JPH0411804B2 - - Google Patents

Info

Publication number
JPH0411804B2
JPH0411804B2 JP56068199A JP6819981A JPH0411804B2 JP H0411804 B2 JPH0411804 B2 JP H0411804B2 JP 56068199 A JP56068199 A JP 56068199A JP 6819981 A JP6819981 A JP 6819981A JP H0411804 B2 JPH0411804 B2 JP H0411804B2
Authority
JP
Japan
Prior art keywords
amount
infrared rays
dampening water
printing
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56068199A
Other languages
Japanese (ja)
Other versions
JPS57182622A (en
Inventor
Kenichi Doi
Tetsuo Iga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP56068199A priority Critical patent/JPS57182622A/en
Publication of JPS57182622A publication Critical patent/JPS57182622A/en
Publication of JPH0411804B2 publication Critical patent/JPH0411804B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • G01F23/292Light, e.g. infrared or ultraviolet
    • G01F23/2921Light, e.g. infrared or ultraviolet for discrete levels

Description

【発明の詳細な説明】 本発明は、平版印刷機の印刷版面の非画線部上
の湿し水量を測定する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the amount of dampening water on a non-image area of a printing plate surface of a lithographic printing press.

平版印刷に於ては、版非画線部上に供給された
湿し水量の過不足が印刷物の品質に重大な影響を
及ぼす。また、最近は印刷速度の高速化への要望
が強く、枚葉平版オフセツト印刷機の高速化およ
び平版オフセツト輪転印刷機の普及が急激に進ん
でいる。これ等高速印刷機に於ては、印刷中の湿
し水量を絶えず管理する必要があり、短時間でも
湿し水量の過不足が生じると、多量の不良印刷物
が発生することになる。従来より、印刷機のオペ
レーターは、版非画線部の光の反射量、光沢等か
ら、経験的に湿し水量の過不足を知るか、あるい
は、印刷物を頻繁に検査することにより湿し水量
を管理しているが、個人差、判断精度、判断から
修正までの時間等の問題から、湿し水量の自動制
御化への要望は非常に大きい。
In planographic printing, excessive or insufficient amount of dampening water supplied onto the non-image area of the plate has a significant effect on the quality of printed matter. Furthermore, recently there has been a strong demand for higher printing speeds, and the speed of sheet-fed lithographic offset printing machines and the spread of lithographic offset rotary printing machines are rapidly progressing. In these high-speed printing machines, it is necessary to constantly control the amount of dampening water during printing, and if the amount of dampening water is too much or too little even for a short period of time, a large amount of defective printed matter will be produced. Conventionally, printing press operators have been able to determine the amount of dampening water by empirically determining the amount of dampening water from the amount of light reflected, gloss, etc. on the non-image areas of the plate, or by frequently inspecting printed matter. However, there is a great demand for automatic control of the amount of dampening water due to issues such as individual differences, judgment accuracy, and time from judgment to correction.

版面の非画線部上の湿し水量を検知する方法と
しては湿し水からの反射光量を光電変換して検出
するもの(特公昭52−17761)も公知であるが、
精度、再現性で問題があるため、一般に普及、実
用化されるには至つていない。
As a method for detecting the amount of dampening water on the non-printing area of the printing plate, a method is known in which the amount of light reflected from the dampening water is photoelectrically converted (Japanese Patent Publication No. 52-17761).
Due to problems with accuracy and reproducibility, it has not been widely used or put into practical use.

一般に試料上あるいは、試料中に含まれる水分
量を精度良く定量的に測定するには、水による赤
外線の吸収を利用した方法が適しており、水が吸
収を起こす波長の赤外線のみを透過するフイルタ
ーと該波長の近傍で水による吸収のない波長の赤
外線のみを透過するフイルタの2種のフイルター
を備えたフイルターホイールを、赤外線を含む光
源から放射される連続光線の光路中で回転(チヨ
ツピング)させ、該フイルターホイールを通過し
た2種の波長の赤外線を交互に測定試料に照射さ
せた後、試料より反射する2種の波長の赤外線の
強度を赤外線検知器で検出し、水の量に応じた吸
収を受けて減衰した一方の波長の赤外線強度と、
水による吸収減衰を受けていない他方の波長の赤
外線強度との差を求め、この差を水分量に換算す
ることにより水分量を測定する原理が公知となつ
ている。
Generally, in order to accurately and quantitatively measure the amount of water contained on or in a sample, a method that utilizes the absorption of infrared rays by water is suitable. A filter wheel equipped with two types of filters, ie, a filter that transmits only infrared rays of wavelengths near which there is no absorption by water, is rotated (chipped) in the optical path of a continuous light beam emitted from a light source containing infrared rays. After the measurement sample is alternately irradiated with infrared rays of two wavelengths that have passed through the filter wheel, an infrared detector detects the intensity of the infrared rays of two wavelengths that are reflected from the sample, and The infrared intensity of one wavelength attenuated by absorption,
The principle of measuring the amount of water by determining the difference between the infrared intensity of the other wavelength that has not undergone absorption attenuation by water and converting this difference into the amount of water is well known.

ここで、特定の波長の赤外線を透過するフイル
ターとしては一般に干渉フイルターが使用され
る。また、水の吸収に合つた波長としては、
1.2μ、1.45μ、1.93μ、2.95μがあるが、吸収の大き
な波長を利用した方が感度、精度の面で有利であ
り、1.93μと2.95μが主に利用されている。また、
赤外線検出器としては、PbSあるいはPbSe等の
いわゆる光導電セルが使用されている。
Here, an interference filter is generally used as a filter that transmits infrared rays of a specific wavelength. In addition, the wavelength suitable for water absorption is
There are 1.2μ, 1.45μ, 1.93μ, and 2.95μ, but 1.93μ and 2.95μ are mainly used because it is more advantageous in terms of sensitivity and accuracy to use wavelengths with large absorption. Also,
As an infrared detector, a so-called photoconductive cell such as PbS or PbSe is used.

また、上記測定原理を印刷版面の非画線部上の
湿し水量測定に利用した測定装置が西独特許第
2412234号に開示されている。これ等の測定装置
の概略を第1図、第2図を用いて説明する。光源
1より放射された連続光線はレンズ2で集光さ
れ、モーター3により駆動回転しているフイルタ
ーホイール4で2種のフイルター8,9によつて
チヨツピングされた後、金等の赤外線吸収の少な
い物質を内壁に設けた導光管5にによつて導か
れ、版面6を照射する、版面よりの反射光線は導
光管5′を経て赤外線検出器7に到達し、赤外線
検出器7は、赤外線強度を電気信号に変換して出
力する。この電気信号は更に、電気回路によつて
処理され、水分量に応じた赤外線の吸収減衰量が
電圧量に変換される。ここで、前もつて求めてお
いた検量線、即ち、既知の水分量の異なる数種の
測定試料から得た該電圧量と水分量の関係を求め
た曲線を用いて、版面上の水分量を知る事ができ
る。
In addition, a measuring device that uses the above measurement principle to measure the amount of dampening water on the non-image area of a printing plate has been awarded a West German patent.
It is disclosed in No. 2412234. The outline of these measuring devices will be explained using FIGS. 1 and 2. A continuous beam of light emitted from a light source 1 is focused by a lens 2, and filtered by two types of filters 8 and 9 in a filter wheel 4 driven and rotated by a motor 3. The light rays reflected from the plate are guided by a light guide tube 5 having a material on the inner wall and illuminate the plate surface 6, and reach an infrared detector 7 via a light guide tube 5'. Converts infrared intensity into an electrical signal and outputs it. This electrical signal is further processed by an electrical circuit, and the amount of absorption and attenuation of infrared rays depending on the amount of water is converted into an amount of voltage. Here, using a previously determined calibration curve, that is, a curve that shows the relationship between the voltage and the moisture content obtained from several measurement samples with different known moisture contents, we calculate the moisture content on the plate surface. You can know.

上記説明の如く、これ等の装置では、フイルタ
ーホイールにより連続光線をチヨツピングする事
が必要で、しかもフイルターホイールの回転数は
極めて大きく一般には数100Hzでチヨツピングさ
せる為に該回転数は、毎分10000回転以上にもな
る。従つて、版面の移動速度の大きな高速印刷機
で、かつ測定しようとする被測定領域が印刷方向
に狭い場合には、測定光線のスポツト下を、この
被測定領域が通過する極めて短い時間内に2種の
波長の赤外線を照射せねばならず、この為には、
フイルターホイールの回転数を高めねばならない
が、フイルターホイールの高速回転駆動部の耐久
性という装置に対する信頼性の面で問題が生じ
る。また、全体がコンパクトに組み立てられてい
る最近の印刷機のように、装置の取付け空間が狭
い場合には、測定装置を小型かつ軽量にする必要
があり、この目的の為には、装置内に占めるフイ
ルターホイールおよび駆動部の容積は障害とな
る。
As explained above, in these devices, it is necessary to chop a continuous beam using a filter wheel, and the rotation speed of the filter wheel is extremely large, and generally the rotation speed is 10,000 per minute in order to perform chopping at several 100 Hz. It becomes more than rotation. Therefore, in a high-speed printing machine where the printing plate moves at a high speed and the area to be measured is narrow in the printing direction, the area under measurement can be measured under the spot of the measurement light within an extremely short period of time during which the area to be measured passes through. It is necessary to irradiate infrared rays with two different wavelengths, and for this purpose,
Although it is necessary to increase the rotational speed of the filter wheel, a problem arises in terms of reliability of the device, that is, the durability of the high-speed rotating drive part of the filter wheel. In addition, when the installation space for the device is narrow, such as in recent printing presses that are assembled compactly, the measuring device needs to be small and lightweight, and for this purpose, it is necessary to The volume occupied by the filter wheel and drive is a hindrance.

また、被測定物である版面の非画線部上の湿し
水量は極めて微量で、通常の印刷条件に於ては、
0.2mg/cm2程度であり、光源から赤外線検出部ま
での導光管中に存在する空気中の水蒸気量および
その変動も測定結果に影響を及ぼし、測定値の精
度、再現性に問題が生じるといつた欠点がある。
In addition, the amount of dampening water on the non-image area of the printing plate, which is the object to be measured, is extremely small, and under normal printing conditions,
The amount of water vapor in the air existing in the light guide tube from the light source to the infrared detector and its fluctuations also affect the measurement results, causing problems with the accuracy and reproducibility of the measurement values . There are some drawbacks.

本発明者等は上記の問題点、欠点を除く為に、
装置内に機械駆動部を用いず、信頼性が高く、し
かも測定精度、再現性に優れ、かつ高速の印刷機
に於ても小面積の被測定領域の測定が可能な測定
装置を開発すべく鋭意研究を重ねた結果、本発明
に到達した。すなわち、本発明は光源より放射さ
れる赤外線を回転する平版印刷機版面の非画線部
に照射し、該非画線部から反射された赤外線によ
り、湿し水によつて吸収を受けた特定波長の赤外
線の減衰量を検出して、該非画線部の湿し水量を
測定する方法において、光源としてキセノン放電
管を用い、かつ回転する平版印刷機版面からの同
期信号を取り出し、この信号をキセノン放電管の
平版印刷機版面の非画線部の湿し水量測定箇所の
みを照射するためのトリガー信号として用いるこ
とによつて瞬間放電し、該非画線部から反射され
た赤外線を、一方を水により吸収される波長を含
む領域の赤外線を透過させるフイルターおよび他
方を水により吸収されない波長を含む領域の赤外
線を透過させるフイルターを通し、それぞれのフ
イルターを透過した赤外線により、湿し水によつ
て吸収を受けて特定波長の赤外線の減衰量を検出
することを特徴とする平版印刷機版面の湿し水量
測定方法である。さらにはキセノン放電管、平版
印刷機版面の非画線部の湿し水量測定箇所にキセ
ノン放電管を瞬間放電させるための信号発生器、
キセノン放電管からの赤外線を湿し水量の測定箇
所に照射するための導光管および版面からの反射
赤外線を半透明鏡に導くための導光管、導光管に
より導かれた反射赤外線を2分割するための半透
明鏡、半透明鏡により2分割された反射光線の一
方に対しては水により吸収される波長を含む領域
の赤外線を透過させるためのフイルターおよび他
方に対しては水により吸収されない波長を含む領
域の赤外線を透過させるためのフイルター、それ
ぞれのフイルターを透過した赤外線に対する1組
の検出器、からなる平版印刷機版面の湿し水量測
定装置である。
In order to eliminate the above problems and drawbacks, the inventors of the present invention,
In order to develop a measuring device that does not use a mechanical drive part inside the device, has high reliability, has excellent measurement accuracy and reproducibility, and is capable of measuring small areas to be measured even on high-speed printing machines. As a result of extensive research, we have arrived at the present invention. That is, the present invention irradiates infrared rays emitted from a light source onto a non-image area of a plate surface of a rotating lithographic printing machine, and uses the infrared rays reflected from the non-image area to detect specific wavelengths absorbed by dampening water. In this method, a xenon discharge tube is used as a light source, a synchronization signal from a rotating lithographic printing plate is extracted, and this signal is transferred to a xenon discharge tube. By using the discharge tube as a trigger signal to irradiate only the dampening water amount measurement point on the non-printing area of the plate surface of the lithographic printing machine, an instantaneous discharge is generated, and the infrared rays reflected from the non-printing area are transferred to water. One filter transmits infrared rays in a region that includes wavelengths that are absorbed by water, and the other filter transmits infrared rays in a region that includes wavelengths that are not absorbed by water. This is a method for measuring the amount of dampening water on a plate surface of a lithographic printing press, which is characterized by detecting the amount of attenuation of infrared rays of a specific wavelength in response to the received light. Furthermore, there is a signal generator for instantaneously discharging the xenon discharge tube at the point where the amount of dampening water is measured in the non-image area of the plate surface of the lithographic printing machine.
A light guide tube for irradiating the infrared rays from the xenon discharge tube to the measuring point of the amount of dampening water, a light guide tube for guiding the reflected infrared rays from the printing plate to the semi-transparent mirror, and a light guide tube for directing the reflected infrared rays guided by the light guide to the dampening water amount measurement point. A semi-transparent mirror for splitting, a filter for transmitting infrared rays in a region that includes wavelengths that are absorbed by water for one of the reflected light beams that are split into two by the semi-transparent mirror, and a filter for transmitting infrared rays in a region that includes wavelengths that are absorbed by water for the other. This is an apparatus for measuring the amount of dampening water on the plate surface of a lithographic printing press, which is composed of a filter for transmitting infrared rays in a region that includes wavelengths that are not detected, and a set of detectors for the infrared rays that have passed through each filter.

本発明に於て光源として用いるキセノン放電管
は、コンデンサーに蓄えておいた電気エネルギー
をトリガー信号によつて放電管に瞬間的に流し、
瞬間放電を行わせる一般のストロボスコープある
いはストロボ写真撮影等に使用される閃行タイプ
のキセノン放電管である。この種のキセノン放電
管の閃行時間は1μsec.以下の極めて短時間のもの
もあり、例えば版面の周速が5m/sec.である平
版オフセツト印刷機に於て、仮りに1μsec.の閃行
時間を持つキセノン放電管を本発明の湿し水量測
定装置の光源として用いた場合、1μsec.間に移動
する版面上の距離は0.005mmに過ぎず版面上に照
射される測定光線のスポツトとほぼ同じ大きさの
非画線部を測定することができる。従つて湿し水
量測定用に版面上に特別に、かつ大きな面積の非
画線部を設ける必要もなく測定光線のスポツトと
同じ大きさの非画線部であれば、印刷版の絵柄中
の任意の場所を容易に測定することが可能であ
る。また、任意の箇所を測定するように該キセノ
ン放電管を瞬間放電させるには平版オフセツト印
刷機の版胴、ブランケツト胴、圧胴等の印刷版面
と同周期で回転している部分から、機械式、光学
式あるいは電磁式等の常法により同期信号を取り
出し、この信号をキセノン放電管の瞬間放電用の
トリガー信号として用いることにより行われる。
また、キセノン放電管の発光スペクトル分布は可
視光、赤外線を含み、電気入力の変化に対して、
どの波長でも光強度の変化がほぼ一様であり、し
かも、この性質は、放電管の寿命期間中ほとんど
変化しない。さらに放電管内に封入されているキ
セノンガスは、熱容量が小さく、点灯時の立ち上
がりが速いという、本発明に用いるのに適した性
能を備えている。
The xenon discharge tube used as a light source in the present invention momentarily flows electrical energy stored in a capacitor into the discharge tube in response to a trigger signal.
This is a flash type xenon discharge tube used for general stroboscopes that produce instantaneous discharge or for strobe photography. The flash time of this type of xenon discharge tube is extremely short, less than 1 μsec. For example, in a lithographic offset printing machine where the peripheral speed of the printing plate is 5 m/sec. When a xenon discharge tube with time is used as the light source of the dampening water amount measuring device of the present invention, the distance on the printing plate that moves in 1 μsec is only 0.005 mm, which is almost the same as the spot of the measurement light irradiated on the printing plate. Non-print areas of the same size can be measured. Therefore, there is no need to provide a special non-print area with a large area on the printing plate for measuring the amount of dampening water, and as long as the non-print area is the same size as the spot of the measurement light beam, it can be used to measure the amount of dampening water. It is possible to easily measure any location. In addition, in order to instantaneously discharge the xenon discharge tube so as to measure an arbitrary point, a mechanical This is accomplished by extracting a synchronizing signal using a conventional method such as an optical method or an electromagnetic method, and using this signal as a trigger signal for instantaneous discharge of the xenon discharge tube.
In addition, the emission spectrum distribution of a xenon discharge tube includes visible light and infrared light, and it responds to changes in electrical input.
The change in light intensity is almost uniform at any wavelength, and this property hardly changes during the life of the discharge tube. Furthermore, the xenon gas sealed in the discharge tube has properties suitable for use in the present invention, such as having a small heat capacity and a quick start-up during lighting.

本発明に於て、光源から版面への照射光線およ
び該版面から赤外線検出部への反射光線を導光さ
せる筒内を恒湿度、好ましくは低湿度気体で常に
満たすことの目的は、前述の如く、該管内に存在
する空気中の水蒸気量およびその変動が湿し水量
の測定値に及ぼす影響を取り除くことにあり、例
えば、25℃、60%RHの空気中の水蒸気量は、約
0.14mg/あり導光管内の体積が20cm2(断面積1
cm2、長さ20cm)の場合、該導光管内に存在する水
蒸気量は0.28mgとなり、前述の通常、非画線部上
に存在する湿し水量(0.2mg/cm2)と比較して無
視できなくなる。特に、前述のように検量線を求
める際と、実際の測定の際に導光中の空気の湿度
が大きく異る場合や、測定中に湿度が大きく変化
した場合には、正確な水分量の測定は不可能とな
る。なお、本発明に用いる恒低湿度の気体として
は、一般に工業用に使用されている含有水分が数
ppmである窒素ガスが取り扱いの面からも適して
いるが、恒湿度の気体であつて、安定して、かつ
安全に供給できる気体であれば、特に制限されな
い。また、該気体を、導光管内へ過剰に供給する
と導光管端より噴出する該気体が版面非画線部上
の湿し水を乾燥させてしまうので、該気体の供給
流量は外部の高湿度空気が導光管内へ侵入するの
を防ぐ程度の極く少い流量で充分であり、空気中
に浮遊しているゴミ、チリ等が導光管の内壁に付
着し、該内壁の赤外線反射率が変化することも防
止できる。
In the present invention, the purpose of constantly filling the cylinder which guides the irradiated light from the light source to the printing plate and the reflected light from the printing plate to the infrared detection section with constant humidity, preferably low humidity gas, is as described above. The purpose is to eliminate the influence of the amount of water vapor in the air existing in the pipe and its fluctuations on the measured value of the amount of dampening water. For example, the amount of water vapor in the air at 25°C and 60% RH is approximately
0.14mg/The volume inside the light guide tube is 20cm 2 (cross-sectional area 1
cm 2 and length 20 cm), the amount of water vapor present in the light guide tube is 0.28 mg, which is compared to the amount of dampening water (0.2 mg/cm 2 ) that normally exists on the non-image area as described above. It becomes impossible to ignore. In particular, if the humidity of the air guiding the light differs greatly between calculating the calibration curve and the actual measurement as described above, or if the humidity changes significantly during the measurement, it is difficult to determine the exact moisture content. Measurement becomes impossible. Note that the constant low humidity gas used in the present invention is generally used for industrial purposes and has a moisture content of several
Nitrogen gas at ppm is suitable from the viewpoint of handling, but there is no particular restriction as long as it is a constant humidity gas and can be stably and safely supplied. In addition, if the gas is supplied excessively into the light guide tube, the gas ejected from the end of the light guide will dry the dampening water on the non-image area of the printing plate, so the supply flow rate of the gas is A very small flow rate is sufficient to prevent humid air from entering the light guide tube, and dirt, dust, etc. floating in the air adheres to the inner wall of the light guide tube, causing infrared reflection on the inner wall. It is also possible to prevent the rate from changing.

本発明で導光器として光学繊維(オプテイカル
フアイバーケーブル)を用いることの目的は、前
述の導光管内に高湿度の空気が侵入して正確な湿
し水量の測定値が得られなくなることを防止する
点にあるが、さらには、2本以上の複数の光学繊
維を用いることにより、1個のキセノン放電管か
ら、複数の光学繊維を用いて、版面上の複数の被
測定箇所に測定光線を同時に導いた後、各々の測
定箇所からの反射光線を複数の光学繊維を用いて
複数の赤外線検出部へ導いて、版面上の複数の箇
所の非画線部上の湿し水量を同時に測定すること
が可能となる。また、これ等複数の光学繊維を印
刷方向に対して直角の方向に移動させて測定を繰
り返し行えば、測定光線用と反射光線用の1組の
導光管あるいは導光器を用いて行うより版面上の
該方向にある湿し水量を短時間にかつ容易に測定
することが出来る。また、印刷機械の既に公知と
なつている種々の湿し水量の分割供給調節機構の
各分割領域に対応する版面上の各領域の湿し水量
を絶えず測定して、これ等各測定データを該調節
機構にフイードバツクして、該調節機構の各分割
領域毎に湿し水量供給量を絶えず調節し、版面上
の各領域に供給される湿し水量を常に適正量に制
御することもできる。また、本発明で用いる光学
繊維としては、赤外線の透過性が良好な石英繊維
が適しているが、石英以外の素材でも測定感度、
精度に影響を及ぼさないものであれば、特に制限
されるものではない。
The purpose of using an optical fiber cable as a light guide in the present invention is to prevent highly humid air from entering the light guide as described above, making it impossible to obtain an accurate measurement value of the amount of dampening water. Furthermore, by using two or more optical fibers, the measurement light beam can be transmitted from one xenon discharge tube to multiple measurement points on the printing plate using multiple optical fibers. After simultaneously guiding the reflected light from each measurement point to multiple infrared detection units using multiple optical fibers, the amount of dampening water on the non-printing areas of multiple locations on the printing plate is measured simultaneously. It becomes possible to do so. In addition, if measurements are repeated by moving these multiple optical fibers in a direction perpendicular to the printing direction, it is possible to repeat the measurement by moving multiple optical fibers in a direction perpendicular to the printing direction. The amount of dampening water in this direction on the printing plate can be easily measured in a short time. In addition, the amount of dampening water in each area on the printing plate corresponding to each divided area of the already known various dampening water amount divided supply adjustment mechanisms of printing machines is constantly measured, and each of these measurement data is applied to the area. It is also possible to continuously adjust the amount of dampening water supplied to each divided area of the adjustment mechanism by feedback to the adjustment mechanism, so that the amount of dampening water supplied to each area on the printing plate can always be controlled to an appropriate amount. In addition, as the optical fiber used in the present invention, quartz fiber with good infrared transmittance is suitable, but materials other than quartz may also be used to improve measurement sensitivity.
There is no particular restriction as long as it does not affect accuracy.

以下図面に従つて本発明の実施例を説明する。
第3図は本発明の1実施態様を示す装置の概略を
示す断面図である。第3図に於て、キセノン放電
管10の瞬間放電により放射された光線は、レン
ズ11で集光された後、導光管12によつて版面
13に導かれる。なお、レンズ11の代わりに反
射鏡を用いてもよい。版面よりの反射光線は、導
光管12′によつて赤外線検出部の半透明鏡15
に導かれる。なお、導光管12,12′内は、窒
素ガスボンベ14から供給される窒素ガスによつ
て満たされている。反射光線は半透明鏡15によ
つて2方に分けられ、各々、2種類の干渉フイル
ター16,17を経て赤外線検出器18,19に
到達する。なお、半透明鏡15、干渉フイルター
16,17、赤外線検出器18,19については
従来知られているものがそのまま使用できる。干
渉フイルター16,17としては通常0.1μ程度の
波長巾で光線を透過させることができ、条件によ
つて異なるが、例えば干渉フイルターが、水によ
つて吸収される波長として2.95μの領域を含む赤
外線を透過させるものと、水によつて吸収されな
い波長として2.5μの領域を含む赤外線を透過させ
るものが用いられる。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 3 is a sectional view schematically showing an apparatus showing one embodiment of the present invention. In FIG. 3, the light rays emitted by the instantaneous discharge of the xenon discharge tube 10 are condensed by a lens 11 and then guided to a printing plate 13 by a light guide tube 12. Note that a reflecting mirror may be used instead of the lens 11. The reflected light from the printing plate is passed through a light guide tube 12' to a semi-transparent mirror 15 of an infrared detection section.
guided by. Note that the insides of the light guide tubes 12 and 12' are filled with nitrogen gas supplied from a nitrogen gas cylinder 14. The reflected light beam is split into two by a semi-transparent mirror 15, and reaches infrared detectors 18, 19 through two types of interference filters 16, 17, respectively. As for the semi-transparent mirror 15, interference filters 16 and 17, and infrared detectors 18 and 19, conventionally known ones can be used as they are. The interference filters 16 and 17 can normally transmit light with a wavelength width of about 0.1μ, and although it varies depending on the conditions, for example, the interference filters include a region of 2.95μ as a wavelength that is absorbed by water. One that transmits infrared rays and one that transmits infrared rays that include a wavelength range of 2.5μ that is not absorbed by water are used.

第4図は2個の赤外線検出器で得られた2種の
赤外線の強度を前述の電圧量の差として検出する
為の本発明の湿し水量測定装置を用いる上での電
気回路の一例を示した概略のブロツクダイヤグラ
ムである。版胴20よりトリガー信号発生器21
でトリガー信号を取り出し、該信号はタイミング
ロジツク回路22に入り、該回路では、先づサン
プリング信号を発生してピークホールド回路2
3,24をリセツトした後にキセノン放電管10
に瞬間放電用のトリガー信号を送り、キセノン放
電管10を閃光点灯させる。その後赤外線検出器
18,19は、各々に入射した赤外線強度を電気
信号に変換し、該電気信号は増幅回路25,26
により増幅されリセツトされているピークホール
ド回路23,24に至り、該回路で最大信号がホ
ールドされ該最大信号は各々対数回路27に入
り、該回路で2種の最大信号の差分が出力され、
該出力は、表示機28に表示されると同時にペン
書きレコーダー29で記録される。
FIG. 4 shows an example of an electric circuit when using the dampening water amount measuring device of the present invention for detecting the intensities of two types of infrared rays obtained by two infrared detectors as a difference in voltage amount. 1 is a schematic block diagram shown in FIG. Trigger signal generator 21 from the plate cylinder 20
The trigger signal is extracted from the timing logic circuit 22, and this circuit first generates a sampling signal and sends it to the peak hold circuit 2.
After resetting 3 and 24, the xenon discharge tube 10
A trigger signal for instantaneous discharge is sent to the xenon discharge tube 10, causing the xenon discharge tube 10 to flash. Thereafter, the infrared detectors 18 and 19 convert the intensity of the infrared rays incident on each into an electrical signal, and the electrical signal is transmitted to the amplifier circuits 25 and 26.
The peak hold circuits 23 and 24 are amplified and reset, and the maximum signals are held in these circuits.The maximum signals each enter a logarithm circuit 27, which outputs the difference between the two maximum signals.
The output is displayed on the display 28 and recorded on the pen recorder 29 at the same time.

第5図は、本発明に係わる版面非画線部上の湿
し水量測定装置を、平版オフセツト印刷機械に取
り付けた様子を図示したものであり、版胴に対す
る測定位置は、本図に示した位置が好ましいが特
にその位置を制限するものではない。湿し水は水
舟40より水元ロール41、呼び出しロール42
および版胴51に取り付けた版面に湿し水を供給
する為のローラ群43,44,45を経て版面に
供給される。湿し水量測定装置46は、湿し水を
供給された直後の版面の非画線部上の湿し水量を
測定する。版面はさらにインキ着けロール群4
7,48,49,50によりインキを供給され
る。
Figure 5 shows how the device for measuring the amount of dampening water on the non-image area of a printing plate according to the present invention is attached to a lithographic offset printing machine, and the measurement position with respect to the plate cylinder is as shown in this figure. Although the location is preferred, the location is not particularly limited. For the dampening water, use the Mizumoto roll 41 and the calling roll 42 from the Mizufune 40.
The dampening water is supplied to the printing plate through a group of rollers 43, 44, and 45 attached to the printing cylinder 51 for supplying dampening water to the printing plate. The dampening water amount measuring device 46 measures the amount of dampening water on the non-image area of the printing plate immediately after the dampening water is supplied. The printing plate is further inked by roll group 4.
Ink is supplied by 7, 48, 49, and 50.

第6図は、本発明の他の一つの実施例を説明す
るものである。キセノン放電管10閃光点灯によ
り放射された光線はレンズ11で集光されオプテ
イカルフアイバーケーブル30によつて導光さ
れ、版面13に至る。版面よりの反射光線はオプ
テイカルフアイバーケーブル30′によつて導光
され赤外線検出部の半透明鏡15に至り該半透明
鏡によつて2方に分けられ、各々2種類の干渉フ
イルター16,17を経て赤外線検出器18,1
9に到達する。以下第4図で説明した電気回路を
用いて、湿し水量に応じた電気出力を得て、湿し
水量を測定する。なお、第3図および第6図では
反射赤外線を2分割するため半透明鏡15を用い
ているが、半透明鏡の代わりに従来より知られて
いる手段、例えば光学繊維を用いてもよい。
FIG. 6 explains another embodiment of the present invention. The light rays emitted by the flashing of the xenon discharge tube 10 are condensed by the lens 11 and guided by the optical fiber cable 30 to reach the printing plate 13. The reflected light from the printing plate is guided by an optical fiber cable 30', reaches a semi-transparent mirror 15 of the infrared detection section, and is divided into two directions by the semi-transparent mirror, and two types of interference filters 16, 17 are applied to each direction. through the infrared detector 18,1
Reach 9. Hereinafter, using the electrical circuit explained in FIG. 4, an electrical output corresponding to the amount of dampening water is obtained, and the amount of dampening water is measured. Although a semi-transparent mirror 15 is used in FIGS. 3 and 6 to divide the reflected infrared rays into two, conventionally known means such as optical fibers may be used instead of the semi-transparent mirror.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来用いられている平版印刷機の版
面非画線部上の湿し水量測定装置の概略を図示し
た断面図であり、第2図は、第1図で用いられて
いるフイルターホイールの平面図である。第3図
は本発明に係わる平版印刷機の版面非画線部上の
湿し水量測定装置の一実施例を図示した断面図で
あり、第4図は、同じく本発明に係わる平版印刷
機の版面非画線部上の湿し水量測定装置の電気回
路部のブロツクダイヤグラムの一例である。第5
図は、本発明に係わる版面非画線部上の湿し水量
測定装置の印刷機械への取り付け部位の一例を図
示した断面図である。第6図は、本発明に係わる
他の実施例を示した断面図である。 図面における主な符号は、10……キセノン放電
管、12,12′……導光管、15……半透明鏡、
16,17……フイルター、18,19……赤外
線検出器、46……平版印刷機版面の湿し水量測
定装置をそれぞれ示す。
FIG. 1 is a cross-sectional view schematically showing a device for measuring the amount of dampening water on the non-image area of a plate surface of a conventional lithographic printing machine, and FIG. FIG. 3 is a plan view of the wheel. FIG. 3 is a sectional view illustrating an embodiment of a device for measuring the amount of dampening water on a non-image area of a plate surface of a lithographic printing machine according to the present invention, and FIG. This is an example of a block diagram of an electric circuit section of a device for measuring the amount of dampening water on a non-image area of a printing plate. Fifth
The figure is a cross-sectional view illustrating an example of a part where a dampening water amount measuring device on a non-image area of a printing plate according to the present invention is attached to a printing machine. FIG. 6 is a sectional view showing another embodiment of the present invention. The main symbols in the drawings are 10...xenon discharge tube, 12, 12'... light guide tube, 15... semi-transparent mirror,
16, 17... filter, 18, 19... infrared detector, 46... device for measuring the amount of dampening water on the plate surface of a lithographic printing machine, respectively.

Claims (1)

【特許請求の範囲】[Claims] 1 光源より放射される赤外線を回転する平版印
刷機版面の非画線部に照射し、該非画線部から反
射された赤外線により、湿し水によつて吸収を受
けた特定波長の赤外線の減衰量を検出して、該非
画線部の湿し水量を測定する方法において、光源
としてキセノン放電管を用い、かつ回転する平版
印刷機版面からの同期信号を取り出し、この信号
をキセノン放電管の平版印刷機版面の非画線部の
湿し水量測定箇所のみを照射するためのトリガー
信号として用いることによつて瞬間放電し、該非
画線部から反射された赤外線を、一方を水により
吸収される波長を含む領域の赤外線を透過させる
フイルターおよび他方を水により吸収されない波
長を含む領域の赤外線を透過させるフイルターを
通し、それぞれのフイルターを透過した赤外線に
より、湿し水によつて吸収を受けた特定波長の赤
外線の減衰量を検出することを特徴とする平版印
刷機版面の湿し水量測定方法。
1. Infrared rays emitted from a light source are irradiated onto the non-printing area of the plate surface of a rotating lithographic printing machine, and the infrared rays reflected from the non-printing area attenuate the infrared rays of a specific wavelength that have been absorbed by the fountain solution. In the method of measuring the amount of dampening water in the non-image area, a xenon discharge tube is used as a light source, a synchronizing signal is extracted from the plate surface of a rotating lithographic printing machine, and this signal is transmitted to the lithographic printing plate of the xenon discharge tube. By using it as a trigger signal to irradiate only the dampening water amount measurement point in the non-printing area of the printing press plate, an instantaneous discharge is generated, and one side of the infrared rays reflected from the non-printing area is absorbed by water. A filter that transmits infrared rays in a range that includes wavelengths and a filter that transmits infrared rays in a range that includes wavelengths that are not absorbed by water are passed through each filter. A method for measuring the amount of dampening water on the plate surface of a lithographic printing press, characterized by detecting the amount of attenuation of infrared rays of wavelength.
JP56068199A 1981-05-08 1981-05-08 Method and device for measuring volume of damping water of plate surface of lithographic printing machine Granted JPS57182622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56068199A JPS57182622A (en) 1981-05-08 1981-05-08 Method and device for measuring volume of damping water of plate surface of lithographic printing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56068199A JPS57182622A (en) 1981-05-08 1981-05-08 Method and device for measuring volume of damping water of plate surface of lithographic printing machine

Publications (2)

Publication Number Publication Date
JPS57182622A JPS57182622A (en) 1982-11-10
JPH0411804B2 true JPH0411804B2 (en) 1992-03-02

Family

ID=13366882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56068199A Granted JPS57182622A (en) 1981-05-08 1981-05-08 Method and device for measuring volume of damping water of plate surface of lithographic printing machine

Country Status (1)

Country Link
JP (1) JPS57182622A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59156754A (en) * 1983-02-25 1984-09-06 Toshiba Mach Co Ltd Humidiating device of rotary printing machine
JPS59211830A (en) * 1983-05-17 1984-11-30 Sumitomo Heavy Ind Ltd Apparatus for measuring dampening water of printer
US8049172B2 (en) 2000-11-24 2011-11-01 Microfluid Ab Radiometric measuring of thin fluid films
SE519918C2 (en) 2000-11-24 2003-04-22 Cervitrol Ab Method and apparatus for radiometric measurement of thin liquid films
US8283647B2 (en) * 2009-07-22 2012-10-09 Eastman Kodak Company Developer liquid level sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS499264A (en) * 1972-05-12 1974-01-26
JPS49123060A (en) * 1973-03-28 1974-11-25
JPS5489680A (en) * 1977-12-26 1979-07-16 Matsushita Electric Ind Co Ltd Optical measuring method and optical measuring apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS499264A (en) * 1972-05-12 1974-01-26
JPS49123060A (en) * 1973-03-28 1974-11-25
JPS5489680A (en) * 1977-12-26 1979-07-16 Matsushita Electric Ind Co Ltd Optical measuring method and optical measuring apparatus

Also Published As

Publication number Publication date
JPS57182622A (en) 1982-11-10

Similar Documents

Publication Publication Date Title
US4407197A (en) Device and method of monitoring dampening and inking equilibrium in offset printing units
US5001353A (en) Method and apparatus to measure the thickness of coating films
US6819886B2 (en) Gloss/density measurement device with feedback to control gloss and density of images produced by an electrographic reproduction apparatus
US4879471A (en) Rapid-scanning infrared sensor
US3756725A (en) Measurement and control of ink density
FR2556283A1 (en) METHOD FOR CONTROLLING INK-WATER BALANCE IN A LITHOGRAPHIC PRINTING PRESS
US3970393A (en) Automatic compensation for densitometer imbalance
US4767935A (en) System and method for measurement of traveling webs
JPH0411804B2 (en)
US6295129B1 (en) Arrangement and method for marking defects
US4052937A (en) Printing plate water sensing means and method
US2951416A (en) Device for measuring film thickness
US3966323A (en) Apparatus for producing timing signal for photometric measurement
US4690564A (en) Device for measuring ink density on printed surfaces
JPS58187835A (en) Method and device for measuring density of ink layer of wet printing ink
US3322962A (en) Method and apparatus for continuously measuring applied coatings employing photoelectric means
JP2965916B2 (en) Method and apparatus for setting a metering device
EP0186620A2 (en) Method of controlling film thickness of mixture liquid layer of oil material and water in printing machines
US3748046A (en) Measurement of reflection density
JPS61148061A (en) Automatic control method of ink and damping water in offset printing machine
JPS6225238A (en) Method and instrument for measuring amount of damping water for plate surface of lithographic printing machine
CA1102579A (en) Method of measuring the amount of substance associated with a material in the presence of a contaminant
EP0039533A1 (en) Densitometer
JPH0235666B2 (en)
JPH08230141A (en) Dampening water quantity measuring method for offset printer and controlling method for quantity