JPH04118004A - Method for removing gas dissolving in liquid - Google Patents

Method for removing gas dissolving in liquid

Info

Publication number
JPH04118004A
JPH04118004A JP23589990A JP23589990A JPH04118004A JP H04118004 A JPH04118004 A JP H04118004A JP 23589990 A JP23589990 A JP 23589990A JP 23589990 A JP23589990 A JP 23589990A JP H04118004 A JPH04118004 A JP H04118004A
Authority
JP
Japan
Prior art keywords
liquid
gas
dissolved
membrane
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23589990A
Other languages
Japanese (ja)
Other versions
JP2877923B2 (en
Inventor
Mitsuo Kaneda
金田 光男
Shigemi Endou
遠藤 志げみ
Yasushi Yoshida
靖 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16992890&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH04118004(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP23589990A priority Critical patent/JP2877923B2/en
Publication of JPH04118004A publication Critical patent/JPH04118004A/en
Application granted granted Critical
Publication of JP2877923B2 publication Critical patent/JP2877923B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To unnecessitate a large-size reservation tank for aeration with using inert gas by supplying gas which substantially contains no gas to be removed dissolving in the objective liquid to the liquid supply line in the preceding stage of a membrane deaeration device so that the gas is dissolved in the liquid in the supply line. CONSTITUTION:The dissolving gas in a liquid is removed by a membrane deaeration device 3 using a deaeration membrane 4. In this process, gas (inert gas) which substantially contains no gas to be removed dissolving in the objective liquid is supplied from the source 9 through a supply tube 10 to the liquid supply line 1 in the preceding stage of the membrane deaeration device 3. Thereby, the gas from the supply tube 10 is dissolved in the liquid in the supply line.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は空調、医療、分析用水、各種工程水、純水など
の液体中から溶存酸素および/または溶存二酸化炭素を
除去したり、あるいは廃液中からアンモニアガスを除去
するなどの脱気膜を用いた膜脱気装置による液体中の溶
存ガス除去方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is useful for removing dissolved oxygen and/or dissolved carbon dioxide from liquids such as air conditioning, medical, analytical water, various process water, and pure water, or for removing dissolved oxygen and/or dissolved carbon dioxide from liquids such as This invention relates to a method for removing gas dissolved in a liquid using a membrane deaerator using a degassing membrane, such as removing ammonia gas from the liquid.

〔従来の技術〕[Conventional technology]

たとえば半導体ウェハーの洗浄水や、製薬用水などには
、溶存電解質、微粒子、コロイダル物質、高分子有機物
、発熱性物質などを実質的に含まないことは勿論のこと
、酸化や微生物の増殖を促すおそれのある溶存ガス、特
に溶存酸素を可能な限り除去した純水が必要とされる。
For example, cleaning water for semiconductor wafers, water for pharmaceutical use, etc. not only contains virtually no dissolved electrolytes, fine particles, colloidal substances, high-molecular organic substances, or pyrogenic substances, but also has the potential to promote oxidation and the growth of microorganisms. Pure water is required from which certain dissolved gases, especially dissolved oxygen, have been removed as much as possible.

そのため、液体中に溶存している用途先にとって不必要
なカスを液体中から取り除くことが行われている。
Therefore, waste dissolved in the liquid that is unnecessary for the intended use is removed from the liquid.

ところで、液体中の溶存ガス除去方法には、これ才で基
本的には、加熱脱気による方法と、真空脱気による方法
とが行われている。
By the way, there are two basic methods for removing gas dissolved in a liquid: a heating deaeration method and a vacuum deaeration method.

前者は溶存ガスを含む液体を加熱し、場合によっては沸
騰させて液体中の溶存ガスを除去するようにしたもので
あるが、装置が複雑となり装置の設備費が嵩むと共に、
加熱装置を含むため装置全体の点検・保守にも費用が掛
かり、ランニングコストも比較的高価になるという問題
点がある。
The former method heats a liquid containing dissolved gas, and in some cases boils it to remove the dissolved gas in the liquid, but the equipment is complicated and equipment costs increase.
Since it includes a heating device, inspection and maintenance of the entire device is expensive, and running costs are also relatively high.

一方、真空脱気による方法は、液体に真空を作用させて
液体を減圧下におき、液体中から溶存ガスを除去するよ
うにしたものであり、エネルギーコストの点については
前者より安価になるという利点がある。しかしながら、
液体に直接真空を作用させる場合は、真空側に液体が吸
い込まれることを防止するため、通常10.3m以上の
真空脱気塔構築物を必要とする。従って、この方法によ
った場合も建設・設備費が割高となるうえ、点検・保守
にも多大な費用と手間が掛かるという欠点がある。
On the other hand, the vacuum deaeration method applies a vacuum to the liquid to place it under reduced pressure and remove dissolved gas from the liquid, and is said to be cheaper than the former method in terms of energy costs. There are advantages. however,
When a vacuum is applied directly to a liquid, a vacuum degassing tower structure of 10.3 m or more is usually required to prevent the liquid from being sucked into the vacuum side. Therefore, this method also has disadvantages in that construction and equipment costs are relatively high, and inspection and maintenance also require a great deal of cost and effort.

そこで、最近になり装置全体をコンパクトに構成するこ
とができ、しかも点検・保守か容易で、外部からの汚染
の問題もない膜脱気方法が提案され実用に供されている
Therefore, recently, a membrane degassing method has been proposed and put into practical use, which allows the entire device to be constructed compactly, is easy to inspect and maintain, and has no problem of external contamination.

この方法は脱気膜で区画された一方の側に真空を作用さ
せて減圧し、他方の側に液体を接触させて液体中の溶存
ガスのみを脱気膜を介して一方の側に移動させるもので
ある。
This method applies a vacuum to one side separated by a degassing membrane to reduce the pressure, brings the liquid into contact with the other side, and moves only the dissolved gas in the liquid to one side through the degassing membrane. It is something.

この膜脱気方法によった場合、液体そのものが真空側に
吸い込まれることがなく、液体に直接真空を作用させる
ものと比較して装置全体をコンパクト化することができ
るという大きな利点を奏することかできる。
When using this membrane degassing method, the liquid itself is not sucked into the vacuum side, and compared to a method that applies vacuum directly to the liquid, it has the great advantage of being able to make the entire device more compact. can.

しかしながら、脱カスライン中に膜脱気装置のみを付設
した場合には、各種用途先で要求される程度にまで脱ガ
スの効果を上げることが難しく、そのため、この膜脱気
装置による脱気の前段で、−旦被処理液体を貯槽内に貯
溜させ、当該貯槽内で窒素ガスのような不活性ガスを用
いて被処理液体を曝気し、除去すべき酸素や二酸化炭素
を気液接触によって除去する一段目の脱ガス処理を行う
ことが実施されている。
However, if only a membrane degassing device is installed in the de-scum line, it is difficult to increase the degassing effect to the level required by various applications, and therefore, the membrane degassing device is used as a pre-degassing device. - First, the liquid to be treated is stored in a storage tank, and the liquid to be treated is aerated in the storage tank using an inert gas such as nitrogen gas, and oxygen and carbon dioxide to be removed are removed by gas-liquid contact. The first stage of degassing treatment is carried out.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記したように溶存ガス除去の効果を上げるため、被処
理液体を一旦貯槽内に貯溜させ、当該被処理液体中に窒
素ガスのような不活性ガスを吹き込んで第一段目の脱ガ
ス処理を行ってから、膜脱気装置によって第二段目の脱
ガス処理を行うことが実施されている。
As mentioned above, in order to increase the effectiveness of dissolved gas removal, the liquid to be treated is temporarily stored in a storage tank, and an inert gas such as nitrogen gas is blown into the liquid to perform the first degassing treatment. After degassing, a second stage of degassing treatment is carried out using a membrane degassing device.

しかしながら、この二段階の脱ガス処理方法によった場
合、第一段目で被処理液体と不活性ガスを接触させるた
め前記したように被処理液体の貯槽か不可欠となる。し
かもこのような気液接触による除去方法は比較的効率が
悪いため、大量の不活性ガスを要すると共に、貯槽内の
滞留時間を長くする必要があり、このため貯槽の容量を
大きくしなければならないという欠点がある。
However, when this two-stage degassing method is used, a storage tank for the liquid to be treated is indispensable, as described above, in order to bring the liquid to be treated into contact with the inert gas in the first stage. Moreover, such a removal method using gas-liquid contact is relatively inefficient, requiring a large amount of inert gas and requiring a long residence time in the storage tank, which necessitates increasing the capacity of the storage tank. There is a drawback.

本発明者らは前記した従来方法に伴う問題点を解決すべ
く鋭意研究した結果、膜脱気装置の前段の送液ライン中
に、除去すべき溶存ガスを実質的に含まない気体を供給
して送液中の被処理液体中に当該気体を溶解させると被
処理液体中に溶存していた除去すべきガスの分圧が低下
し、脱気膜による脱気効果が一層向上することを見出し
本発明を完成するに至ったものである。
As a result of intensive research aimed at solving the problems associated with the conventional methods described above, the present inventors have succeeded in supplying gas that does not substantially contain the dissolved gas to be removed into the liquid feeding line at the front stage of the membrane deaerator. discovered that when the gas is dissolved in the liquid to be treated while being fed, the partial pressure of the gas to be removed dissolved in the liquid to be treated decreases, further improving the degassing effect of the degassing membrane. This has led to the completion of the present invention.

従って、本発明は従来方法において必要とされていた貯
槽内における窒素カスのような不活性ガスによる曝気処
理を不要とし、膜脱気装置のみによって各種用途先で要
求される程度にまで脱ガス処理を行えるようになした液
体中の溶存ガス除去方法を提供することを目的とするも
のである。
Therefore, the present invention eliminates the need for aeration treatment using an inert gas such as nitrogen scum in the storage tank, which was required in conventional methods, and degasses to the extent required in various applications using only a membrane deaerator. It is an object of the present invention to provide a method for removing dissolved gas in a liquid that can perform the following steps.

〔課題を解決するための手段〕[Means to solve the problem]

前記目的を達成するための本発明の構成を詳述すれば、
第1請求項に係る発明は、脱気膜を用いた膜脱気装置に
よって液体中の溶存ガスを除去するにあたり、当該膜脱
気装置の前段の送液ライン中に、除去すべき溶存カスを
実質的に含まない気体を供給して送液中の液体に当該気
体を溶解させるようにしたことを特徴とする液体中の溶
存ガス除去方法であり、また第2請求項に係る発明は、
除去すべき溶存ガスを実質的に含まない気体の供給ポイ
ントから膜脱気装置に至る送液ライン中に混合器を付設
して、当該混合器により除去すべき溶存ガスを実質的に
含まない気体と送液中の液体との混合を促進させ、前記
気体を充分に溶解させるようにした第1請求項記載の液
体中の溶存ガス除去方法である。
In detail, the structure of the present invention for achieving the above object is as follows:
The invention according to claim 1 provides that when dissolved gas in a liquid is removed by a membrane degassing device using a degassing membrane, dissolved gas to be removed is placed in a liquid feeding line upstream of the membrane degassing device. A method for removing dissolved gas in a liquid, characterized in that substantially no gas is supplied and the gas is dissolved in the liquid being fed, and the invention according to claim 2 is characterized by:
A mixer is attached to the liquid delivery line from the supply point of gas that does not substantially contain the dissolved gas to be removed to the membrane deaerator, and the gas that does not substantially contain the dissolved gas to be removed is produced by the mixer. 2. The method for removing dissolved gas in a liquid according to claim 1, wherein the gas is sufficiently dissolved by promoting mixing of the gas and the liquid being fed.

なお、ここで除去すべき溶存ガスを実質的に含まない気
体とは、除去対象である酸素や二酸化炭素などを無視し
てよい程度にしか含まない気体のことであり、実際には
不活性ガスの代表である窒素ガスなどが好適に用いられ
る。
Note that a gas that does not substantially contain dissolved gas to be removed is a gas that contains negligible amounts of oxygen, carbon dioxide, etc. to be removed, and is actually an inert gas. Nitrogen gas, which is a typical example, is preferably used.

また、脱気膜としては、たとえば撥水性を有する中空糸
状、平膜状、管膜状、スパイラル状のものなどが好適に
用いられる。
Further, as the degassing membrane, for example, a water-repellent hollow fiber, flat membrane, tubular membrane, or spiral membrane is suitably used.

膜脱気装置の前段の送液ライン中で、被処理液体中に、
除去すべき溶存ガスを実質的に含まない気体が供給混合
されることにより被処理液体中にこの気体が溶解し、除
去すべき溶存ガスの分圧が減少する。その結果、酸素や
二酸化炭素などの溶存ガスを被処理液体中から効率よく
除去できるのである。
In the liquid feeding line before the membrane deaerator, the liquid to be treated is
By supplying and mixing a gas that does not substantially contain the dissolved gas to be removed, this gas is dissolved in the liquid to be treated, and the partial pressure of the dissolved gas to be removed is reduced. As a result, dissolved gases such as oxygen and carbon dioxide can be efficiently removed from the liquid to be treated.

なお、除去すべき溶存ガスを実質的に含まない気体の供
給ポイントから膜脱気装置に至る送液ライン中に混合器
を付設して、除去すべき溶存ガスを実質的に含まない気
体と送液中の被処理液体との混合を促進させ、気体の溶
解を充分に行わせるようにすると、後述するように膜脱
気装置による脱ガスが一層良好に行われることが判明し
た。
In addition, a mixer is installed in the liquid delivery line from the supply point of gas that does not substantially contain the dissolved gas to be removed to the membrane deaerator, and the gas that does not substantially contain the dissolved gas to be removed is mixed with the gas that does not contain the dissolved gas to be removed. It has been found that by promoting the mixing with the liquid to be treated in the liquid and sufficiently dissolving the gas, degassing by the membrane degassing device can be performed even better as will be described later.

〔実施例〕〔Example〕

以下、本発明方法の具体的構成を図示の実施例に基づき
詳細に説明する。
Hereinafter, the specific configuration of the method of the present invention will be explained in detail based on illustrated embodiments.

第1図は本発明溶存ガス除去方法の一実施例を示すフロ
ー図、第2図は本発明方法の他の実施例を示すフロー図
である。
FIG. 1 is a flow chart showing one embodiment of the dissolved gas removal method of the present invention, and FIG. 2 is a flow chart showing another embodiment of the method of the present invention.

図中1は被処理液体の送液ライン、2はこの送液ライン
1中に付設した送液ポンプであり、被処理液体は送液ポ
ンプ2によって送液ライン1を図面左方から右方へ向は
通流するようになっている。
In the figure, 1 is a liquid feeding line for the liquid to be treated, 2 is a liquid feeding pump attached to this liquid feeding line 1, and the liquid to be treated is transferred from the left side of the drawing to the right side of the drawing. The direction is designed for flow.

3は送液ライン1中に付設した脱気膜4を有する膜脱気
装置であり、5は当該膜脱気装置3の吸引側に排気管6
を介して付設した真空ポンプあるいはエゼクタ−装置な
どからなる真空発生手段、7は膜脱気装置3の処理液出
口側に接続した処理済液体の流出管をそれぞれ示す。
3 is a membrane deaerator having a deaeration membrane 4 attached to the liquid feeding line 1, and 5 is an exhaust pipe 6 on the suction side of the membrane deaerator 3.
A vacuum generating means consisting of a vacuum pump or an ejector device attached through the membrane degassing device 3, and 7 denote an outflow pipe for the treated liquid connected to the treated liquid outlet side of the membrane deaerator 3.

8は送液ポンプ2の後段に設けた除去すべき溶存ガスを
実質的に含まない気体、たとえば不活性ガスの供給ポイ
ントであり、9は不活性ガスの供給源を示す。
Reference numeral 8 denotes a supply point of a gas substantially free of dissolved gas to be removed, such as an inert gas, which is provided downstream of the liquid pump 2, and 9 indicates a supply source of the inert gas.

供給源9内の不活性ガスは供給管lOに付設しであるニ
ードル弁11、減圧弁12などを介して供給ポイント8
より送液ライン1中に供給される。
The inert gas in the supply source 9 is delivered to the supply point 8 via a needle valve 11, a pressure reducing valve 12, etc. attached to the supply pipe IO.
The liquid is supplied into the liquid feeding line 1 from the liquid feed line 1.

なお、第2図中の13は不活性ガスの供給ポイント8か
ら膜脱気装置3に至る送液ライン1中に付設した混合器
を示す。
Note that 13 in FIG. 2 indicates a mixer attached to the liquid feeding line 1 from the inert gas supply point 8 to the membrane deaerator 3.

被処理液体は送液ライン1を通って膜脱気装置3に送ら
れるが、その途中で不活性ガスの供給源9より不活性ガ
スか送液ライン1を通流する被処理液体中に供給され、
溶解する。
The liquid to be treated is sent to the membrane deaerator 3 through the liquid feeding line 1, but on the way, an inert gas is supplied from an inert gas supply source 9 into the liquid to be treated flowing through the liquid feeding line 1. is,
dissolve.

その結果、被処理液体中に溶存している除去すべき酸素
や二酸化炭素などの溶存ガスの分圧が低下する。
As a result, the partial pressure of dissolved gases such as oxygen and carbon dioxide to be removed dissolved in the liquid to be treated decreases.

なお、被処理液体中に不活性ガスを供給したとしても、
その後の混合が不充分であると不活性ガスの均一な溶解
がなされないために溶存ガスの充分な除去効果が得られ
ないが、不活性ガスの供給ポイント8から膜脱気装置3
に至る送液ライン1中に混合器13を付設しである場合
には、この混合器13によって被処理液体と不活性ガス
の混合がより良く行われるので、そのような虞れはなく
なる。
Furthermore, even if an inert gas is supplied into the liquid to be treated,
If the subsequent mixing is insufficient, the inert gas will not be dissolved uniformly and a sufficient removal effect of the dissolved gas will not be obtained.
If a mixer 13 is attached to the liquid supply line 1 leading to the liquid supply line 1, the mixer 13 can better mix the liquid to be treated and the inert gas, eliminating such a risk.

不活性ガスの溶解により溶存ガスの分圧が低下した被処
理液体は、送液ライン1を通って膜脱気装置3に送られ
る。そして、脱気膜4として中空糸状のものを用いた場
合は、中空糸内を被処理液体が通り、当該中空糸の外側
が真空発生手段5によって吸引される。除去すべき溶存
ガスは不活性ガスと一緒になって脱気膜4を透過し排気
管6を通じて排気される。
The liquid to be treated, in which the partial pressure of the dissolved gas has decreased due to the dissolution of the inert gas, is sent to the membrane deaerator 3 through the liquid sending line 1 . When a hollow fiber membrane is used as the degassing membrane 4, the liquid to be treated passes through the hollow fiber, and the outside of the hollow fiber is sucked by the vacuum generating means 5. The dissolved gas to be removed passes through the degassing membrane 4 together with the inert gas and is exhausted through the exhaust pipe 6.

一方、除去すべき溶存ガスの取り除かれた処理液は流出
管7を通じて各種用途先に送られる。
On the other hand, the treated liquid from which the dissolved gas to be removed is removed is sent to various destinations through the outflow pipe 7.

なお、送液ポンプ2の前段の送液ラインl中に、図示し
ないが被処理液体の貯槽を付設して、処理を連続的に行
わせるようにする場合もある。この場合の貯槽は従来の
ような不活性ガスとの置換を行わせるための貯槽ではな
く、被処理液体を一時貯溜させておくためだけの貯槽で
ある。
Although not shown, a storage tank for the liquid to be treated may be provided in the liquid feeding line l upstream of the liquid feeding pump 2 so that the treatment can be performed continuously. The storage tank in this case is not a storage tank for replacing with an inert gas as in the conventional case, but is a storage tank for temporarily storing the liquid to be treated.

以下に、実施例と併せ比較例を挙げて本発明の効果をさ
らに詳述する。
EXAMPLES Below, the effects of the present invention will be explained in further detail by giving Examples and Comparative Examples.

溶存酸素量7.04■O/lの原水を被処理液体とし、
脱気膜としてポリオレフィン系中空糸膜を用いた膜脱気
装置によって溶存酸素を除去する実験を行った。その結
果を表−1および表2に示すが、表−1は第1図に示す
処理ラインに基づいたものであり、表−2は送液ライン
に混合器を付設した第2図に示す処理ラインに基づいた
ものである。
Raw water with a dissolved oxygen content of 7.04 ■O/l is used as the liquid to be treated,
An experiment was conducted to remove dissolved oxygen using a membrane deaerator using a polyolefin hollow fiber membrane as a deaeration membrane. The results are shown in Tables 1 and 2. Table 1 is based on the treatment line shown in Figure 1, and Table 2 is based on the treatment line shown in Figure 2 with a mixer attached to the liquid feeding line. It is line based.

なお、 いずれの実施例においても不活性ガス として窒素ガスを用いた。In addition, In any of the examples, inert gas Nitrogen gas was used as the gas.

表 表−2 表−1に示すように、原水中に窒素ガスを全く供給しな
い比較例(1)の場合の処理水中の溶存酸素量は0.9
3■O/lであるのに対し、送液ライン中の原水に窒素
ガスを20 ml/min供給した実施例(1)の場合
には、処理水中の溶存酸素量は0.57■O/1に低下
した。
Table 2 As shown in Table 1, the amount of dissolved oxygen in the treated water in the case of Comparative Example (1) in which no nitrogen gas is supplied to the raw water is 0.9
In contrast, in Example (1) where nitrogen gas was supplied at 20 ml/min to the raw water in the liquid feed line, the amount of dissolved oxygen in the treated water was 0.57 O/l. It dropped to 1.

また、実施例(2)、 (3)に示すように、窒素ガス
供給量を増やした場合には、それに比例するように溶存
酸素量の低下傾向が認められた。
Furthermore, as shown in Examples (2) and (3), when the amount of nitrogen gas supplied was increased, the amount of dissolved oxygen tended to decrease in proportion to the amount of nitrogen gas supplied.

また、送液ライン中に混合器を付設した第2図に示す処
理ラインによった場合は、表−2に示すように、窒素ガ
ス供給量20 rnl/minの場合で処理水中の溶存
酸素量0.46■0/1、窒素ガス供給量90 rnl
/minの場合で0.1mg0/l、窒素ガス供給量1
5077Z//minの場合で0.05■0/lの値を
示し、いずれの場合も、表1の実施例(11〜(3)の
場合と比較してより溶存酸素量が低下していることが確
認された。
In addition, when using the treatment line shown in Figure 2 with a mixer attached to the liquid feeding line, the amount of dissolved oxygen in the treated water is as shown in Table 2 when the nitrogen gas supply rate is 20 rnl/min. 0.46■0/1, nitrogen gas supply amount 90 rnl
/min: 0.1mg0/l, nitrogen gas supply amount 1
In the case of 5077Z//min, the value of 0.05■0/l was shown, and in both cases, the amount of dissolved oxygen was lower than that of Examples (11 to (3)) in Table 1. This was confirmed.

なお、上記各実施例において、処理水中に不活性ガスの
気泡が発生するようなことは全く認められなかった。
In addition, in each of the above-mentioned Examples, no occurrence of inert gas bubbles was observed in the treated water.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明方法によった場合は、従来のような
不活性ガスによる曝気を行わせる大型の貯槽が不必要と
なり、建設・設備費を大幅に削減することが可能となる
と共に、被処理液体中の溶存ガスをきわめて効率よく除
去することができるものである。
As described above, in the case of the method of the present invention, there is no need for a large storage tank that is aerated with inert gas as in the past, making it possible to significantly reduce construction and equipment costs, as well as Dissolved gas in the treated liquid can be removed extremely efficiently.

また、膜脱気装置の前段の送液ライン中に、不活性ガス
を供給するものであるから、点検・保守も従来方法の場
合より格段と容易になるものである。
Furthermore, since inert gas is supplied into the liquid feeding line upstream of the membrane deaerator, inspection and maintenance are much easier than in the conventional method.

4、4,

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明溶存ガス除去方法の一実施例を示すフロ
ー図、第2図は本発明方法の他の実施例を示すフロー図
である。 1:送液ライン   2:送液ポンプ 3:膜脱気袋a   4・脱気膜 5:真空発生手段  6:排気管 :流出管 :供給ポイント :供給源 :供給管 :ニートル弁 :減圧弁 :混合器
FIG. 1 is a flow chart showing one embodiment of the dissolved gas removal method of the present invention, and FIG. 2 is a flow chart showing another embodiment of the method of the present invention. 1: Liquid feeding line 2: Liquid feeding pump 3: Membrane deaeration bag a 4/Deaeration membrane 5: Vacuum generation means 6: Exhaust pipe: Outflow pipe: Supply point: Supply source: Supply pipe: Neattle valve: Pressure reducing valve: mixer

Claims (2)

【特許請求の範囲】[Claims] (1)脱気膜を用いた膜脱気装置によって液体中の溶存
ガスを除去するにあたり、当該膜脱気装置の前段の送液
ライン中に、除去すべき溶存ガスを実質的に含まない気
体を供給して送液中の液体に当該気体を溶解させるよう
にしたことを特徴とする液体中の溶存ガス除去方法。
(1) When removing dissolved gas in a liquid using a membrane deaerator using a degassing membrane, gas that does not substantially contain the dissolved gas to be removed is present in the liquid feed line upstream of the membrane deaerator. A method for removing dissolved gas in a liquid, characterized in that the gas is dissolved in the liquid being fed by supplying the gas.
(2)除去すべき溶存ガスを実質的に含まない気体の供
給ポイントから膜脱気装置に至る送液ライン中に混合器
を付設して、当該混合器により除去すべき溶存ガスを実
質的に含まない気体と送液中の液体との混合を促進する
ようにした第1請求項記載の液体中の溶存ガス除去方法
(2) A mixer is installed in the liquid supply line from the gas supply point that does not substantially contain the dissolved gas to be removed to the membrane deaerator, and the mixer substantially removes the dissolved gas to be removed. 2. The method for removing dissolved gas in a liquid according to claim 1, wherein the method promotes mixing of the gas not contained in the liquid being fed with the liquid being fed.
JP23589990A 1990-09-07 1990-09-07 Removal method of dissolved gas in liquid Expired - Fee Related JP2877923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23589990A JP2877923B2 (en) 1990-09-07 1990-09-07 Removal method of dissolved gas in liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23589990A JP2877923B2 (en) 1990-09-07 1990-09-07 Removal method of dissolved gas in liquid

Publications (2)

Publication Number Publication Date
JPH04118004A true JPH04118004A (en) 1992-04-20
JP2877923B2 JP2877923B2 (en) 1999-04-05

Family

ID=16992890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23589990A Expired - Fee Related JP2877923B2 (en) 1990-09-07 1990-09-07 Removal method of dissolved gas in liquid

Country Status (1)

Country Link
JP (1) JP2877923B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5522917A (en) * 1993-08-31 1996-06-04 Miura Co., Ltd. Method for deaerating liquid products
US5871566A (en) * 1994-11-09 1999-02-16 Lang Apparatebau Gmbh Vented metering pump
JP2000107511A (en) * 1998-10-02 2000-04-18 Kurita Water Ind Ltd Decarbonation treating method
JP2001129304A (en) * 1999-11-09 2001-05-15 Kurita Water Ind Ltd Deoxidation apparatus
WO2005089906A1 (en) * 2004-03-19 2005-09-29 Tsukishima Kikai Co., Ltd. Apparatus for concentrating methane gas
CN108206149A (en) * 2016-12-20 2018-06-26 株式会社斯库林集团 Substrate board treatment and substrate processing method using same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5522917A (en) * 1993-08-31 1996-06-04 Miura Co., Ltd. Method for deaerating liquid products
US5871566A (en) * 1994-11-09 1999-02-16 Lang Apparatebau Gmbh Vented metering pump
JP2000107511A (en) * 1998-10-02 2000-04-18 Kurita Water Ind Ltd Decarbonation treating method
JP2001129304A (en) * 1999-11-09 2001-05-15 Kurita Water Ind Ltd Deoxidation apparatus
WO2005089906A1 (en) * 2004-03-19 2005-09-29 Tsukishima Kikai Co., Ltd. Apparatus for concentrating methane gas
JP2005262146A (en) * 2004-03-19 2005-09-29 Japan Sewage Works Agency Methane concentration device
CN108206149A (en) * 2016-12-20 2018-06-26 株式会社斯库林集团 Substrate board treatment and substrate processing method using same
JP2018101677A (en) * 2016-12-20 2018-06-28 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method
US10933448B2 (en) 2016-12-20 2021-03-02 SCREEN Holdings Co., Ltd. Substrate treatment apparatus and substrate treatment method
CN108206149B (en) * 2016-12-20 2021-10-22 株式会社斯库林集团 Substrate processing apparatus and substrate processing method

Also Published As

Publication number Publication date
JP2877923B2 (en) 1999-04-05

Similar Documents

Publication Publication Date Title
JP5950790B2 (en) Wastewater treatment method and system
KR101514863B1 (en) Cleaning water for electronic material, method of cleaning electronic material, and system for supplying water containing dissolved gases
JPH1171600A (en) Production of cleaning solution and apparatus therefor
JPH1177023A (en) Preparation of hydrogen-containing ultrapure water
CN109264845A (en) A kind of device and method of reverse osmosis concentrated water organic matter and ammonia nitrogen removal simultaneously
JPH11309480A (en) Operating method of immersion type membrane separation device
WO2023109044A1 (en) Treatment system and method for waste liquid containing carbon dioxide capturing absorbent
JPH04118004A (en) Method for removing gas dissolving in liquid
CN206359390U (en) A kind of high ammonia nitrogen micro-polluted raw processing system of high algae
JP2004267940A (en) Method and apparatus for mixing/reacting gas with liquid
JP2007061697A (en) Separation film cleaning method and organic wastewater treatment system
CN107055931A (en) A kind of high ammonia nitrogen micro-polluted raw processing system of high algae
JP4119040B2 (en) Functional water production method and apparatus
JP3731806B2 (en) Organic wastewater treatment method and apparatus
JPH03278882A (en) Method and apparatus for removing dissolved oxygen in water
JP3111463B2 (en) Organic wastewater treatment equipment
JP2003145148A (en) Ultrapure water supply apparatus and ultrapure water supply method
JP5183538B2 (en) Surplus sludge reduction device
JP3452471B2 (en) Pure water supply system, cleaning device and gas dissolving device
JP3856493B2 (en) Ultrapure water production equipment
CN111886206A (en) Sludge discharge control device, water treatment system, and sludge discharge control method
JPH0938671A (en) Water treatment and water treating device
KR102615609B1 (en) Solution acidification apparatus and gas recovery apparatus using the same and dissolved gas recovery system including the same
JP2002035780A (en) Method for improving sludge sedimentation, apparatus therefor, and sludge treatment apparatus
JP2005211825A (en) Biological waste liquid treatment apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees