iron, and boron, which have been developed in recent years, have superior magnetic properties compared to conventional rare earth cobalt magnets, so their range of use is expanding. On the other hand, bonded magnets made by hardening rare earth metal/iron/boron alloy powder with resin are generally divided into compression molded magnets using thermosetting resin and injection molded magnets using thermoplastic resin.
In recent years, the market for use in motors and other applications has been expanding due to Heneru Hs-Yoshi T's flexible design, excellent precision in dimensioning, and ability to be molded in composites with other parts. .

ところで、上記したボンド磁石は、体積比で十数%から
約40%の非磁性物質(樹脂)を含むため、焼結磁石と
比較して相当量の磁気特性の低下が避けられないという
欠点を有していた。
By the way, the above-mentioned bonded magnets contain a non-magnetic material (resin) of about 10-10% to about 40% by volume, so they have the disadvantage of inevitably deteriorating their magnetic properties by a considerable amount compared to sintered magnets. had.

−例として、焼結磁石の残留磁束密度Br12KG。- As an example, the residual magnetic flux density of a sintered magnet is Br12KG.

最大磁気エネルギー積BHmax30MGOeに対して
、それぞれ6 KG、 10MGOe程度となっている
。このボンド磁石の磁気特性上の欠点は、当然のことと
して樹脂の配合量を減らすことにより改善できるが、こ
の場合は、磁石強度や量産製造上の問題が生じ、せっか
くのボンド磁石の利点が失われることとなる。
The maximum magnetic energy product BHmax is 30MGOe, which is about 6 KG and 10MGOe, respectively. This drawback in the magnetic properties of bonded magnets can naturally be improved by reducing the amount of resin blended, but in this case, problems with magnet strength and mass production will occur, and the advantages of bonded magnets will be lost. will be exposed.

そこで、最近はボンド磁石の原料としての合金の組成に
検討を加えることが種々なされ、例えば特開平2−57
662号公報には、希土類元素として少なくとも50原
子%以上のネオジム(Nd )を含む元素を選択し、こ
れと鉄(Fe )コバルト(Co ) 、ホウ素(B)
、ノ\ナジウム(V)とを組合わせた合金力S開示され
ている。
Therefore, various studies have recently been carried out on the composition of alloys used as raw materials for bonded magnets.
In Publication No. 662, an element containing at least 50 atomic % neodymium (Nd) is selected as a rare earth element, and this is combined with iron (Fe), cobalt (Co), and boron (B).
, an alloy S in combination with Nadium (V) is disclosed.

(発明が解決しようとする課題) しカルながら、上記公報に示された新たな合金によれば
、磁気特性の向上効果力Sシ)ま一つ不足し、ボンド磁
石の磁気特性を高める上で根本的な解決にならないとい
う問題があった、特番こ応用製品であるモーターを設計
する観点力)らは、最大磁気エネルギー積BHmaxよ
り残留磁束密度Brの大きさを重視することが多し1力
5、前言己合金ではこの残留磁束密度Brがl0KG以
下と小さく、その適用範囲も限られるという問題力Sあ
った。
(Problem to be solved by the invention) However, according to the new alloy disclosed in the above publication, the effect of improving magnetic properties is insufficient, and it is insufficient to improve the magnetic properties of bonded magnets. There was a problem that could not be fundamentally solved, and the viewpoints of designing motors, which are applied products, often focused on the magnitude of the residual magnetic flux density Br rather than the maximum magnetic energy product BHmax. 5. In the aforementioned alloy, the residual magnetic flux density Br was as small as 10 KG or less, and the range of its application was also limited.

したがって本発明の目的は、高い残留磁束密度を有する
永久磁石用合金と、この合金を用しまた適用範囲の広い
ボンド磁石を提供すること番こある。
Therefore, an object of the present invention is to provide an alloy for permanent magnets having a high residual magnetic flux density, and a bonded magnet using this alloy which can be used in a wide range of applications.

(課題を解決するための手段) 本発明では、以下の技術的手段によって優れた磁気特性
を有する永久磁石用合金を実現した。
(Means for Solving the Problems) In the present invention, an alloy for permanent magnets having excellent magnetic properties was realized by the following technical means.

即ち、希土類金属(R)、遷移金属(T)、B、■が原
子百分率で、X%R−(100−X−Y−Z1%T−Y
%B−Z%V (ただし5≦X<9゜3≦Y<15.0
.5≦Z〈5)の割合で含まれ、前記希土類金属(R)
はNdとPrの一種または二種の合計を50%以上含む
ランタノイド元素から成り、前記遷移金属(T)はCO
を5%以上30%未満含むFe基合金から成り、かつ溶
湯を直接急冷して薄片または粉末としてなることを特徴
とする。
That is, the rare earth metal (R), transition metal (T), B,
%B-Z%V (5≦X<9゜3≦Y<15.0
.. The rare earth metal (R) is contained in a proportion of 5≦Z<5).
is composed of a lanthanide element containing 50% or more of one or both of Nd and Pr, and the transition metal (T) is CO
It is characterized in that it is made of an Fe-based alloy containing 5% or more and less than 30% of molten metal, and is formed into flakes or powder by directly quenching the molten metal.

本発明において、希土類金属(R)としてネオジム(N
d )とプラセオジム(Pr )とを選択したのは、N
d1Fe+J、 PrJe+J化合物両者の異方性エネ
ルギーおよび飽和磁化の理論値が、他の希土類を用いた
同様化合物より大きく、しかも実験的に優れた磁気特性
を認めたためである。またこれらの二元素は、資源的に
も豊富で利用価値が高いためである。しかして希土類金
属(R)の含有量が5原子%未満ではFeを主体とする
軟磁性相の増大によって保磁力が低下するばかりか磁気
エネルギーも低下し、一方、9原子%以上では残留磁束
密度が低下して所望の磁気エネルギーを得ることが難し
くなるので、本発明では希土類金属の含有量Xを5≦X
<9とした。本発明において希土類金属としては、合金
コスト低減のためにCe、Laを含んだり、あるいは磁
気特性の改良調整のためにD y、 G d、 T b
、 Ho、 S m等地の希土類元素を含むことができ
る。ただしNd、Prの単独または両者の合計が50原
子%以上であることが、良好な磁気特性を得るために必
要である。
In the present invention, neodymium (N
d) and praseodymium (Pr) were chosen because N
This is because the theoretical values of anisotropy energy and saturation magnetization of both the d1Fe+J and PrJe+J compounds are larger than those of similar compounds using other rare earth elements, and excellent magnetic properties have been experimentally confirmed. This is also because these two elements are abundant in terms of resources and have high utility value. However, when the rare earth metal (R) content is less than 5 at%, the coercive force not only decreases due to the increase in the soft magnetic phase mainly composed of Fe, but also the magnetic energy decreases, while when the rare earth metal (R) content exceeds 9 at%, the residual magnetic flux density decreases. Since this decreases and makes it difficult to obtain the desired magnetic energy, in the present invention, the rare earth metal content X is set to 5≦X.
<9. In the present invention, rare earth metals include Ce and La to reduce alloy cost, or D y , G d , and T b to improve and adjust magnetic properties.
, Ho, Sm, and other rare earth elements. However, in order to obtain good magnetic properties, it is necessary that Nd and Pr, alone or in total, be 50 atomic % or more.

遷移金属(T)についてはFeを主体とし、−船釣に置
換元素として知られるコバルトCOを添加して、キュリ
ー温度の上昇による温度特性の改良と、スレータ−・ポ
ーリング曲線から推定されるFeへのCOの固溶による
飽和磁化の向上を目的とした。CO置換率5原子%以上
30原子%未満の範囲としたのは、5原子%未満ではキ
ュリー温度の向上が顕著でなく、また30原子%以上で
は保磁力の急激な低下があり期待する磁気特性が得られ
なくなる理由による。
Regarding transition metals (T), mainly Fe is used, and cobalt CO, which is known as a substitution element, is added to improve the temperature characteristics by increasing the Curie temperature, and Fe is estimated from the Slater-Pauling curve. The objective was to improve the saturation magnetization by solid solution of CO. The CO substitution rate was set in the range of 5 at.% or more and less than 30 at.% because at less than 5 at.%, the Curie temperature does not improve significantly, and at 30 at.% or more, the coercive force decreases rapidly. Depends on the reason why it is no longer possible to obtain.

Bについては、その含有量が3原子%未満ではR,T、
4B化合物相が不安定化して磁気特性の急激な低下があ
り、一方15原子%以上では非磁性相の増大により磁気
エネルギーの低下が著しいので、本発明ではこのBの含
有量Yを3≦Y〈15とした。
Regarding B, if its content is less than 3 at%, R, T,
The 4B compound phase becomes unstable, leading to a sudden drop in magnetic properties.On the other hand, if it exceeds 15 atomic %, the magnetic energy decreases significantly due to an increase in the non-magnetic phase. <15.

■については、保磁力の低下を抑制するために各種の遷
移金属元素Ti 、Cr 、W、Hf。
Regarding (2), various transition metal elements Ti, Cr, W, and Hf are used to suppress the decrease in coercive force.

Zr、Mo、Nb、Ta等の合金への添加効果を調べた
結果、最も効果の認められたものである。しかしてこの
■の含有量が0.5原子%未満ではFeを主体とした軟
磁性相の出現によって保磁力が低下し、一方5原子%を
越えると非磁性相の増大により残留磁束密度の低下を招
(ので、本発明ではこの■の含有量2を0.5≦Z<5
とした。なお、この■は特に低い希土類金属組成におい
て軟磁性相の出現を抑制する働きがある。
As a result of investigating the effects of adding Zr, Mo, Nb, Ta, etc. to alloys, this was found to be the most effective. However, when the content of the lever (■) is less than 0.5 at%, the coercive force decreases due to the appearance of a soft magnetic phase mainly composed of Fe, while when it exceeds 5 at%, the residual magnetic flux density decreases due to an increase in the non-magnetic phase. (Therefore, in the present invention, this content 2 is set to 0.5≦Z<5
And so. Note that this (2) has a function of suppressing the appearance of a soft magnetic phase, especially in a case where the rare earth metal composition is low.

本発明の合金は、従来公知の方法によって製造すること
ができる。最も一般的な製造方法はゼネラルモータース
社において実施されているメルトスピン法であり、これ
はたとえば高周波溶解された所定成分組成の合金を、石
英ノズルからアルゴンなどのガス圧力を利用して毎秒数
十mの周速度で回転する銅製ロール表面に射出する。ま
た必要によっては射出後、合金内部の組織調整のために
熱処理を行うことができる。
The alloy of the present invention can be manufactured by conventionally known methods. The most common manufacturing method is the melt spin method used by General Motors, in which a high-frequency melted alloy with a predetermined composition is spun at tens of meters per second through a quartz nozzle using the pressure of a gas such as argon. The material is injected onto the surface of a copper roll rotating at a circumferential speed of . Further, if necessary, heat treatment can be performed after injection to adjust the internal structure of the alloy.

この他に合金を得る方法として、前記銅製ロールの代わ
りに他の金属やセラミック製ディスクを用いることがで
きる。さらには溶湯合金をガスや液中に高速で噴出させ
るアトマイズ法も、高速冷却をあまり必要としない場合
には用いることができる。なお、本発明において良好な
磁気特性を示した合金粉末は、走査型電子顕微鏡観察に
よれば数十から数百nm (1nm= 10−9m )
の微細な結晶粒が認められ、またX線回折によれば典型
的なRiT+4B化合物と若干量のアルファ鉄が存在し
ていた。
As another method of obtaining the alloy, other metals or ceramic disks can be used instead of the copper roll. Furthermore, an atomization method in which a molten alloy is ejected into a gas or liquid at high speed can also be used when high-speed cooling is not required. In addition, according to scanning electron microscopy, the alloy powder that showed good magnetic properties in the present invention has a diameter of several tens to several hundred nm (1 nm = 10-9 m).
Fine crystal grains were observed, and X-ray diffraction revealed the presence of typical RiT+4B compounds and some alpha iron.

本発明にか\る合金の適用範囲は任意であり、等方性ボ
ンド磁石はもとより、焼結磁石、熱間加工して得られる
等方性あるいは異方性の金属磁石、あるいは該金属磁石
を粉砕した粉末を使用する異方性ボンド磁石などに用い
ることができる。
The alloy according to the present invention can be applied to any range, including not only isotropic bonded magnets, but also sintered magnets, isotropic or anisotropic metal magnets obtained by hot working, or metal magnets. It can be used in anisotropic bonded magnets that use pulverized powder.

本発明はまた、上記した合金の薄片または粉末に樹脂を
混合してボンド磁石としたことを特徴とする。本ボンド
磁石において、前記樹脂の種類は特に問うものでなく、
例えばエポキシ樹脂やフェノール樹脂などの熱硬化性樹
脂、あるいはナイロンやポリフェニレンサルファイド(
PPS)などの熱可塑性樹脂を用いることができる。こ
のボンド磁石の製造に際しては磁場中成形を行っても良
く、これによって磁気特性の若干の向上を達成すること
ができる。
The present invention is also characterized in that a bonded magnet is prepared by mixing a resin with the flakes or powder of the above-described alloy. In this bonded magnet, the type of resin is not particularly important;
For example, thermosetting resins such as epoxy resins and phenolic resins, or nylon and polyphenylene sulfide (
A thermoplastic resin such as PPS) can be used. When manufacturing this bonded magnet, molding in a magnetic field may be performed, and by this, it is possible to achieve a slight improvement in magnetic properties.

(作用) 上記のように構成した永久磁石用合金においては、希土
類金属、遷移金属、ホウ素、バナジウムの所定組成によ
る相乗効果により、残留磁束密度Br:lO〜12KG
、最大磁気エネルギー積:BHmax18〜22MGO
eとなり、従来汎用のボンド磁石用合金に対してはもち
ろん、特開平2−57662号公報に示された合金と比
較しても、特に残留磁束密度が著しく増大した。因に、
従来汎用のボンド磁石用合金粉末は米国ゼネラルモータ
ース社が製造販売しており、その代表的粉末(商品名:
 MQP−B)の磁気特性は、残留磁束密度Br : 
8.5KG 、最大磁気エネルギー積BHmax : 
12MGOeである。この結果、本合金を用いて形成し
たボンド磁石も磁気特性が大幅に向上した。
(Function) In the permanent magnet alloy configured as described above, due to the synergistic effect of the specified composition of rare earth metals, transition metals, boron, and vanadium, the residual magnetic flux density Br: 1O ~ 12KG
, Maximum magnetic energy product: BHmax18~22MGO
e, and the residual magnetic flux density was significantly increased, not only in comparison with conventional general-purpose alloys for bonded magnets, but also in comparison with the alloy disclosed in JP-A-2-57662. Incidentally,
Conventional general-purpose alloy powder for bonded magnets has been manufactured and sold by General Motors Corporation in the United States, and its representative powder (product name:
The magnetic properties of MQP-B) are the residual magnetic flux density Br:
8.5KG, maximum magnetic energy product BHmax:
It is 12MGOe. As a result, the magnetic properties of bonded magnets formed using this alloy were also significantly improved.

(実施例) 以下、本発明の実施例について説明する。(Example) Examples of the present invention will be described below.

実施例1 第1表に示すような所定組成の合金を高周波溶解して鋳
造インゴットを製作した。各溶解原料は、純度99%以
上のNd、Pr、および95%以上の他の希土類金属、
純度99%以上の電解鉄、雪解コバルト−ぶ上γド木錦
竹シ1て釣1旨量%のC,Si、 Alを含有する市販
グレードのフェロボロン(Fe−B)を用いた。上記イ
ンゴットを粗粉砕して石英射出管に装填して高周波溶解
した後、アルゴンガス圧力によって石英管下部の細孔か
ら回転する単ロール面に射出急冷した。得られた合金は
、幅1 +n+a、長さ100〜500mm 、厚さ0
.03mmの薄片または薄帯形状をしていた。なおロー
ルは表面がクロムメツキされた水冷銅ロールで、直径4
00mmである。またロール周速度は得られる合金薄片
の磁気特性と密接に関係しているために、16〜22m
/秒の範囲で変化させた。得られた合金の磁気特性を第
1表に示した。磁気特性は振動試料型磁力計(VSM)
を用いて、60KOeのパルス着磁後、室温で測定した
。なお測定は薄片の長平方向に行ったため、反磁場補正
は必要としなかった。
Example 1 A cast ingot was manufactured by high-frequency melting of an alloy having a predetermined composition as shown in Table 1. Each melted raw material contains Nd, Pr with a purity of 99% or more, and other rare earth metals with a purity of 95% or more,
Commercial grade ferroboron (Fe-B) containing electrolytic iron with a purity of 99% or more, melted cobalt, gamma-doped wood, brocade bamboo, and 1% by weight of C, Si, and Al was used. The above-mentioned ingot was coarsely crushed, loaded into a quartz injection tube, and subjected to high frequency melting, and then injected from the pores at the bottom of the quartz tube onto the surface of a rotating single roll using argon gas pressure and quenched. The obtained alloy has a width of 1 + n + a, a length of 100 to 500 mm, and a thickness of 0.
.. It was in the shape of a thin piece or ribbon of 0.03 mm. The roll is a water-cooled copper roll with a chrome-plated surface, and has a diameter of 4.
00mm. In addition, the peripheral speed of the roll is closely related to the magnetic properties of the obtained alloy flakes, so
/second range. The magnetic properties of the obtained alloy are shown in Table 1. Magnetic properties are measured using a vibrating sample magnetometer (VSM)
The measurement was carried out at room temperature after pulse magnetization of 60 KOe. Note that since the measurement was performed in the longitudinal direction of the thin section, no demagnetizing field correction was required.

第1表から明らかなように、合金中の希土類金属(R)
の原子百分率が適当な範囲(5原子%以上、9原子%未
満)において、残留磁束密度BrがloKG以上、最大
磁気エネルギー積BHmaxが約20MGOeとなり、
優れた磁気特性が得られた。なお、No、 1およびN
o、 8は比較例である。
As is clear from Table 1, the rare earth metal (R) in the alloy
In a suitable range of atomic percentage (5 atomic % or more and less than 9 atomic %), the residual magnetic flux density Br is loKG or higher, and the maximum magnetic energy product BHmax is about 20 MGOe,
Excellent magnetic properties were obtained. In addition, No, 1 and N
o and 8 are comparative examples.

第1表 (#比較例) 実施例2 実施例1と同様な方法で、所定の合金組成について急冷
合金薄片を製作して磁気特性を測定した。その結果を第
2表に示す。第2表から明らかなように、Coの適度な
置換率においてloKG以上の残留磁束密度Brを得た
。Feに対するCoの置換が少量すぎる場合(No、 
11 、12 )はその効果が顕著でなく、また過度の
場合(No、18)には保磁力の急激な低下を招くこと
が明らかになった。
Table 1 (#Comparative Example) Example 2 In the same manner as in Example 1, rapidly solidified alloy flakes were produced with a predetermined alloy composition, and their magnetic properties were measured. The results are shown in Table 2. As is clear from Table 2, a residual magnetic flux density Br greater than loKG was obtained at a moderate Co substitution rate. If the substitution of Co for Fe is too small (No,
11, 12), the effect is not remarkable, and in the case of excessive force (No, 18), it has become clear that the coercive force suddenly decreases.

第2表 (#比較例) 実施例3 実施例1と同様な方法で、所定の合金組成について急冷
合金薄片を製作して磁気特性を測定した。その結果を第
3表に示す。第3表から明らかなように、適切なり含有
範囲(3原子%以上、]5原子%未涌)において10K
G以上の残留磁束密度を得た。B含有量が少なすぎる場
合(N。
Table 2 (#Comparative Example) Example 3 In the same manner as in Example 1, rapidly solidified alloy flakes were produced with a predetermined alloy composition, and their magnetic properties were measured. The results are shown in Table 3. As is clear from Table 3, 10K in an appropriate content range (more than 3 at%, ]5 at%)
A residual magnetic flux density of G or more was obtained. If the B content is too low (N.

、19)は合金が軟磁性化して保磁力が急激に低下し、
一定量より多すぎる場合(No、24)は非磁性相の増
大によって残留磁束密度が低下することが明らかとなっ
た。
, 19), the alloy becomes soft magnetic and the coercive force decreases rapidly,
It has become clear that when the amount is more than a certain amount (No, 24), the residual magnetic flux density decreases due to an increase in the non-magnetic phase.

第3表 (#比較例) 実施例4 第4表に示すような所定組成のインゴットを製作し、石
英射出管からその合金溶湯を回転する単ロール面に射出
急冷した。この時合金を非晶質化させるために、ロール
周速度は35m/秒とした。得られた急冷合金は、幅0
.5mm、長さ5〜20mm、厚み0.02mmの薄片
形状をしており、その磁気特性は保磁力がほとんどゼロ
であった。次にこの薄片をアルゴンガス雰囲気下で、6
00〜750℃の温度範囲において熱処理を実施して保
磁力を回復させた。このようにして得られた最良の磁気
特性値を第4表に示す。
Table 3 (#Comparative Example) Example 4 An ingot having a predetermined composition as shown in Table 4 was produced, and the molten alloy was injected from a quartz injection tube onto the surface of a rotating single roll and rapidly cooled. At this time, the roll peripheral speed was set to 35 m/sec in order to make the alloy amorphous. The obtained rapidly solidified alloy has a width of 0
.. It had the shape of a thin piece with a length of 5 mm, a length of 5 to 20 mm, and a thickness of 0.02 mm, and its magnetic properties showed that the coercive force was almost zero. Next, this thin piece was heated for 6 hours under an argon gas atmosphere.
Coercive force was restored by heat treatment in a temperature range of 00 to 750°C. The best magnetic property values thus obtained are shown in Table 4.

第4表 (#比較例) 第4表から明らかなように、適切な■含有量範囲(0,
5原子%以上、5原子%未満)において10KG以上の
残留磁束密度を得た。■を含まない場合(No、 25
 )は軟磁性相の出現によって保磁力が低下し、一定量
より多すぎる場合(No、30)には非磁性相の増大に
よって残留磁束密度が低下することが明らかとなった。
Table 4 (# Comparative Example) As is clear from Table 4, the appropriate content range (0,
5 atomic % or more and less than 5 atomic %), a residual magnetic flux density of 10 KG or more was obtained. If it does not include ■ (No, 25
), the coercive force decreases due to the appearance of the soft magnetic phase, and when the amount exceeds a certain amount (No, 30), it has become clear that the residual magnetic flux density decreases due to the increase in the non-magnetic phase.

実施例5 実施例3におけるNo、19〜24の薄片と、ゼネラル
モータース社製合金粉末MQP−B (組成式: Nd
+2Fe7tCOaBs )を、衝撃式気流粉砕機を使
用して150ミクロン以下に粉砕した。得られた粉末に
液状エポキシ樹脂を2重量%添加混合したものを金型に
充填し、5トン/ Cm 2の圧力で圧縮成型して、直
径12mm、長さl O+nm、密度はぼ6、2 g 
/ cm”の円柱状試料を製作した。続いて150℃で
1時間のキュア処理を行ってエポキシ樹脂を硬化させた
。試料の磁気特性は、直流式B−Hトレーサーによって
最大測定磁場24KOeの下で測定し、その結果を第5
表に示す。なお第5表における試料No、 19 A〜
24Aは、実施例3に於ける試料No、19〜24に対
応し、試料N025Aは粉末MQP−Hに対応する。
Example 5 Thin flakes No. 19 to 24 in Example 3 and General Motors alloy powder MQP-B (compositional formula: Nd
+2Fe7tCOaBs) was pulverized to 150 microns or less using an impact air flow pulverizer. The resulting powder was mixed with 2% by weight of liquid epoxy resin, which was then filled into a mold and compressed at a pressure of 5 tons/cm 2 to give a diameter of 12 mm, a length of 1 O + nm, and a density of about 6.2 mm. g
/ cm" cylindrical sample was fabricated. Subsequently, a curing treatment was performed at 150°C for 1 hour to harden the epoxy resin. The magnetic properties of the sample were determined using a direct current B-H tracer under a maximum measurement magnetic field of 24 KOe. Measure the results with the fifth
Shown in the table. In addition, sample No. 19 A~ in Table 5
24A corresponds to sample Nos. 19 to 24 in Example 3, and sample No. 25A corresponds to powder MQP-H.

第5表から明らかなように、本発明による所定成分組成
の急冷合金薄片を使用したボンド磁石は、比較例として
示したボンド磁石にだいして8KG以上の優れた残留磁
束密度を示した。なお、No、 19A 、 24A 
、および25Aは比較例である。
As is clear from Table 5, the bonded magnet using the rapidly solidified alloy flakes having the predetermined composition according to the present invention exhibited an excellent residual magnetic flux density of 8 KG or more compared to the bonded magnet shown as a comparative example. In addition, No, 19A, 24A
, and 25A are comparative examples.

第5表 (#比較例) 実施例6 実施例5と同様にして、実施例3におけるNo、 19
〜24の薄片と、ゼネラルモータース社製粉末MQP−
B (組成式: Nd+tFetyCOaBg )を、
衝撃式気流粉砕機を使用して150ミクロン以下に粉砕
した。得られた粉末に、8重量%のナイロン12を添加
して260℃で練合し、冷却、カッティングしてベレッ
トにした。次に日本製鋼新製の射出成形機を用いて、ペ
レット供給口に窒素ガスを3I2/分流しながら射出温
度290”Cで成形して直径16mm、長さ10mm、
密度5g/cIIl″の円柱状試料を製作した。試料の
磁気特性は直流式B−Hトレーサーによって最大測定磁
場24KOeの下で測定し、その結果を第6表に示す。
Table 5 (#Comparative Example) Example 6 Similarly to Example 5, No. 19 in Example 3
~24 flakes and General Motors powder MQP-
B (compositional formula: Nd+tFetyCOaBg),
It was pulverized to 150 microns or less using an impact type air flow pulverizer. To the obtained powder, 8% by weight of nylon 12 was added and kneaded at 260°C, cooled and cut into pellets. Next, using an injection molding machine manufactured by Nippon Steel Corporation, the pellets were molded at an injection temperature of 290"C while nitrogen gas was flowed through the pellet supply port into a diameter of 16 mm, a length of 10 mm,
A cylindrical sample with a density of 5 g/cIIl'' was prepared. The magnetic properties of the sample were measured using a direct current B-H tracer under a maximum measuring magnetic field of 24 KOe, and the results are shown in Table 6.

なお第6表における試料No、 19 B〜24Bは、
実施例3における試料No、 19〜24に対応し、試
料No、 25Bは粉末MQP−Bに対応する。
In addition, sample Nos. 19B to 24B in Table 6 are as follows:
Sample Nos. 19 to 24 in Example 3 correspond, and sample No. 25B corresponds to powder MQP-B.

第6表 (#比較例) 第6表から明らかなように、本発明による所定成分組成
の急冷合金薄片を使用した磁石は、比較例として示した
磁石にたいして6KG以上の優れた残留磁束密度を示し
た。なお、No、19B。
Table 6 (#Comparative Example) As is clear from Table 6, the magnet using the rapidly solidified alloy flakes having a predetermined composition according to the present invention exhibits an excellent residual magnetic flux density of 6 KG or more compared to the magnet shown as a comparative example. Ta. In addition, No. 19B.

24B、および25Bは比較例である。24B and 25B are comparative examples.

(発明の効果) 以上、詳細に説明したように、本発明にか\る永久磁石
用合金によれば、希土類金属、遷移金属、ホウ素、バナ
ジウムの所定組成による相乗効果により、残留磁束密度
が著しく増大するものとなった。またこの合金を用いた
ボンド磁石も同様に高い磁気特性を実現するものとなり
、その適用範囲の拡大を達成できた。
(Effects of the Invention) As explained above in detail, according to the alloy for permanent magnets according to the present invention, the residual magnetic flux density is significantly reduced due to the synergistic effect of the predetermined composition of rare earth metals, transition metals, boron, and vanadium. It became an increasing thing. In addition, bonded magnets using this alloy have similarly high magnetic properties, and the range of their application has been expanded.

(ほか2名)(2 others)

Claims (2)

【特許請求の範囲】[Claims] (1)希土類金属(R)、遷移金属(T)、B、Vが原
子百分率で、X%R−(100−X−Y−Z)%T−Y
%B−Z%V(ただし5≦X<9, 3≦Y<15,0.5≦Z<5)の割合で含まれ、前記
希土類金属(R)はNdとPrの一種または二種の合計
を50%以上含むランタノイド元素から成り、前記遷移
金属(T)は Coを5%以上30%未満含むFe基合金から成り、か
つ溶湯を直接急冷して薄片または粉末としてなることを
特徴とする永久磁石用合金。
(1) Rare earth metal (R), transition metal (T), B, V in atomic percentage, X%R-(100-X-Y-Z)%T-Y
%B-Z%V (however, 5≦X<9, 3≦Y<15, 0.5≦Z<5), and the rare earth metal (R) is one or two of Nd and Pr. The transition metal (T) is made of an Fe-based alloy containing 5% or more and less than 30% of Co, and is characterized in that it is formed into flakes or powder by directly quenching the molten metal. Alloy for permanent magnets.
(2)希土類金属(R)、遷移金属(T)、B、B、V
が原子百分率で、X%R−(100−X−Y−Z)%T
−Y%B−Z%V(ただし5≦X<9,3≦Y<15,
0.5≦Z<5)の割合で含まれ、前記希土類金属(R
)はNdとPrの一種または二種の合計を50%以上含
むランタノイド元素から成り、前記遷移金属(T)は Coを5%以上30%未満含むFe基合金から成り、か
つ溶湯を直接急冷して形成した薄片または粉末に樹脂を
混合してなることを特徴とするボンド磁石。
(2) Rare earth metals (R), transition metals (T), B, B, V
is the atomic percentage, X%R-(100-X-Y-Z)%T
-Y%B-Z%V (5≦X<9, 3≦Y<15,
0.5≦Z<5), and the rare earth metal (R
) is made of a lanthanide element containing 50% or more of one or both of Nd and Pr, and the transition metal (T) is made of an Fe-based alloy containing 5% or more and less than 30% of Co, and the molten metal is directly quenched. A bonded magnet characterized by being made by mixing resin with flakes or powder formed by bonding.
JP2239468A 1990-09-10 1990-09-10 Permanent magnet alloy and bond magnet using same Pending JPH04120253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2239468A JPH04120253A (en) 1990-09-10 1990-09-10 Permanent magnet alloy and bond magnet using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2239468A JPH04120253A (en) 1990-09-10 1990-09-10 Permanent magnet alloy and bond magnet using same

Publications (1)

Publication Number Publication Date
JPH04120253A true JPH04120253A (en) 1992-04-21

Family

ID=17045219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2239468A Pending JPH04120253A (en) 1990-09-10 1990-09-10 Permanent magnet alloy and bond magnet using same

Country Status (1)

Country Link
JP (1) JPH04120253A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6503415B1 (en) 1998-12-28 2003-01-07 Seiko Epson Corporation Magnet powders and isotropic rare-earth bonded magnets

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6503415B1 (en) 1998-12-28 2003-01-07 Seiko Epson Corporation Magnet powders and isotropic rare-earth bonded magnets

Similar Documents

Publication Publication Date Title
JP6503483B2 (en) Highly heat-stable rare earth permanent magnet material, method for producing the same, and magnet including the same
KR0149901B1 (en) Iron-based permanent magnet alloy powders for resin bonded magnets and magnets made therefrom
JPH0447024B2 (en)
JP2727507B2 (en) Permanent magnet and manufacturing method thereof
JP4314244B2 (en) Magnetic material powder manufacturing method and bonded magnet manufacturing method
JP2727505B2 (en) Permanent magnet and manufacturing method thereof
EP1127358B1 (en) Sm (Co, Fe, Cu, Zr, C) COMPOSITIONS AND METHODS OF PRODUCING SAME
US20020000262A1 (en) Exchange spring magnet powder and a method of producing the same
JP4899254B2 (en) Isotropic powder magnet material, manufacturing method thereof, and bonded magnet
JPH04120253A (en) Permanent magnet alloy and bond magnet using same
JP4329595B2 (en) Rare earth magnet powder, compound using the same, and bonded magnet using the same
JPH0845719A (en) Quenched thin band for bond magnet, particles for bond magnet, bond magnet and manufacture thereof
JPH08335506A (en) High coercive force iron base permanent magnet and bonded magnet
JP3357381B2 (en) Magnet material, method of manufacturing the same, and bonded magnet
JPH04165031A (en) Alloy for permanent magnet and its bond magnet
JPS63115307A (en) Manufacture of rare-earth magnet
JP2925840B2 (en) Fe-BR bonded magnet
JPH01255620A (en) Production of permanent magnet material and bonded magnet
JP2004263232A (en) Permanent magnet alloy and bond magnet
JP3736830B2 (en) Rare earth-Fe-Co-B magnet powder and bonded magnet excellent in squareness and thermal stability
JP3032385B2 (en) Fe-BR bonded magnet
JP2000223305A (en) Rare-earth r-fe-co-b magnetic powder, its manufacturing method, and bonded magnet made of the powder
JPH02109305A (en) Manufacture of polymer complex type rare earth magnet
JPH01128404A (en) Manufacture of permanent magnet
JPH0817612A (en) Manufacture of rare earth based permanent magnet material and rare earth based permanent magnet