JPH0411919A - Method and apparatus for pressure swing type adsorption /separation - Google Patents

Method and apparatus for pressure swing type adsorption /separation

Info

Publication number
JPH0411919A
JPH0411919A JP2110493A JP11049390A JPH0411919A JP H0411919 A JPH0411919 A JP H0411919A JP 2110493 A JP2110493 A JP 2110493A JP 11049390 A JP11049390 A JP 11049390A JP H0411919 A JPH0411919 A JP H0411919A
Authority
JP
Japan
Prior art keywords
adsorption
valve
tower
pressure
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2110493A
Other languages
Japanese (ja)
Inventor
Toshiaki Fujii
敏昭 藤井
Fukuo Oishi
大石 福雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2110493A priority Critical patent/JPH0411919A/en
Publication of JPH0411919A publication Critical patent/JPH0411919A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE:To selectively separate a specific gas from mixed gas by carrying out adsorption/separation operation after the carrying-out of equalization for the time of 1/8-1/2 adsorbing separation time when the changing-over from regeneration process to adsorption process is carried out by using a three way valve for the changing-over of flow passage. CONSTITUTION:Before the adsorption process in an adsorption tower A11 and the regeneration process in an adsorption tower B11 are changed over to the next reverse processes, a valve V13 is opened and a valve V11 is closed to carry out the equalizing process in which the product air of high pressure in the tower A11 is transferred to the tower B11. Thus, the pressure of the tower B11 is raised in advance before next adsorbing operation, and then the valve V13 is closed and a valve V12 is opened to atmosphere so that a check valve C1 is opened to right side and closed to left side, and the air 11 of high pressure is introduced into the tower B11, and adsorption process is carried out. The product gas 16 from the tower B11 is recovered as product gas 13 through a check valve C2. At this time, a check valve C2 is opened to right side and closed to left side by the pressure of the product gas 16.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、圧力変動式の吸着分離に係り、特に圧力変動
式の吸着分離により、混合ガスから特定ガスを分離する
ための方法及び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to pressure fluctuation type adsorption separation, and particularly to a method and apparatus for separating a specific gas from a mixed gas by pressure fluctuation type adsorption separation. .

〔従来の技術〕[Conventional technology]

圧力変動式の吸着分離法としては、従来からPSA法(
圧力スイング吸着法)が知られている。PSA法は、高
い圧力で被吸着物を吸着剤に吸着させ、次いで吸着圧力
を下げることによって、吸着剤に吸着した被吸着物を脱
着し、吸着物および非吸着物をそれぞれ分離する方法で
ある。
As a pressure fluctuation adsorption separation method, the PSA method (
pressure swing adsorption method) is known. The PSA method is a method in which the adsorbed substances are adsorbed onto the adsorbent under high pressure, and then the adsorbed substances are desorbed from the adsorbent by lowering the adsorption pressure, and the adsorbed substances and non-adsorbed substances are separated. .

このPSA法では、吸着剤を充填した吸着塔を通常複数
個設け、それぞれの吸着塔において、昇圧→吸着→再生
の一連の操作を繰り返すことにより、装置全体として連
続的に分離操作を行うことが出来るようにしている。
In this PSA method, a plurality of adsorption towers filled with adsorbent are usually installed, and in each adsorption tower, the series of operations of pressurization → adsorption → regeneration is repeated, so that the entire device can perform continuous separation operations. I'm trying to do it.

ところで、吸着塔における一連の該操作は、一定時間毎
に実施され、各操作へ切替える際の流路切替えは電磁弁
で行われていた。
Incidentally, the series of operations in the adsorption tower are performed at regular intervals, and the flow path switching when switching to each operation is performed using a solenoid valve.

電磁弁は、一般に数10万回の作動で寿命とされるので
、一定時間の使用で交換の必要があリ、又−運の操作が
複数になると、多数の電磁弁が必要となり、コスト面や
スペースの面で課題であった。
Generally, solenoid valves have a lifespan of several hundred thousand operations, so they need to be replaced after a certain amount of use, and if there are multiple operations, a large number of solenoid valves are required, which increases the cost. This was an issue in terms of space and space.

又、吸着、再生操作を繰り返して実施するのみでは、製
品ガス濃度や収率(回収率)に限界があった。
Furthermore, there is a limit to the product gas concentration and yield (recovery rate) simply by repeating the adsorption and regeneration operations.

上述の点を空気から酸素を製造(酸素富化)する例で第
2図により説明する。第2図はPSAの基本工程図で、
A1が吸着塔、B1が再生塔を現わす。コンプレッサ(
図示せず)から供給された高圧空気−1は、弁vlを通
り、吸着塔AIで空気中窒素が吸着され、酸素富化空気
が出口2より得られる。出口2の酸素富化空気は、その
相当量がオリフィス4より再生塔B1へ運ばれ、再生に
使用され弁v2を通って大気へ放出され、残部が製品ガ
ス3となって得られる。
The above points will be explained with reference to FIG. 2 using an example of producing oxygen (oxygen enrichment) from air. Figure 2 is the basic process diagram of PSA.
A1 represents an adsorption tower, and B1 represents a regeneration tower. compressor(
High-pressure air-1 supplied from a source (not shown) passes through valve vl, nitrogen in the air is adsorbed in adsorption tower AI, and oxygen-enriched air is obtained from outlet 2. A considerable amount of the oxygen-enriched air at the outlet 2 is carried through the orifice 4 to the regeneration tower B1, used for regeneration, and discharged to the atmosphere through the valve v2, and the remainder is obtained as a product gas 3.

吸着塔A、には、空気を富化酸素(高濃度酸素)にする
ために窒素吸着剤として主に合成ゼオライトが充填され
ている。該吸着剤は、水分が共存すると水分を選択的に
吸着して、該吸着剤の吸着性能を劣化させる。
Adsorption tower A is mainly filled with synthetic zeolite as a nitrogen adsorbent in order to enrich the air with oxygen (high concentration of oxygen). When moisture coexists with the adsorbent, the adsorbent selectively adsorbs moisture, degrading the adsorption performance of the adsorbent.

このため、吸着塔A1の入口部には脱湿剤(水分吸着用
ゼオライト)が通常窒素吸着剤容積の数%〜数十%充填
されている。
For this reason, the inlet of the adsorption tower A1 is usually filled with a dehumidifying agent (zeolite for moisture adsorption) in an amount of several percent to several tens of percent of the volume of the nitrogen adsorbent.

第2図の構成図では、上述のごと<A、が吸着塔、B1
が再生塔であり、夫々吸着操作、再生操作を示している
。次に、各操作が逆となった場合は、弁v1〜v6は夫
々間、閉が逆となり、A、が再生操作、B1が吸着操作
となり、製品ガス3が得られる。この際、B1の吸着操
作では、コンプレッサから供給された空気1の圧力で、
低圧から徐々に高圧になりながら吸着が進行する。一方
、空気の吸着分離は、高圧下はど、製品酸素の濃度や収
率が高いので、この様な操作では製品ガス濃度や収率が
低いという課題があった。
In the configuration diagram of Fig. 2, as mentioned above, <A is the adsorption tower, and B1
is the regeneration tower, and shows the adsorption operation and regeneration operation, respectively. Next, when each operation is reversed, the valves v1 to v6 are closed in the opposite manner, A is a regeneration operation, B1 is an adsorption operation, and product gas 3 is obtained. At this time, in the adsorption operation of B1, at the pressure of air 1 supplied from the compressor,
Adsorption progresses from low pressure to high pressure gradually. On the other hand, since the adsorption separation of air is performed under high pressure, the concentration and yield of the product oxygen are high, so this type of operation has the problem of low product gas concentration and yield.

又、多数の弁(電磁弁)V、−Vsの設置と頻ばんな開
閉が必要であるので、コスト面、スペース面、維持管理
等に課題があった。
Further, since it is necessary to install a large number of valves (electromagnetic valves) V and -Vs and to open and close them frequently, there are problems in terms of cost, space, maintenance, etc.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、上記のような課題を解決し、製品ガスの濃度
や収率が高く、しかもコストが安く、小型化され実用性
の向上した圧力変動式の吸着分離法とその装置を提供す
ることを目的とする。
The present invention solves the above-mentioned problems, and provides a pressure fluctuation type adsorption separation method and its apparatus that have high product gas concentration and yield, are low in cost, are compact, and have improved practicality. With the goal.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明では、混合ガスから
特定ガスを分離する圧力変動式の吸着分離法において、
流路の切替えに三方弁を用い、再生工程から吸着工程へ
の切替えに際して、吸着分離時間の178〜1/2の時
間の均圧化を行ったのち、吸着分離することを特徴とす
る圧力変動式の吸着分離法としたものであり、また、本
発明では、混合ガスから特定ガスを分離する圧力変動式
の吸着分離装置において、三方弁にょる流路切替え弁と
、再生工程から吸着工程への切替えに際して、吸着分離
時間の178〜1/2の時間作動する均圧制御弁とを設
けたことを特徴とする圧力変動式の吸着分離装置とした
ものである。
In order to achieve the above object, the present invention provides a pressure fluctuation adsorption separation method for separating a specific gas from a mixed gas.
A pressure fluctuation characterized in that a three-way valve is used to switch the flow path, and when switching from the regeneration process to the adsorption process, the pressure is equalized for 178 to 1/2 of the adsorption separation time, and then the adsorption separation is performed. In addition, in the present invention, in a pressure fluctuation type adsorption separation device that separates a specific gas from a mixed gas, a flow path switching valve using a three-way valve and a flow path switching valve from a regeneration process to an adsorption process are used. The pressure fluctuation type adsorption separation apparatus is characterized in that it is equipped with a pressure equalization control valve that operates for 178 to 1/2 of the adsorption separation time when switching.

次に、本発明の詳細な説明する。Next, the present invention will be explained in detail.

本発明で使用できる吸着剤としては、圧力変動式の吸着
分離法に用いられる周知のものが適宜使用できる。その
具体例を第1表に示す。
As the adsorbent that can be used in the present invention, well-known adsorbents used in pressure fluctuation type adsorption separation methods can be used as appropriate. Specific examples are shown in Table 1.

第  1  表 PSA法では、吸着塔での吸着操作と再生操作との間に
圧力差を設ける。圧力差の大きさは、製品ガス種類、濃
度、装置構造や規模、効率、経済性等により適宜法める
ことが出来る。
Table 1 In the PSA method, a pressure difference is provided between the adsorption operation and the regeneration operation in the adsorption tower. The magnitude of the pressure difference can be determined as appropriate depending on the product gas type, concentration, equipment structure and scale, efficiency, economical efficiency, etc.

通常、吸着操作は2〜8kg/cm2、再生操作は大気
開放であるが、大気圧近くで吸着操作を行い再生操作を
真空で行っても良い。
Usually, the adsorption operation is performed at 2 to 8 kg/cm2, and the regeneration operation is performed in the atmosphere, but the adsorption operation may be performed at near atmospheric pressure and the regeneration operation may be performed in a vacuum.

そして、再生操作から吸着操作に移行するにあたり、吸
着操作直前に、吸着塔を予め高圧にしておく、すなわち
均圧化しておくと吸着分離が効果的に起こる。
Then, when shifting from the regeneration operation to the adsorption operation, adsorption separation will occur effectively if the adsorption tower is previously made to have a high pressure, that is, the pressure is equalized, immediately before the adsorption operation.

該均圧化の時間は、吸着分離時間の178〜1/2の時
間が効果的であり、長すぎると製品ガスの回収率が低下
し、又短いと上述均圧化効果が十分に発揮できない。(
第3図参照) また、流路切変えは、三方弁で実施すると効果的である
。特に、チエツキ弁は性能の面で実用上好ましい。
The effective pressure equalization time is 178 to 1/2 of the adsorption separation time; if it is too long, the recovery rate of the product gas will decrease, and if it is too short, the above-mentioned pressure equalization effect cannot be fully exhibited. . (
(See Figure 3) Also, it is effective to change the flow path using a three-way valve. In particular, the check valve is practically preferable in terms of performance.

吸着塔の大きさ、塔数、吸着操作、均圧化操作、再生操
作の時間、弁の位置や数は、製品ガスの種類、濃度、P
SAの規模、条件、装置構造、効率、経済性等により適
宜検討や予備試験を行い決めることが出来る。
The size of the adsorption tower, the number of towers, the adsorption operation, pressure equalization operation, and regeneration operation time, the position and number of valves are determined by the type of product gas, concentration, P
It can be determined by conducting appropriate studies and preliminary tests depending on the SA scale, conditions, equipment structure, efficiency, economic efficiency, etc.

〔実施例〕〔Example〕

以下に本発明の一実施例を図面を用いて説明するが、本
発明はこれらの実施例に限定されるものではない。
Embodiments of the present invention will be described below with reference to the drawings, but the present invention is not limited to these embodiments.

実施例1 第1図は、本発明の一実施例である空気から酸素富化空
気を得るPSA法の工程図を示す。
Example 1 FIG. 1 shows a process diagram of a PSA method for obtaining oxygen-enriched air from air, which is an example of the present invention.

第1図にふいて、A1□及びBllは吸着塔であり、A
llは吸着操作、Bllは再生操作の状態を示している
In Figure 1, A1□ and Bll are adsorption towers, and A
ll indicates the state of adsorption operation, and Bll indicates the state of regeneration operation.

そして、コンプレッサー(図示せず)から供給された高
圧空気11は、三方弁としてのチエツキ弁CIを通り、
吸着塔Allで空気中窒素が吸着され、酸素富化空気1
2となり、チエツキ弁C2を通り製品ガス13として回
収される。
Then, the high pressure air 11 supplied from the compressor (not shown) passes through the Check valve CI as a three-way valve.
Nitrogen in the air is adsorbed in the adsorption tower All, and oxygen-enriched air 1
2, which passes through the check valve C2 and is recovered as product gas 13.

一方、吸着塔Bllでは、再生操作、すなわち充填され
ている吸着剤は、前工程の吸着操作で窒素を吸着してい
るので、吸着塔Bl+の出口側を弁Vllを介して大気
中に開放14して、酸素富化空気12をオリフィス15
を介して供給することで、該吸着窒素を大気中に放出す
る。
On the other hand, in the adsorption tower Bll, the regeneration operation is performed, that is, the filled adsorbent has adsorbed nitrogen in the adsorption operation in the previous step, so the outlet side of the adsorption tower Bll+ is opened to the atmosphere via the valve Vll. The oxygen-enriched air 12 is then passed through the orifice 15.
The adsorbed nitrogen is released into the atmosphere.

尚、チエツキ弁C3,C2は、高圧空気により左側が開
(右側が閉)となっている。
Note that the check valves C3 and C2 are opened on the left side (closed on the right side) by high-pressure air.

吸着塔^1、とBllへの流量比制御はオリフィス15
で行われている。
Orifice 15 controls the flow rate ratio to adsorption tower ^1 and Bll.
It is being carried out in

弁V、、、 V、2. V、3 ハ、流路切替、t[(
電!弁)であり、Vllは開、V 12+ V13は、
閉である。
Valve V,, V,2. V, 3 C, flow path switching, t[(
Electric! valve), Vll is open, V 12+ V13 is
Closed.

このように、吸着塔A、は吸着操作、吸着塔Bl+は再
生操作が一定時間行われた後、次に弁V ll+ V1
2+ CI+ C2の流路切替えにより上述と逆の操作
すなわち、吸着塔^11は再生操作、吸着塔Bl+は吸
着操作が行われ、装置全体として連続的に窒素吸着、酸
素富化が行われ、酸素富化空気(製品ガス)13が得ら
れる。
In this way, adsorption tower A performs adsorption operation, adsorption tower Bl+ performs regeneration operation for a certain period of time, and then valve V ll+ V1
2+ CI+ By switching the flow path of C2, the operation opposite to the above is performed, that is, the regeneration operation is performed on the adsorption tower ^11, and the adsorption operation is performed on the adsorption tower B1+, so that the entire device continuously performs nitrogen adsorption and oxygen enrichment, and oxygen Enriched air (product gas) 13 is obtained.

上述操作において、再生操作から吸着操作に移行するに
あたり、均圧化操作が行われる。
In the above-mentioned operation, a pressure equalization operation is performed when transitioning from the regeneration operation to the adsorption operation.

流路切替え弁V13は、該操作のための切替え弁(均圧
制御弁)である。
The flow path switching valve V13 is a switching valve (pressure equalization control valve) for this operation.

すなわち、上述のAllにおける吸着操作、B1、にお
ける再生操作から次の逆の操作に移行する前に、V13
を關、Vllを閉じてAllにおける高圧の製品空気を
B11に移す(均圧化操作)。
That is, before moving from the adsorption operation in All and the regeneration operation in B1 to the next reverse operation, V13
Then, Vll is closed and the high pressure product air in All is transferred to B11 (pressure equalization operation).

このことによって、Bllの圧力を次の吸着操作にあた
り予め高くする。次いで、弁V13を閉、V12を大気
開放することで、チエツキ弁C+は右側が開(左側が閉
)となり、高圧空気11はB11に導入され吸着操作が
行われる。
This increases the pressure of Bll in advance for the next adsorption operation. Next, by closing the valve V13 and opening V12 to the atmosphere, the right side of the check valve C+ is opened (the left side is closed), and the high pressure air 11 is introduced into B11 to perform an adsorption operation.

Bllからの製品ガス16は、チエツキ弁C2を通り製
品ガス13として回収される。ここで、チエツキC2弁
は、製品ガス16の圧力により、右側が開(左側が閉)
となっている。
Product gas 16 from Bll passes through check valve C2 and is recovered as product gas 13. Here, the check valve C2 opens on the right side (closes on the left side) due to the pressure of the product gas 16.
It becomes.

ellにおける吸着操作では、窒素の吸着にあたりBl
l内圧力が製品ガスで予め高圧となっているので、窒素
を多く吸着する。
In the adsorption operation in the ELL, Bl is used for nitrogen adsorption.
Since the internal pressure is already high with the product gas, a large amount of nitrogen is adsorbed.

上記の操作において、具体的には吸着操作は、4kg/
cm’の高圧空気11を用い水分及び窒素の吸着を行い
、再生は大気開放である。
In the above operation, specifically, the adsorption operation is performed at 4 kg/
cm' high-pressure air 11 is used to adsorb moisture and nitrogen, and regeneration is performed by opening to the atmosphere.

そして、吸着時間は30秒で、均圧化時間は10秒で操
作している。
The adsorption time was 30 seconds, and the pressure equalization time was 10 seconds.

チエツキ弁C,,C2は、硬質のゴムボール(第1図中
・印)の左右の動きにより開、閉を行うものであり、弁
V ll+ V12+ V13の流路切替えによる系内
の圧力差により開閉が出来る。このような構成により、
高濃度酸素が高い収率で長期間安定して得られる。
The check valves C, C2 are opened and closed by the left and right movement of a hard rubber ball (marked in Figure 1), and are opened and closed by the pressure difference in the system due to the flow path switching of the valves V ll + V 12 + V 13. Can be opened and closed. With such a configuration,
Highly concentrated oxygen can be stably obtained in high yield over a long period of time.

本例は、2塔を用い、酸素富化空気を得る場合であるが
、3塔以上を用い実施する場合、又PSA法により、他
のガスを分離する場合も同様に実施出来ることは言うま
でもない。
In this example, two towers are used to obtain oxygen-enriched air, but it goes without saying that the same method can be used when using three or more towers or when separating other gases using the PSA method. .

実施例2 第1図に示したPSA法による原料空気から酸素を得る
装置を用い、均圧化時間と酸素回収率の関係を調べた。
Example 2 The relationship between pressure equalization time and oxygen recovery rate was investigated using an apparatus for obtaining oxygen from raw air using the PSA method shown in FIG.

原料:空気 製品ガス:酸素 吸着塔大きさ:101 吸着分離時間=30秒 吸着剤:ゼオライト 結果を第3図に示す。第3図は均圧化時間と回収率の関
係を示すグラフである。このグラフからも、均圧化時間
を設けた効果が明瞭にわかる。
Raw material: Air Product gas: Oxygen adsorption tower size: 101 Adsorption separation time = 30 seconds Adsorbent: Zeolite The results are shown in Figure 3. FIG. 3 is a graph showing the relationship between pressure equalization time and recovery rate. This graph also clearly shows the effect of providing pressure equalization time.

〔発明の効果〕〔Effect of the invention〕

本発明によれば次のような効果を奏する。 According to the present invention, the following effects are achieved.

(1)流路切替えに三方弁(例、チエツキ弁)を用いる
ことにより、 ■ 使用切替え弁(電磁弁)の数が減少、維持管理が容
易となった。
(1) By using a three-way valve (for example, a check valve) to switch the flow path, the number of switching valves (electromagnetic valves) used has been reduced and maintenance has become easier.

■ 長期間安定した流路切替えが出来た。■ Stable flow path switching was possible for a long period of time.

■ コストが低減した。■ Costs have been reduced.

■ スペースが少なくなり、小型化した。■ Less space and smaller size.

■ ■〜■は、小型PSA程有利となる効果を生じた。■■~■ produced an effect that became more advantageous as the size of the PSA became smaller.

(2)吸着分離にあたり、吸着分離時間の178〜1/
2の時間の均圧化を行うことにより、■ 製品ガス濃度
と収率が向上した(性能が向上した)。
(2) For adsorption separation, 178 to 1/1 of the adsorption separation time
By performing the pressure equalization for 2 hours, ■ product gas concentration and yield improved (performance improved).

■ ■により製品ガスのコストが低減した。■ ■ Reduced the cost of product gas.

(3)  (1)、(2)により、 ■ コストの低減化、小型化及び性能向上が達成できた
(3) By (1) and (2), ■ cost reduction, miniaturization, and performance improvement were achieved.

■ 実用性が向上した。■ Improved practicality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一例を示すPSA法の工程図、第2
図は、従来のPSA法の工程図であり、第3図は、均圧
化時間と回収率の関係を示すグラフである。 ^1+ All+ ell ell・・・吸着塔、CI
、 C2・・・チエツーIP、V I In L2+ 
VI3 ・・’弁、11−・・高圧空気、12・・・酸
素富化空気、13・・・製品ガス、15・・・オリフィ
ス 特許出願人  株式会社 荏原製作所
FIG. 1 is a process diagram of the PSA method showing an example of the present invention, and FIG.
The figure is a process diagram of a conventional PSA method, and FIG. 3 is a graph showing the relationship between pressure equalization time and recovery rate. ^1+ All+ ell ell...Adsorption tower, CI
, C2...Chietsu IP, V I In L2+
VI3...'Valve, 11-...High pressure air, 12...Oxygen enriched air, 13...Product gas, 15...Orifice Patent applicant Ebara Corporation

Claims (1)

【特許請求の範囲】 1、混合ガスから特定ガスを分離する圧力変動式の吸着
分離法において、流路の切替えに三方弁を用い、再生工
程から吸着工程への切替えに際して、吸着分離時間の1
/8〜1/2の時間の均圧化を行ったのち、吸着分離す
ることを特徴とする圧力変動式の吸着分離法。 2、混合ガスから特定ガスを分離する圧力変動式の吸着
分離装置において、三方弁による流路切替え弁と、再生
工程から吸着工程への切替えに際して、吸着分離時間の
1/8〜1/2の時間作動する均圧制御弁とを設けたこ
とを特徴とする圧力変動式の吸着分離装置。
[Claims] 1. In a pressure fluctuation type adsorption separation method for separating a specific gas from a mixed gas, a three-way valve is used to switch the flow path, and when switching from the regeneration process to the adsorption process, the adsorption separation time is
A pressure fluctuation type adsorption separation method characterized by performing adsorption separation after pressure equalization for 1/8 to 1/2 time. 2. In a pressure fluctuation type adsorption separation device that separates a specific gas from a mixed gas, a flow path switching valve with a three-way valve is used, and when switching from the regeneration process to the adsorption process, 1/8 to 1/2 of the adsorption separation time is used. A pressure fluctuation type adsorption separation device characterized by being provided with a pressure equalization control valve that operates over time.
JP2110493A 1990-04-27 1990-04-27 Method and apparatus for pressure swing type adsorption /separation Pending JPH0411919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2110493A JPH0411919A (en) 1990-04-27 1990-04-27 Method and apparatus for pressure swing type adsorption /separation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2110493A JPH0411919A (en) 1990-04-27 1990-04-27 Method and apparatus for pressure swing type adsorption /separation

Publications (1)

Publication Number Publication Date
JPH0411919A true JPH0411919A (en) 1992-01-16

Family

ID=14537149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2110493A Pending JPH0411919A (en) 1990-04-27 1990-04-27 Method and apparatus for pressure swing type adsorption /separation

Country Status (1)

Country Link
JP (1) JPH0411919A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0940164A1 (en) * 1998-03-06 1999-09-08 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for separating a gas mixture by adsorption

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0940164A1 (en) * 1998-03-06 1999-09-08 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for separating a gas mixture by adsorption
FR2775619A1 (en) * 1998-03-06 1999-09-10 Air Liquide METHOD AND INSTALLATION FOR ADSORPTION SEPARATION OF A GASEOUS MIXTURE
US6099618A (en) * 1998-03-06 2000-08-08 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and plant for separating a gas mixture by adsorption

Similar Documents

Publication Publication Date Title
US5085674A (en) Duplex adsorption process
US20090151561A1 (en) Two stage pressure swing adsorption process for producing enriched-oxygen
CA1188231A (en) Repressurization for pressure swing adsorption system
CA2236780A1 (en) Pressure swing system with auxiliary adsorbent bed
JP2002191925A (en) Pressure swing adsorption method for separating feed gas
JPH0257972B2 (en)
US6461410B1 (en) Method and apparatus for separating, removing, and recovering gas components
WO2014148503A1 (en) Gas purification method
JPH07745A (en) Gas separation
US11083990B2 (en) Gas separation and recovery method and facility
JPH01288313A (en) Gas separation process
JPH0411919A (en) Method and apparatus for pressure swing type adsorption /separation
EP0055669B1 (en) Repressurization for pressure swing adsorption system
CA1182765A (en) Repressurization for pressure swing adsorption system
CA1176994A (en) Repressurization for pressure swing adsorption system
JPS621766B2 (en)
JPH03258320A (en) Pressure swing type adsorbing separation
JPH0226610A (en) Dehumidification system for raw gas in separation apparatus by pressure swing adsorption process
JPH02172516A (en) Pressure variable adsorption separation method and its apparatus therefor
JPS6161854B2 (en)
JPS63171616A (en) Method for controlling valve of changeover adsorption tower
JPH0377618A (en) Method and device for separating gas
JPH1157375A (en) Separation of gas
JPH04363110A (en) Pressure swing type separating concentration method for mixed gas
JPS63190615A (en) Gas separating and concentrating method