JPH04120230A - Brass mixed with in and sb and excellent in corrosion resistance - Google Patents

Brass mixed with in and sb and excellent in corrosion resistance

Info

Publication number
JPH04120230A
JPH04120230A JP24075390A JP24075390A JPH04120230A JP H04120230 A JPH04120230 A JP H04120230A JP 24075390 A JP24075390 A JP 24075390A JP 24075390 A JP24075390 A JP 24075390A JP H04120230 A JPH04120230 A JP H04120230A
Authority
JP
Japan
Prior art keywords
brass
weight
corrosion
corrosive
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24075390A
Other languages
Japanese (ja)
Inventor
Keizo Kazama
風間 敬三
Toshihiro Kato
敏弘 加藤
Iwao Sato
巌 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP24075390A priority Critical patent/JPH04120230A/en
Publication of JPH04120230A publication Critical patent/JPH04120230A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the corrosion resistance of brass without deteriorating its heat conductivity and heat conductivity by incorporating specified amounts of In and Sb into brass. CONSTITUTION:The compsn, of brass is constituted of, by weight, 25 to 38% Zn, 0.05 to 0.5% In, 0.01 to 0.3% Sb and the balance Cu with inevitable impurities. Its average grain size is preferably regulated to 2 to 10mum. In enters into solid soln. in the matrix of the alloy and has effects of transforming the corrosive form of the brass from a partial dezincing one into a general corrosive one and reducing its corrosive loss. Sb transforms the corrosive form of the brass from a partial dezincing one into a general corrosive one and reduces its corrosive loss by changing the form of the dezincing corrosion from a linear one into an exfoliation one. Moreover, by the regulation of the grain size, the force of corrosion progressing in the depth direction of the material can be suppressed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、復水器、加水加熱器、蒸留器、冷却器、遣水
装置等の熱交換器用の材料として、特に、自動車等に用
いられるラジェーターのチューブ材として好適な、耐腐
食性に優れた黄銅に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is used as a material for heat exchangers such as condensers, water heaters, distillers, coolers, water supply devices, etc., particularly for automobiles, etc. This invention relates to brass with excellent corrosion resistance, which is suitable as a tube material for radiators.

[従来の技術] 従来、ラジェーターのチューブ材としては、黄銅、ある
いはこれに微量のPが添加された銅合金が一般的に利用
されて来ており、特に、機械的性質や成型性の面で優れ
た特性を発揮すると共に、他の銅合金に比較して安価に
て入手出来る事から、黄銅が広く用いられて来た。
[Prior Art] Conventionally, brass or a copper alloy to which a small amount of P is added has been generally used as a tube material for a radiator, and it has particularly good mechanical properties and formability. Brass has been widely used because it exhibits excellent properties and can be obtained at a lower price than other copper alloys.

しかし乍、近年に於ける様に、上記の機器を利用する領
域の拡大と、これを利用する環境の悪化が進展して行く
のに伴って、機器に使用されている材料は塩分濃度の高
い海浜の大気や排気ガス濃度の高い都市近郊の大気中で
使用される機会が多くなり、熱交換器の主要部で、材料
の腐食による機能の劣化が頻繁に認められる様になって
来た。
However, in recent years, as the areas in which the above devices are used have expanded and the environment in which they are used has become more and more deteriorating, the materials used in the devices have become increasingly salty. As heat exchangers are increasingly being used in the atmosphere of beaches and urban areas with high concentrations of exhaust gas, deterioration of function due to corrosion of the materials in the main parts of heat exchangers has become frequently observed.

この為、従来に増した耐腐食強度を有する材料の出現が
待たれる様になって来た。
For this reason, the emergence of materials with higher corrosion resistance than conventional materials has been awaited.

[発明が解決しようとする課題] 通常の黄銅は、価格的には手頃であるものの、腐食雰囲
気で応力のかけられた場合に発生して来る応力腐食割れ
現象には極めて敏感であり、特に、軽量を要求される熱
交換器用の材料としては、薄物化が要求される為、ます
ます腐食環境に耐えやすい素材の供給が望まれる様にな
って来て居る。
[Problems to be Solved by the Invention] Although ordinary brass is reasonably priced, it is extremely sensitive to stress corrosion cracking phenomenon that occurs when stress is applied in a corrosive atmosphere. As materials for heat exchangers are required to be lightweight, they are required to be thin, so it is becoming more and more desirable to supply materials that can easily withstand corrosive environments.

本発明は、熱交換器用の素材に要求される性能を満足さ
せるものとして、熱伝導性や電気伝導性を低下させるこ
となく、素材価格もさほど高胱させずに、耐腐食性に優
れるという銅合金を提供する事を目的とするものである
The present invention uses copper, which has excellent corrosion resistance, without reducing thermal conductivity or electrical conductivity, and without making the material price too high, as a material that satisfies the performance required for materials for heat exchangers. The purpose is to provide alloys.

[課題を解決するための手段] 本発明者等は、黄銅の脱亜鉛腐食性の改良を検討してい
る段階で、Cu−Zn合金にInと、Sbとを含有させ
る事によって黄銅の脱亜鉛腐食性の著しい改良が認めら
れる事を見出だすと共に、更に、この合金の結晶粒度を
調整する事によって、黄銅の耐腐食性を大幅に改善する
事が可能である事を見出だし、本発明に至ったものであ
る。
[Means for Solving the Problem] The inventors of the present invention were considering improving the dezincification corrosion resistance of brass by incorporating In and Sb into a Cu-Zn alloy. They discovered that the corrosion resistance of brass was significantly improved, and further discovered that by adjusting the grain size of this alloy, it was possible to significantly improve the corrosion resistance of brass. This is what led to this.

即ち、本発明は、課題を解決する為に、重量%でZnを
25〜38%と、Inを0.05〜0゜5%と、Sbを
0.01〜0.3%含み、残部がCuおよび不可避不純
物からなる黄銅を開示すると共に、その平均結晶粒径が
2〜10μmに調整された上記の黄銅素材を利用する事
によって、上記の課題を解決出来る事を開示せんとした
ものである。  [作用] 本発明に於いて、ZnはCuに固溶して材料強度を向上
させる機能を持たせる為のものであり、ここに、Znの
含有量を25〜38重量%と限定した理由は、Znの含
有量が25重I%未満では材料強度が十分でなくなると
共に、銅分が高くなる事から、価格の上昇を招く為であ
り、また、Znの含有量が38重量%を超えた場合には
β相の析出量が多量になり、材料の加工性が劣化して来
るためである。
That is, in order to solve the problem, the present invention contains 25 to 38% of Zn, 0.05 to 0.5% of In, 0.01 to 0.3% of Sb, and the balance is In addition to disclosing brass made of Cu and unavoidable impurities, it is also intended to disclose that the above-mentioned problems can be solved by using the above-mentioned brass material whose average crystal grain size is adjusted to 2 to 10 μm. . [Function] In the present invention, Zn is dissolved in Cu to give it the function of improving material strength, and the reason why the Zn content is limited to 25 to 38% by weight is as follows. If the Zn content is less than 25% by weight, the material strength will not be sufficient and the copper content will increase, leading to an increase in price. Also, if the Zn content exceeds 38% by weight, In this case, the amount of β phase precipitated becomes large, and the workability of the material deteriorates.

次いで、Inは合金素地に固溶して黄銅の腐食形態を部
分的な脱亜鉛腐食から、全面的な腐食形態に移行させる
と共に、その腐食減量を軽減させる作用を為すものであ
るが、ここに、Inの含有量を0,05〜0.5重量%
と限定した理由は、Inの含有量が0.05重量%未満
では材料の脱亜鉛腐食を抑制する効果の向上が認められ
ず、更に、Inの含有量が0.5重量%を超えて含有さ
れる様になると、材料の全面腐食量が増加して来る為、
逆に腐食深さを軽減するという特性の向上効果が悪化し
て来る為である。
Next, In is solid dissolved in the alloy base, and has the effect of shifting the corrosion mode of brass from partial dezincification corrosion to full-scale corrosion mode, as well as reducing the corrosion loss. , the content of In is 0.05 to 0.5% by weight
The reason for this limitation is that when the In content is less than 0.05% by weight, no improvement in the effect of suppressing dezincification corrosion of the material is observed, and furthermore, when the In content exceeds 0.5% by weight, When this happens, the amount of corrosion on the entire surface of the material increases.
On the contrary, the effect of improving the characteristic of reducing the corrosion depth deteriorates.

次いで、Sbは、脱亜鉛腐食の形態を栓状がら層状に変
化させる事によって、黄銅の腐食形態を部分的な脱亜鉛
腐食から、全面的な腐食形態に移行させると共に、その
腐食減量を軽減させる作用を為すものであるが、ここに
、Sbの含有量を0゜01〜0.3重量%と限定した理
由は、Sbの含有量が0.01重量%未満では材料の脱
亜鉛腐食の形態を変化させる効果が認められず、更に、
Sbの含有量が0.3重量%を超えて含有される様にな
ると、結晶粒界にSbが偏析して来るようになり、結果
的に、粒界部分が優先的に腐食されてしまう為である。
Next, Sb changes the form of dezincification corrosion from plug-like to layered, thereby shifting the corrosion form of brass from partial dezincification corrosion to full-scale corrosion and reducing the corrosion loss. However, the reason why the Sb content is limited to 0.01 to 0.3% by weight is that if the Sb content is less than 0.01% by weight, the material will undergo dezincification corrosion. No effect was observed on changing the
If the Sb content exceeds 0.3% by weight, Sb will segregate at the grain boundaries, and as a result, the grain boundary areas will be preferentially corroded. It is.

最後に、材料の結晶粒度を調整する事は、材料の深さ方
向へ向かって進展していく腐食力を抑制する為に必要な
ものであるが、この場合、材料の平均結晶粒径を2〜1
0μmに調整するのは、平均結晶粒径が2μm未満では
加工組織が残存し易くなり、かえって、材料の耐腐食性
が悪化して来る為であり、平均結晶粒径が10μmを超
える場合には、材料の全面腐食現象が抑制された場合に
示される最大腐食深さの減少が認られなくなる為である
Finally, adjusting the grain size of the material is necessary to suppress the corrosion force that progresses toward the depth of the material, but in this case, it is necessary to adjust the average grain size of the material by 2. ~1
The reason why it is adjusted to 0 μm is that if the average crystal grain size is less than 2 μm, processed structures tend to remain, and the corrosion resistance of the material deteriorates.If the average grain size exceeds 10 μm, This is because the decrease in the maximum corrosion depth that would occur if the general corrosion phenomenon of the material was suppressed was no longer observed.

尚、材料の平均結晶粒径は、通常、材料を最終焼鈍した
状態で測定するものであるが、本発明の対象とするラジ
ェーターのチューブ材は、仕上げ圧延率が低い為、最終
冷間圧延の前後に於いて、材料の平均結晶粒径に変化が
認められておらず、本明細書に記載された平均結晶粒径
の値は、全て、最終の冷間圧延加工を終えた材料につい
て測定されたものである。
Note that the average grain size of a material is normally measured in the final annealed state, but the radiator tube material that is the subject of the present invention has a low finish rolling rate, so it is measured after the final cold rolling. No change was observed in the average grain size of the material between before and after, and all values of average grain size described in this specification were measured for the material that had completed the final cold rolling process. It is something that

[実施例] 実施例1 電気tR3564gと、電気亜鉛1425gと、I n
9gと、Sb2.5gとを原料とし、分析値としてZn
28−5重量%と、In0.18重量%と、Sb0.0
5重1%と、残部Cuとからなる銅合金を大気溶解炉で
溶製し、厚さ30mm、幅100mm、長さ150mm
のインゴットを得た。
[Example] Example 1 Electric tR 3564g, electrolytic zinc 1425g, In
Using 9g of Zn and 2.5g of Sb as raw materials, the analysis value shows Zn
28-5% by weight, In0.18% by weight, and Sb0.0
A copper alloy consisting of 5 weights, 1%, and the balance Cu is melted in an atmospheric melting furnace, and has a thickness of 30 mm, a width of 100 mm, and a length of 150 mm.
Obtained an ingot.

得られたインゴットは表面を片側2mmづつ面削りした
後、温度850°Cにて熱間圧延して厚さ10mmの中
間材とし、さらに、この中間材の表面を片側1mmづつ
面削した後、3mmの厚さまで冷間圧延を施し、あらた
めて温度600’Cにて1時間の中間焼鈍を窒素雰囲気
中で行った。
The surface of the obtained ingot was milled by 2 mm on each side, and then hot rolled at a temperature of 850°C to form an intermediate material with a thickness of 10 mm.Furthermore, the surface of this intermediate material was milled by 1 mm on each side, and then Cold rolling was performed to a thickness of 3 mm, and intermediate annealing was performed again at a temperature of 600'C for 1 hour in a nitrogen atmosphere.

中間焼鈍を施した材料について、引き続いて冷間圧延を
施して厚さ0.4mmの条材とした後、温度450°C
にて1時間にわたる最終焼鈍を窒素雰囲気中で行い、条
材の平均結晶粒径を6μmに調整した後、さらに、冷間
加工を施して厚さ0゜3mmの条材とし、この条材から
幅25mm、長さ100mmの試験片を切り出し、結晶
粒度並びに耐腐食性の試験に供した。
The material subjected to intermediate annealing was subsequently cold rolled into a strip with a thickness of 0.4 mm, and then rolled at a temperature of 450°C.
After final annealing for 1 hour in a nitrogen atmosphere to adjust the average grain size of the strip to 6 μm, it was further cold-worked into a strip with a thickness of 0.3 mm. A test piece with a width of 25 mm and a length of 100 mm was cut out and subjected to grain size and corrosion resistance tests.

材料の結晶粒度を測定する場合には、JISH0501
に規定された伸銅品結晶粒度試験方法の比較法に従って
測定すると共に、材料の耐腐食性を調べる試験方法とし
ては、JIS  Z2371に規定された塩水噴霧試験
方法を採用した。
When measuring the grain size of materials, JISH0501
The measurement was carried out in accordance with the comparison method of the crystal grain size test method for rolled copper products specified in 1997, and the salt spray test method specified in JIS Z2371 was adopted as the test method for examining the corrosion resistance of the material.

この場合、試験片に対する塩水噴霧の処理時間は連続1
50時間とし、塩水噴霧処理の終了した試験片は幅方向
に6等分して切断された後、試験片の各切断面について
光学W4fR鏡による腐食深さの測定を実施し、試験に
供した幅25mmの試料の全長に亘っての計測を5箇所
、都合125mmについて行い、この間にあって、最も
深く腐食されている部分の深さをもって、その試料の最
大腐食深さとした。
In this case, the treatment time of salt water spray on the test piece is 1 continuous time.
After the salt spray treatment was completed for 50 hours, the test piece was cut into 6 equal parts in the width direction, and the corrosion depth was measured using an optical W4fR mirror on each cut surface of the test piece, and the test piece was subjected to the test. Measurements were taken over the entire length of a sample with a width of 25 mm at five locations, totaling 125 mm, and the depth of the most deeply corroded part between these points was taken as the maximum corrosion depth of the sample.

以上の様にして計測された試料の最大腐食深さは4μm
であった。
The maximum corrosion depth of the sample measured as above was 4 μm.
Met.

実施例2 電気銅3468gと、電気亜鉛1520gと、In11
gと、Sb1gとを原料とし、分析値としてZn30.
4重量%と、In0.22重量%と、Sb0.02重1
%と、残部Cuとからなる銅合金を得、平均結晶粒径を
6μmとした以外は、実施例1と同様な方法にて処理さ
れた結果、計測された試料の最大腐食深さは8μmであ
った。
Example 2 3468 g of electrolytic copper, 1520 g of electrolytic zinc, and In11
Using Zn30.g and Sb1g as raw materials, the analysis value was Zn30.
4% by weight, 0.22% by weight of In, and 0.02% by weight of Sb.
% and the remainder Cu was obtained, and treated in the same manner as in Example 1 except that the average grain size was 6 μm. As a result, the maximum corrosion depth of the measured sample was 8 μm. there were.

実施例3 電気銅3193gと、電気亜鉛1785gと、In16
.5gと、Sb5.5gとを原料とし、分析値としてZ
n35.7重量%と、In0.33重量%と、Sb0.
11重量%と、残部Cuとからなる銅合金を得、その平
均結晶粒径を5μmとした以外は、実施例1と同様な方
法にて処理された結果、計測された試料の最大腐食深さ
は12μmであった。
Example 3 3193g of electrolytic copper, 1785g of electrolytic zinc, and In16
.. 5g and 5.5g of Sb were used as raw materials, and the analysis value was Z
n35.7% by weight, In0.33% by weight, and Sb0.
A copper alloy consisting of 11% by weight and the balance Cu was obtained and treated in the same manner as in Example 1 except that the average grain size was 5 μm. was 12 μm.

比較例1 平均結晶粒径が5μmに調整されたZn含有量30.5
重量%の黄銅を試料とした以外は、実施例1と同様な方
法にて処理された結果、計測された試料の最大腐食深さ
は75μmであった。
Comparative Example 1 Zn content 30.5 with average crystal grain size adjusted to 5 μm
As a result of processing in the same manner as in Example 1 except that the sample was made of brass having a weight of %, the measured maximum corrosion depth of the sample was 75 μm.

比較例2 分析値としてZn35.3重量%と、I no。Comparative example 2 The analysis value was 35.3% by weight of Zn and Ino.

23重量%と、残部Cuとからなる銅合金を得、その平
均結晶粒径を6μmとした以外は、実施例1と同様な方
法にて処理された結果、計測された試料の最大腐食深さ
は18μmであった。
A copper alloy consisting of 23% by weight and the balance Cu was obtained and treated in the same manner as in Example 1, except that the average grain size was 6 μm. As a result, the measured maximum corrosion depth of the sample was was 18 μm.

比較例3 分析IN トL テZ n 34 、31E 量% ト
、Sbo。
Comparative Example 3 Analysis IN To L Te Z n 34 , 31E Amount % To, Sbo.

08重量%と、残部Cuとからなる銅合金を得、その平
均結晶粒径を8μmとした以外は、実施例1と同様な方
法にて処理された結果、計測された試料の最大腐食深さ
は31μmであった。
A copper alloy consisting of 0.8% by weight and the balance Cu was obtained, and the average crystal grain size was 8 μm, but the treatment was carried out in the same manner as in Example 1. As a result, the measured maximum corrosion depth of the sample was was 31 μm.

比較例4 分析値としてZn36.4重量%と、I no。Comparative example 4 The analysis value was 36.4% by weight of Zn, and Ino.

02重量%と、Po、020重量%と、残部Cuとから
なる銅合金を得、その平均結晶粒径を7μmとした以外
は、実施例1と同様な方法にて処理された結果、計測さ
れた試料の最大腐食深さは33μmであった。
A copper alloy consisting of 0.2% by weight, Po, 0.20% by weight, and the balance Cu was obtained and treated in the same manner as in Example 1 except that the average crystal grain size was 7 μm. The maximum corrosion depth of the sample was 33 μm.

比較例5 分析値としてZn34.4重量%と、I no。Comparative example 5 The analysis value was 34.4% by weight of Zn and Ino.

62重量%と、SbO,03重量%と、209015重
量%と、残部Cuとからなる銅合金を得、その平均結晶
粒径を5μmとした以外は、実施例1と同様な方法にて
処理された結果、計測された試料の最大腐食深さは23
μmであった。
A copper alloy consisting of 62% by weight, 3% by weight of SbO, 209015% by weight, and the balance Cu was obtained, and the process was carried out in the same manner as in Example 1, except that the average crystal grain size was 5 μm. As a result, the maximum corrosion depth of the sample measured was 23
It was μm.

比較例6 分析値としてZn29.6重量%と、I no。Comparative example 6 The analysis value was 29.6% by weight of Zn, and Ino.

22重量%と、Sb0.33重量%と、po、。22% by weight, 0.33% by weight of Sb, and po.

23重量%と、残部Cuとからなる銅合金を得、その平
均結晶粒径を8μmとした以外は、実施例1と同様な方
法にて処理された結果、計測された試料の最大腐食深さ
は21μmであった。
A copper alloy consisting of 23% by weight and the balance Cu was obtained and treated in the same manner as in Example 1, except that the average grain size was 8 μm. As a result, the measured maximum corrosion depth of the sample was 21 μm.

比較例7 分析値としてZn35.2重量%と、I no。Comparative example 7 The analysis value was 35.2% by weight of Zn and Ino.

21重量%と、Sb0.04重量%と、101023重
量%と、残部Cuとからなる銅合金を得、その平均結晶
粒径を20μmとした以外は、実施例1と同様な方法に
て処理された結果、計測された試料の最大腐食深さは3
8μmであった。
A copper alloy consisting of 21% by weight of Sb, 0.04% by weight of Sb, 101023% by weight of Cu, and the balance was treated in the same manner as in Example 1, except that the average crystal grain size was 20 μm. As a result, the maximum corrosion depth of the sample measured was 3
It was 8 μm.

以上の如く、本発明の実施による場合には、腐食環境に
あっても、高度な耐食性が示される素材を容易に入手す
る事が可能になった。
As described above, by carrying out the present invention, it has become possible to easily obtain a material that exhibits a high degree of corrosion resistance even in a corrosive environment.

以上の計測結果を第1表として示す。The above measurement results are shown in Table 1.

又、平均結晶粒径を変化させた同一組成の合金について
、 材料の最大腐食深さを測定した結果を 纏めて第2表に示す。
Table 2 summarizes the results of measuring the maximum corrosion depth of materials for alloys of the same composition with different average grain sizes.

(この頁以下余白) [発明の効果コ 本発明の実施により、復水器、加水加熱器、蒸留器、冷
却器、遣水装置等の熱交換器用の材料として、特に、自
動車等に用いられるラジェーターのチューブ材として好
適な、耐腐食性に優れた黄銅を容易に入手する事を可能
にした為、斯業界に寄与するところ大なるものがある。
(Margins below this page) [Effects of the invention] By carrying out the present invention, radiators used in automobiles, etc. can be used as materials for heat exchangers such as condensers, water heaters, distillers, coolers, water supply devices, etc. It has made it possible to easily obtain brass, which has excellent corrosion resistance and is suitable as a tube material for tubes, making a great contribution to this industry.

Claims (1)

【特許請求の範囲】 1)重量%でZnを25〜38%と、Inを0.05〜
0.5%と、Sbを0.01〜0.3%含み、残部がC
uおよび不可避不純物からなる事を特徴とするInとS
bが添加された耐腐食性に優れる黄銅。 2)平均結晶粒径が2〜10μmである事を特徴とする
請求項1記載のInとSbが添加された耐腐食性に優れ
る黄銅。
[Claims] 1) 25 to 38% Zn and 0.05 to 38% In by weight;
0.5%, contains 0.01-0.3% Sb, and the balance is C.
In and S characterized by consisting of u and inevitable impurities
Brass with excellent corrosion resistance added with b. 2) The brass with excellent corrosion resistance to which In and Sb are added according to claim 1, characterized in that the average crystal grain size is 2 to 10 μm.
JP24075390A 1990-09-10 1990-09-10 Brass mixed with in and sb and excellent in corrosion resistance Pending JPH04120230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24075390A JPH04120230A (en) 1990-09-10 1990-09-10 Brass mixed with in and sb and excellent in corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24075390A JPH04120230A (en) 1990-09-10 1990-09-10 Brass mixed with in and sb and excellent in corrosion resistance

Publications (1)

Publication Number Publication Date
JPH04120230A true JPH04120230A (en) 1992-04-21

Family

ID=17064200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24075390A Pending JPH04120230A (en) 1990-09-10 1990-09-10 Brass mixed with in and sb and excellent in corrosion resistance

Country Status (1)

Country Link
JP (1) JPH04120230A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017009176A1 (en) * 2015-07-10 2017-01-19 Aurubis Stolberg Gmbh & Co. Kg Brass alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017009176A1 (en) * 2015-07-10 2017-01-19 Aurubis Stolberg Gmbh & Co. Kg Brass alloy

Similar Documents

Publication Publication Date Title
JP5476149B2 (en) Copper alloy with low strength anisotropy and excellent bending workability
WO2013018228A1 (en) Copper alloy
JP2006009137A (en) Copper alloy
WO2009123137A1 (en) Cu-ni-si-co-cr alloy for electronic material
JP2011508081A (en) Copper-nickel-silicon alloy
WO2015099097A1 (en) Copper alloy sheet material, connector, and production method for copper alloy sheet material
JP5105389B2 (en) Aluminum alloy manufacturing method
KR20140103164A (en) Aluminium fin alloy and method of making the same
CN114855026B (en) High-performance precipitation strengthening type copper alloy and preparation method thereof
JP7195054B2 (en) Copper alloy sheet material and manufacturing method thereof
JPH0790520A (en) Production of high-strength cu alloy sheet bar
JPH0380862B2 (en)
JP3347001B2 (en) Heat-resistant copper-based alloy
JP2022513692A (en) 6XXX aluminum alloy
JP2006009108A (en) Cu-Ni-Si BASED COPPER ALLOY STRIP HAVING EXCELLENT BENDING WORKABILITY
JPH04120230A (en) Brass mixed with in and sb and excellent in corrosion resistance
JPH04236734A (en) Brass added with sn, mg and p and having excellent corrosion resistance
JP2010270386A (en) Aluminum alloy fin material for heat exchanger
JPH04120231A (en) Brass mixed with in, sb and p and excellent in corrosion resistance
JPH04120229A (en) Brass mixed with in and excellent in corrosion resistance
JP2005082827A (en) Aluminum alloy sheet for forming and its production method
JPH04236735A (en) Brass added with in, mg and p and having excellent corrosion resistance
JP4807484B2 (en) Aluminum alloy plate for forming and method for producing the same
JPH04120228A (en) Brass mixed with in and p and excellent in corrosion resistance
JPH04128334A (en) Te-and sb-added brass excellent in corrosion resistance