JPH04116918A - Pattern forming method of semiconductor substrate - Google Patents

Pattern forming method of semiconductor substrate

Info

Publication number
JPH04116918A
JPH04116918A JP2237633A JP23763390A JPH04116918A JP H04116918 A JPH04116918 A JP H04116918A JP 2237633 A JP2237633 A JP 2237633A JP 23763390 A JP23763390 A JP 23763390A JP H04116918 A JPH04116918 A JP H04116918A
Authority
JP
Japan
Prior art keywords
layer
semiconductor substrate
resist
pattern
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2237633A
Other languages
Japanese (ja)
Inventor
Takayuki Minamiyama
南山 隆幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2237633A priority Critical patent/JPH04116918A/en
Publication of JPH04116918A publication Critical patent/JPH04116918A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To enable a pattern to be formed in a specific shape by abrading and machining an upper surface of at least one resist surface out of a plurality of resist layers to a flat surface. CONSTITUTION:When a flattening layer 12 is spin-coated on an upper surface 11a of a semiconductor substrate 11, a stage difference 14 is produced on the upper surface due to a Al wiring 13. While an abrasion liquid L is being supplied, a holder 15 and a rotary surface lathe 16 are rotarily driven, a flattening layer 12 is allowed to contact an upper surface of the rotary surface plate 16, abrasion-machining is made until a flat surface 12a which is in parallel with the upper surface 11a of the substrate 11 is obtained. When an intermediate layer 17 of SiO2 and an upper layer 18 of resist are laminated in sequence on a flat surface 12a, no undulation is produced on an upper layer 18, thus enabling thickness from the upper surface 11a of the semiconductor substrate 11 to the upper surface of the upper layer 18 to be constant.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は半導体基板に複数のレジスト層を設け、最上
層のレジスト層から半導体基板へ順次パターンを転写す
るパターン形成方法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) This invention relates to a pattern forming method in which a plurality of resist layers are provided on a semiconductor substrate and a pattern is sequentially transferred from the uppermost resist layer to the semiconductor substrate. .

(従来の技術) 半導体基板に大規模集積回路素子(LSI)を形成する
場合、上記半導体基板に回路パターンを転写する工程が
ある。このようなバターニング技術においては、現在、
超高圧水銀から出力されるg線(λ−436nm )お
よびi線(λ−365no+ )を光源とした露光装置
が主流となっている。これらg線や1線の波長では焦点
深度が比較的深いから、半導体基板の表面にAI配線な
どによって生じた段差でレジスト層の表面にうねりがあ
っても、その厚さを1〜2μmと厚めにすることで、上
記段差の影響を避けることができる。
(Prior Art) When forming a large scale integrated circuit element (LSI) on a semiconductor substrate, there is a step of transferring a circuit pattern to the semiconductor substrate. Currently, in such buttering technology,
Exposure apparatuses that use g-line (λ-436 nm) and i-line (λ-365 no+) output from ultra-high pressure mercury as light sources have become mainstream. Since the depth of focus is relatively deep for these G-line and 1-line wavelengths, even if there is a waviness on the surface of the resist layer due to a step caused by AI wiring on the surface of the semiconductor substrate, the thickness can be kept as thick as 1 to 2 μm. By doing so, the influence of the above-mentioned step can be avoided.

しかしながら、近年、LSIの微細化が進むにつれて光
源は上記g線やi線よりも波長の短いエキシマレーザ(
λ−157〜248 nm)やX線が主流となりつつあ
る。光源の波長が短くなると、半導体基板に形成された
段差の上下でレジスト膜厚が変化する。その厚さの変化
によって波長の短い光は、焦点深度やレジスト層の光吸
収の影響を受けるから、上記半導体一基板にパターンを
精密に形成することができないという問題が生じる。
However, in recent years, as the miniaturization of LSI has progressed, the light source has become an excimer laser (
λ-157 to 248 nm) and X-rays are becoming mainstream. As the wavelength of the light source becomes shorter, the resist film thickness changes above and below a step formed on a semiconductor substrate. Due to changes in the thickness, short-wavelength light is affected by the depth of focus and light absorption of the resist layer, resulting in the problem that a pattern cannot be precisely formed on the semiconductor substrate.

このような問題を除去する手段として、半導体基板にレ
ジスト層を多層に設ける多層レジストプロセスが考えら
れている。多層レジストプロセスとしては、半導体基板
上に平坦化層、中間層および上層の三層を順次積層し、
上層を湿式のリソグラフィー技術でパターン処理する。
As a means to eliminate such problems, a multilayer resist process in which multiple resist layers are provided on a semiconductor substrate has been considered. The multilayer resist process involves sequentially stacking three layers: a flattening layer, an intermediate layer, and an upper layer on a semiconductor substrate.
The upper layer is patterned using wet lithography technology.

上層にパターンが転写されたなら、ドライエツチングに
よって上記上層をマスクとして中間層にパターンを転写
したのち、この中間層をマスクとして平坦化層にパター
ン転写し、最後に、この平坦化層をマスクとして半導体
基板にパターンを転写する。
Once the pattern has been transferred to the upper layer, the pattern is transferred to the intermediate layer by dry etching using the upper layer as a mask, then the pattern is transferred to the flattening layer using this intermediate layer as a mask, and finally, the flattening layer is used as a mask to transfer the pattern to the intermediate layer. Transfer the pattern to the semiconductor substrate.

このような多層レジストプロセスによれば、反応性イオ
ンエツチングによってパターンを転写していくことから
、半導体基板の段差の上下で寸法差が生じずらいと言わ
れている。
According to such a multilayer resist process, since the pattern is transferred by reactive ion etching, it is said that dimensional differences are unlikely to occur above and below the step of the semiconductor substrate.

第6図に多層レジストプロセスによってパターン形成さ
れる半導体基板1を示す。この半導体基板1の上面には
AR配線2によって段差3が形成されている。また、半
導体基板1の上面には平坦化層4、中間層5および上層
6のレジスト層が順次積層塗布されている。
FIG. 6 shows a semiconductor substrate 1 patterned by a multilayer resist process. A step 3 is formed on the upper surface of this semiconductor substrate 1 by AR wiring 2 . Further, on the upper surface of the semiconductor substrate 1, a flattening layer 4, an intermediate layer 5, and an upper layer 6, which are resist layers, are sequentially laminated and coated.

しかしながら、このようにレジスト層を三層に設けても
、上記段差3の影響によって各層にうねりか生じること
が避けられない。そのため、上記段差3による膜厚のバ
ラツキは上層6では軽減されるだけであり、なくすこと
ができないから、そのバラツキにより、波長の短い光源
を用いた場合には焦点深度の影響やレジスト層の光吸収
の影響によってパターンを一定の状態で転写することが
できなくなるということが生じる。
However, even if three resist layers are provided in this way, it is inevitable that each layer will have undulations due to the influence of the step 3. Therefore, the variation in film thickness due to the step 3 is only reduced in the upper layer 6, but cannot be eliminated. Therefore, due to this variation, when a light source with a short wavelength is used, the influence of the depth of focus and the light of the resist layer Due to the influence of absorption, the pattern cannot be transferred in a constant state.

(発明が解決しようとする課題) このように、従来の多層レジストプロセスによるパター
ン形成方法では、半導体基板の上面にAj7配線などに
よって段差が形成されていると、その段差の影響によっ
てレジスト層にうねりが生じ、そのうねりによってレジ
スト層の厚さが不均一になるから、半導体基板にパター
ンを所定の形状に精密に形成することができないという
ことがある。
(Problems to be Solved by the Invention) As described above, in the pattern forming method using the conventional multilayer resist process, when a step is formed on the upper surface of a semiconductor substrate by Aj7 wiring, etc., the resist layer is undulated due to the effect of the step. This occurs and the thickness of the resist layer becomes non-uniform due to the waviness, which may make it impossible to precisely form a pattern in a predetermined shape on a semiconductor substrate.

この発明は上記事情にもとずきなされたもので、その目
的とするところは、半導体基板に多層レジストプロセス
によってパターンを形成する場合、そのパターンを所定
の形状に形成することができるようにした半導体基板の
パターン形成方法を提供することにある。
This invention was made based on the above circumstances, and its purpose is to enable the pattern to be formed into a predetermined shape when forming a pattern on a semiconductor substrate by a multilayer resist process. An object of the present invention is to provide a method for forming a pattern on a semiconductor substrate.

[発明の構成] (課題を解決するための手段及び作用)上記課題を解決
するためにこの発明は、半導体基板の段差を有する上面
に複数のレジスト層を順次積層し、最上層のレジスト層
から上記半導体基板へパターンを順次転写するパターン
形成方法において、上記複数のレジスト層のうち、少な
くとも1つのレジスト層の上面を平坦面に研磨加工する
ことを特徴とする。
[Structure of the Invention] (Means and Effects for Solving the Problems) In order to solve the above problems, the present invention sequentially stacks a plurality of resist layers on the stepped upper surface of a semiconductor substrate, and The pattern forming method for sequentially transferring a pattern onto a semiconductor substrate is characterized in that the upper surface of at least one resist layer among the plurality of resist layers is polished into a flat surface.

このような方法によれば、半導体基板の上面がら最上層
のレジスト層の上面までの厚さを、うねりのない状態で
均一にすることができる。
According to such a method, the thickness from the top surface of the semiconductor substrate to the top surface of the uppermost resist layer can be made uniform without waviness.

(実施例) 以下、この発明の一実施例を第1図乃至第5図を参照し
て説明する。M1図は半導体基板11の上面11aに最
下層のレジスト層である平坦化層12をスピンコードし
た状態を示す。この半導体基板11の上面にはAl配線
13よって段差14が形成されている。したがって、ス
ピンコードされた平坦化層12は上記段差14の影響を
受けてうねりが生じた状態にあり、半導体基板11の上
面11aからの厚さが一定となっていない。
(Embodiment) An embodiment of the present invention will be described below with reference to FIGS. 1 to 5. Figure M1 shows a state in which a flattening layer 12, which is the lowest resist layer, is spin-coded on the upper surface 11a of the semiconductor substrate 11. A step 14 is formed on the upper surface of this semiconductor substrate 11 by Al wiring 13 . Therefore, the spin-coded planarization layer 12 is in a undulating state due to the influence of the step 14, and the thickness from the top surface 11a of the semiconductor substrate 11 is not constant.

なお、平坦化層12は1.3〜1.6μmの厚さで設け
られる。
Note that the planarization layer 12 is provided with a thickness of 1.3 to 1.6 μm.

半導体基板11の上面11gに平坦化層12をスピンコ
ードしたならば、この平坦化層12を研磨加工する。第
2図に上記平坦化層12を研磨加工する装置を示す。す
なわち、同図中15は半導体基板11の下面側、すなわ
ち平坦化層12が形成すしていない面を接合保持したホ
ルダーである。
After the planarization layer 12 is spin-coated on the upper surface 11g of the semiconductor substrate 11, the planarization layer 12 is polished. FIG. 2 shows an apparatus for polishing the planarization layer 12. That is, 15 in the figure is a holder that holds the lower surface side of the semiconductor substrate 11, that is, the surface on which the planarizing layer 12 is not formed.

このホルダー15は、たとえばすず(S n)などによ
って形成された回転定盤16の上面に対向して配置され
ている。この回転定l116と上記半導体基板11との
間には研磨液りが供給される。この研磨液りは、たとえ
ばレジストシンナであるエチルソルブアセテートに炭化
水素であるヘキサン、トルエン、キシレンなどを混合し
、溶解速度を遅くしたものが用いられている。上記ホル
ダー15と回転定盤16とはともに図示しない駆動機構
によって矢印方向に回転駆動されるとともに、ホルダー
15は上下方向にも駆動されるようになっている。
This holder 15 is arranged to face the upper surface of a rotating surface plate 16 made of, for example, tin (Sn). A polishing liquid is supplied between the rotation constant 116 and the semiconductor substrate 11. The polishing liquid used is, for example, a mixture of resist thinner ethyl solve acetate and hydrocarbons such as hexane, toluene, and xylene to slow the dissolution rate. Both the holder 15 and the rotating surface plate 16 are driven to rotate in the direction of the arrow by a drive mechanism (not shown), and the holder 15 is also driven in the vertical direction.

上記構成の研磨装置において、研磨液りを供給しながら
ホルダー15と回転定盤16とを回転駆動させるととも
に、ホルダー15を下降させて平坦化層12を上記回転
定盤16の上面に接触させる。そして、上記半導体基板
11の上面ILaに設けられた平坦化層12の上面が第
3図に示すように半導体基板11の上面11aと平行な
平坦面12aとなるまで研磨加工する。すなわち、上記
平坦化層12に現れた段差14によるうねりを除去する
。それによって、上記平坦化層12の厚さである半導体
基板11の上面11gから平坦化層12の平坦面12a
までの厚さを一定にすることができる。
In the polishing apparatus configured as described above, the holder 15 and the rotating surface plate 16 are driven to rotate while supplying the polishing liquid, and the holder 15 is lowered to bring the flattening layer 12 into contact with the upper surface of the rotating surface plate 16. Then, polishing is performed until the upper surface of the planarization layer 12 provided on the upper surface ILa of the semiconductor substrate 11 becomes a flat surface 12a parallel to the upper surface 11a of the semiconductor substrate 11, as shown in FIG. That is, the waviness caused by the step 14 appearing on the planarization layer 12 is removed. Thereby, from the upper surface 11g of the semiconductor substrate 11, which is the thickness of the planarization layer 12, to the flat surface 12a of the planarization layer 12.
The thickness can be kept constant.

平坦化層12の上面を平坦面12gに加工したならば、
第4図に示すようにこの平坦面12a上に5i02層で
あるポリメチルシロキサンからなる中間層17を0.3
μm程度の厚さで設け、ついでこの中間層17上に第5
図に示すようにレジスト層であるバターニングレジスト
からなる上層18を0.5μm程度の厚さで設ける。上
記平坦化層12を平坦面12Hに加工してから、中間層
17および上層18を順次積層すれば、半導体基板11
の上面に設けられたAI配線13により生じた段差14
の影響が中間層17および上層18に及ぶことがない。
If the upper surface of the flattening layer 12 is processed into a flat surface 12g,
As shown in FIG. 4, an intermediate layer 17 made of polymethylsiloxane, which is a 5i02 layer, is placed on this flat surface 12a at a thickness of 0.3
A fifth layer is provided on this intermediate layer 17 with a thickness of approximately μm.
As shown in the figure, an upper layer 18 made of a patterning resist, which is a resist layer, is provided with a thickness of about 0.5 μm. After processing the flattening layer 12 into a flat surface 12H, if the intermediate layer 17 and the upper layer 18 are sequentially laminated, the semiconductor substrate 11
Step 14 caused by AI wiring 13 provided on the top surface of
This does not affect the middle layer 17 and the upper layer 18.

したがって、上層18にうねりが生じることがない。つ
まり、半導体基板11の上面11aから上層18の上面
までの厚さを一定にすることができる。
Therefore, no undulations occur in the upper layer 18. In other words, the thickness from the upper surface 11a of the semiconductor substrate 11 to the upper surface of the upper layer 18 can be made constant.

このように、半導体基板11上に平坦化層12、中間層
17および上層18を順次積層したなら、まず、上層1
8を湿式のリソグラフィー技術でパターン処理(ウェッ
ト現像)したのち、この上層18をマスクとして中間層
18にドライエツチングによってパターン転写し、つい
で中間層17をマスクとして平坦化層12に同じくドラ
イエツチングによってパターン転写する。そして、最後
に平坦化層12をマスクとして半導体基板11にパター
ン転写することで、この半導体基板11の上面11aに
回路パターンを形成することができる。
In this way, after the planarization layer 12, intermediate layer 17, and upper layer 18 are sequentially laminated on the semiconductor substrate 11, first, the upper layer 1
8 is subjected to pattern processing (wet development) using wet lithography technology, a pattern is transferred to the intermediate layer 18 by dry etching using this upper layer 18 as a mask, and then a pattern is transferred to the flattening layer 12 by dry etching using the intermediate layer 17 as a mask. Transcribe. Finally, by transferring the pattern onto the semiconductor substrate 11 using the planarization layer 12 as a mask, a circuit pattern can be formed on the upper surface 11a of the semiconductor substrate 11.

上記平坦化層12、中間層17および上層18がなす半
導体基板11の上面11aからの厚さは、上述したよう
に平坦化層12の上面を平坦面12aに研磨加工してか
ら中間層17、上層18を設けることで均一とすること
ができる。そのため、パターン転写の光源にg線やi線
に比べて波長の短いエキシマレーザなどを用いても、焦
点深度や光吸収の影響を受けることなく半導体基板11
に回路パターンを形成することができる。
The thickness of the planarizing layer 12, the intermediate layer 17, and the upper layer 18 from the upper surface 11a of the semiconductor substrate 11 is determined by polishing the upper surface of the planarizing layer 12 into a flat surface 12a as described above. By providing the upper layer 18, uniformity can be achieved. Therefore, even if an excimer laser or the like, which has a shorter wavelength than G-line or I-line, is used as a light source for pattern transfer, the semiconductor substrate 11 is not affected by the depth of focus or light absorption.
It is possible to form a circuit pattern.

なお、上記一実施例では平坦化層を平坦面に加工してか
ら中間層と上層とを順次積層することで上層の平坦化を
計るようにしたが、中間層あるいは上層を平坦面に研磨
加工しても同様の効果を得ることかできる。
In the above embodiment, the planarization layer is processed into a flat surface, and then the intermediate layer and the upper layer are sequentially laminated to planarize the upper layer. You can also get the same effect.

また、半導体基板に積層するレジスト層は三層に限られ
ず、二層であってもよい。
Further, the number of resist layers stacked on the semiconductor substrate is not limited to three layers, but may be two layers.

[発明の効果] 以上述べたようにこの発明によれば、半導体基板の段差
を有する上面に複数のレジスト層を順次積層し、最上層
のレジスト層から上記半導体基板へパターンを順次転写
する場合に、上記複数のレジスト層のうち、少な(とも
1つのレジスト層の上面を平坦面に研磨加工するように
した。そのため、半導体基板の上面から最上層のレジス
ト層までの厚さを均一にすることができるから、パター
ン形成に用いられる光源の波長が短くなっても、焦点深
度や光吸収の影響を受けることなく均一の深さでパター
ンを形成することができる。
[Effects of the Invention] As described above, according to the present invention, when a plurality of resist layers are sequentially stacked on the stepped upper surface of a semiconductor substrate and a pattern is sequentially transferred from the uppermost resist layer to the semiconductor substrate, Among the plurality of resist layers, the upper surface of one resist layer is polished to a flat surface. Therefore, the thickness from the upper surface of the semiconductor substrate to the uppermost resist layer must be made uniform. Therefore, even if the wavelength of the light source used for pattern formation becomes shorter, a pattern can be formed with a uniform depth without being affected by depth of focus or light absorption.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第5図はこの発明によるパターンの形成方法
を順次水した説明図、第6図はうねりの生じた状態で積
層された従来のレジスト層を示す説明図である。 〕 ・・・半導体基板、 ・・・平坦化層 (レ ン ス 上層) 4・・・段差、 7・・・中間層 (S102 層) 8・・・上層 (レジスト層)。
FIGS. 1 to 5 are explanatory diagrams sequentially explaining the pattern forming method according to the present invention, and FIG. 6 is an explanatory diagram showing conventional resist layers laminated with undulations. ]... Semiconductor substrate,... Flattening layer (lens upper layer) 4... Step, 7... Intermediate layer (S102 layer) 8... Upper layer (resist layer).

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板の段差を有する上面に複数のレジスト
層を順次積層し、最上層のレジスト層から上記半導体基
板へパターンを順次転写するパターン形成方法において
、上記複数のレジスト層のうち、少なくとも1つのレジ
スト層の上面を平坦面に研磨加工することを特徴とする
半導体基板のパターン形成方法。
(1) A pattern forming method in which a plurality of resist layers are sequentially laminated on a stepped upper surface of a semiconductor substrate, and a pattern is sequentially transferred from the uppermost resist layer to the semiconductor substrate, in which at least one of the plurality of resist layers 1. A method for forming a pattern on a semiconductor substrate, the method comprising polishing the top surface of two resist layers into a flat surface.
(2)レジスト層は、平坦化層、中間層および上層の3
層構造であることを特徴とする請求項(1)記載の半導
体基板のパターン形成方法。
(2) There are three resist layers: a flattening layer, an intermediate layer, and an upper layer.
The method for forming a pattern on a semiconductor substrate according to claim 1, wherein the patterning method is a layered structure.
JP2237633A 1990-09-07 1990-09-07 Pattern forming method of semiconductor substrate Pending JPH04116918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2237633A JPH04116918A (en) 1990-09-07 1990-09-07 Pattern forming method of semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2237633A JPH04116918A (en) 1990-09-07 1990-09-07 Pattern forming method of semiconductor substrate

Publications (1)

Publication Number Publication Date
JPH04116918A true JPH04116918A (en) 1992-04-17

Family

ID=17018219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2237633A Pending JPH04116918A (en) 1990-09-07 1990-09-07 Pattern forming method of semiconductor substrate

Country Status (1)

Country Link
JP (1) JPH04116918A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005099655A (en) * 2003-08-21 2005-04-14 Toppan Printing Co Ltd Method for manufacturing photomask, the photomask, and exposing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005099655A (en) * 2003-08-21 2005-04-14 Toppan Printing Co Ltd Method for manufacturing photomask, the photomask, and exposing method thereof

Similar Documents

Publication Publication Date Title
US10802393B2 (en) Extreme ultraviolet (EUV) lithography mask
TWI391986B (en) Imprinting of partial fields at the edge of the wafer
KR102401043B1 (en) Extreme ultraviolet lithography mask blank manufacturing system and method of operation therefor
TWI654151B (en) Glass ceramic for ultraviolet lithography and manufacturing method thereof
US20030027053A1 (en) Damascene extreme ultraviolet lithography ( EUVL) photomask and method of making
TWI809421B (en) Method of building a 3d functional optical material stacking structure
TW201232607A (en) Method for fabricating large-area nanoscale pattern
TW200945413A (en) Pattern forming method and semiconductor manufacturing device
JPH04116918A (en) Pattern forming method of semiconductor substrate
US6798862B2 (en) X-ray mask and method for providing same
JPH0815510A (en) Binary optics and their production
KR100335735B1 (en) Blank for Phase Shifter Type Phase Shift Photomask and Phase Shifter Type Phase Shift Photomask and Manufacturing Method
JP2004134749A (en) Method for planarizing surface of semiconductor wafer
JP2004029736A (en) Method for determining flatness of substrate for electronic device, production method and method for producing mask blank and mask for transfer
JP4578635B2 (en) Method for correcting surface shape effects on electronic circuit boards
JP6421425B2 (en) Template substrate manufacturing method and nanoimprint template manufacturing method
TWI817027B (en) Method for planarization of spin-on and cvd-deposited organic films
CN110596802B (en) Manufacturing method of helical tooth pattern grating plate and grating plate
JP5335864B2 (en) Mask blank manufacturing method and transfer mask manufacturing method
JP2792342B2 (en) Exposure method for thick film wiring pattern
TW201503230A (en) Substrate processing method and computer storage medium
JP2000117618A (en) Abrasive pad and manufacturing of the same
CN110632690B (en) Manufacturing method of staggered inclined-hole-structure grating plate and grating plate
JP2943291B2 (en) Polishing method of resist
JPH0582728B2 (en)