JPH04116154A - Sputtering device for forming magnetic film - Google Patents

Sputtering device for forming magnetic film

Info

Publication number
JPH04116154A
JPH04116154A JP23323490A JP23323490A JPH04116154A JP H04116154 A JPH04116154 A JP H04116154A JP 23323490 A JP23323490 A JP 23323490A JP 23323490 A JP23323490 A JP 23323490A JP H04116154 A JPH04116154 A JP H04116154A
Authority
JP
Japan
Prior art keywords
substrate
magnetic field
magnetic
electromagnet
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23323490A
Other languages
Japanese (ja)
Inventor
Tsuneo Ogawa
小川 恒雄
Katsuhiro Iwashita
岩下 克博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23323490A priority Critical patent/JPH04116154A/en
Publication of JPH04116154A publication Critical patent/JPH04116154A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a magnetic thin film having uniform and weak magnetic anisotropy at a high speed by sputtering a target consisting of a magnetic material, thereby forming the magnetic thin film in the uniform magnetic field perpendicular to a substrate. CONSTITUTION:A magnetic field generating means is provided on the rear surface of a target electrode 2 to generate a magnetron electric discharge. The magnetic field generating means is provided also on the side of a substrate electrode 8 to be imposed with a substrate 10 and the uniform magnetic field perpendicular to the substrate 10 is formed. The magnetic field generating means on the substrate electrode 8 side is formed of an electromagnet 11 and a cylindrical yoke 12 and the substrate imposing surface is disposed on the side inner than the end face on the target 3 side of the yoke 12. The target 3 consisting of a magnetic material is sputtered and the magnetic thin film having the polarities uniform in the direction of the magnetic field is formed on the substrate 10 in the uniform magnetic field perpendicular to the substrate 10.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁気ヘッドの磁気コアを薄膜で形成する磁性膜
形成用スパッタリング装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a sputtering apparatus for forming a magnetic film, which forms the magnetic core of a magnetic head with a thin film.

〔従来の技術〕[Conventional technology]

磁気ヘッドの磁気コアを形成する磁性薄膜には、高飽和
磁束密度、低保磁力、高透磁率、均一な磁気異方性等の
磁気特性が要求される。これらのうち、飽和磁束密度は
主に薄膜材料の組成に依存するのに対して、保持力、透
磁率、磁気異方性等は膜の形成条件(磁界、基板温度等
)に強く依存する。そこで、これら膜形成条件に依存す
る磁気特性を改善することを目的として、従来例えば、
特開昭58−100411号公報及び特開昭60−39
157号公報に示されているように、平坦な基板上に磁
性膜を形成する場合に、成膜直後の膜には磁気異方性を
生じさせず、次の磁気アニール工程で均一な磁気異方性
を発生させることを目的として、成膜時は基板の近傍に
平行で略均−な磁界を形成し、かつ、基板又は磁界を回
転させる手段を設けている。
The magnetic thin film forming the magnetic core of a magnetic head is required to have magnetic properties such as high saturation magnetic flux density, low coercive force, high magnetic permeability, and uniform magnetic anisotropy. Among these, the saturation magnetic flux density mainly depends on the composition of the thin film material, whereas the coercive force, magnetic permeability, magnetic anisotropy, etc. strongly depend on the film formation conditions (magnetic field, substrate temperature, etc.). Therefore, in order to improve the magnetic properties that depend on these film formation conditions, conventionally, for example,
JP-A-58-100411 and JP-A-60-39
As shown in Publication No. 157, when forming a magnetic film on a flat substrate, the film does not have magnetic anisotropy immediately after it is formed, and the next magnetic annealing process produces a uniform magnetic anisotropy. For the purpose of generating orientation, a parallel and substantially uniform magnetic field is formed in the vicinity of the substrate during film formation, and means for rotating the substrate or the magnetic field is provided.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

スパッタリングによる膜形成速度を向上させるためには
、 (1)ターゲット電極に印加する電力を増加させる(2
)ターゲット電極の裏側に磁石を設け、ターゲット上に
電界と磁界の相互作用による強い放電を発生させるマグ
ネトロンスパッタを行なう等の手段がある。
In order to improve the film formation rate by sputtering, (1) increase the power applied to the target electrode (2)
) There are methods such as providing a magnet on the back side of the target electrode and performing magnetron sputtering, which generates a strong discharge on the target due to the interaction of an electric field and a magnetic field.

これらの手段を従来の磁性膜スパッタ装置に適用しよう
とすると、(1)では、プラズマ中の高エネルギー荷電
粒子により基板が叩かれるため九基板温度が上昇し、膜
が結晶化して磁気特性が劣化する恐れがある、また、(
2)では、基板近傍の磁界分布が乱されるために膜に不
均一な磁気異方性が発生する、等の問題があり、そのま
までは成膜速度を上げることができなかった。
When these methods are applied to conventional magnetic film sputtering equipment, in (1), the substrate is struck by high-energy charged particles in the plasma, which increases the substrate temperature, crystallizes the film, and deteriorates the magnetic properties. There is a risk that (
In 2), there were problems such as non-uniform magnetic anisotropy occurring in the film due to disturbance of the magnetic field distribution near the substrate, and it was not possible to increase the film formation rate as it was.

更に、従来は、成膜中に基板またはターゲットを回転さ
せているために、機構が複雑になる、回転部分からごみ
が発生する、という問題もあった。
Furthermore, in the past, since the substrate or target was rotated during film formation, there were problems in that the mechanism was complicated and dust was generated from the rotating parts.

一方、V溝を加工した基板上に磁性薄膜を形成する場合
には、基板Kl!直な磁界中で膜を形成するとと忙より
、従来の、基板に平行な回転磁界中で形成した磁気異方
性を持たない腹を基板に平行な一方向磁界中でアニール
した後に得られるのと同等な、■溝斜面の最大傾斜角に
沿って磁化容易軸を持つ磁気異方性の−様な膜が得らる
On the other hand, when forming a magnetic thin film on a substrate with a V-groove, the substrate Kl! Since it is difficult to form a film in a direct magnetic field, it is difficult to form a film in a conventional rotating magnetic field parallel to the substrate, which has no magnetic anisotropy. A magnetically anisotropic -like film with an axis of easy magnetization along the maximum inclination angle of the groove slope is obtained.

そこで、本発明の目的は、マグネトロンスパッタ装置で
V溝を加工した基板上に磁性薄膜を形成する場合におい
て、基板全面にわたって均一で比較的弱い磁気異方性を
持づ膜を高速に形成し、かつ、基板または磁界を回転さ
せる機構を必要としないスパッタ電極を提供するととに
有る。
Therefore, an object of the present invention is to rapidly form a film having uniform and relatively weak magnetic anisotropy over the entire surface of the substrate when forming a magnetic thin film on a substrate with a V-groove processed using a magnetron sputtering device. Another object of the present invention is to provide a sputtering electrode that does not require a mechanism for rotating a substrate or a magnetic field.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明の第1の発明は、磁
性材料をターゲット材とするスパッタ装置において、基
板に垂直な均一磁界中で磁性薄膜を形成するものである
In order to achieve the above object, a first aspect of the present invention is to form a magnetic thin film in a uniform magnetic field perpendicular to a substrate in a sputtering apparatus using a magnetic material as a target material.

また高速で成膜を可能とするため、第2の発明は、ター
ゲット電極の裏側にマグネトロン放電を発生させるため
の磁界発生手段をもち、かつ、前記基板を載置する基板
電極の側にも前記基板に画直な均一磁界を形成するため
の磁界発生手段を有するものである。
Further, in order to enable high-speed film formation, the second invention has a magnetic field generating means for generating magnetron discharge on the back side of the target electrode, and also has the magnetic field generating means on the side of the substrate electrode on which the substrate is placed. It has a magnetic field generating means for forming a uniform magnetic field on the substrate.

また、よりー層基板に垂直な均一磁界中で磁性薄膜を形
成するため、第3の発明は、前記基板電極側の磁界発生
手段が前記基板電極と同軸上に配置された電磁石と円筒
状のヨークから成り、前記円筒状のヨークは前記電磁石
に内接しており、がっ、前記基板電極の基板載置面が前
記円筒状のヨークの前記ターゲット偶の端面より内側に
配置されているものである。
In addition, in order to form a magnetic thin film in a uniform magnetic field perpendicular to the layered substrate, the third invention is characterized in that the magnetic field generating means on the substrate electrode side includes an electromagnet disposed coaxially with the substrate electrode and a cylindrical shape. The cylindrical yoke is inscribed in the electromagnet, and the substrate mounting surface of the substrate electrode is arranged inside the end surface of the target pair of the cylindrical yoke. be.

またより強い磁界を形成するため、第4の発明は前記基
板電極側の磁界発生手段が前記基板電極と同軸上に配置
された電磁石と円筒状のヨーク、および円板状のヨーク
から成膜、前記円筒状のヨークは前記電磁石に内接し、
かつ、前記基板電極の基板載置面が前記円筒状のヨーク
の前記ターゲット側の端面より内11[IVc配置され
ており、前記円板状のヨークは前記基板電極の基板載置
面又はその近傍に配置されたものである。
Further, in order to form a stronger magnetic field, the fourth invention provides a method in which the magnetic field generating means on the substrate electrode side is formed of an electromagnet disposed coaxially with the substrate electrode, a cylindrical yoke, and a disk-shaped yoke, the cylindrical yoke is inscribed in the electromagnet;
The substrate mounting surface of the substrate electrode is disposed within 11[IVc] of the target-side end surface of the cylindrical yoke, and the disc-shaped yoke is located at or near the substrate mounting surface of the substrate electrode. It was placed in

また基板に入射するイオン電流の分布の制御特性を向上
するため、第5の発明は、前記基板電極側の磁界発生手
段が前記基板電極と同軸上に配置された第一の電磁石1
円筒状のヨーク、および第二の電磁石とから成膜、前記
円筒状のヨークは前記第一の電磁石に内接し、かつ、前
記基板電極の基板載置面が前記円筒状のヨークの前記タ
ーゲット側の端面より内側に配置されており、前記第二
の電磁石の外径は前記第一の電磁石の外径より小さく、
前記基板電極と同軸上に前記第一の電磁石の内側又は後
方に配置されたものである。
Furthermore, in order to improve the control characteristics of the distribution of the ion current incident on the substrate, the fifth invention provides a first electromagnet 1 in which the magnetic field generating means on the substrate electrode side is arranged coaxially with the substrate electrode.
A film is formed from a cylindrical yoke and a second electromagnet, the cylindrical yoke is inscribed in the first electromagnet, and the substrate mounting surface of the substrate electrode is on the target side of the cylindrical yoke. The second electromagnet has an outer diameter smaller than the first electromagnet;
The electromagnet is disposed coaxially with the substrate electrode inside or behind the first electromagnet.

またさらに−層基板に通直な均一磁界中で磁性i薄膜を
形成するため第6の発明は、前記ターゲット電極の裏側
の磁界発生手段と前記基板電極側の磁界発生手段とによ
り、ターゲット電極と基板電極の間にカスプ状の磁界を
形成するものである。
Furthermore, in order to form a magnetic i-thin film in a uniform magnetic field that passes directly through the layer substrate, the sixth invention provides a magnetic field generating means on the back side of the target electrode and a magnetic field generating means on the side of the substrate electrode. A cusp-shaped magnetic field is formed between the substrate electrodes.

〔作用〕[Effect]

前記基板電極側磁界発生手段はターゲット電極側磁界発
生手段と逆極性の磁界を発生し、ターゲット電極と基板
電極との間にカスプ状の磁界を形成する。これ忙よりタ
ーゲット電極面から出た磁力線は反発されて基板電極面
に到達せず、基板を基板電極側磁界発生手段で形成する
磁界の中に置くことができる。
The substrate electrode side magnetic field generating means generates a magnetic field having a polarity opposite to that of the target electrode side magnetic field generating means, thereby forming a cusp-shaped magnetic field between the target electrode and the substrate electrode. Because of this, the lines of magnetic force coming out from the target electrode surface are repelled and do not reach the substrate electrode surface, allowing the substrate to be placed in the magnetic field generated by the substrate electrode side magnetic field generating means.

また、前記ヨーク手段は、基板電極上に載置された基板
を完全に内包する形で配置されており、前記基板電極側
磁界発生手段で発生する磁界により、前記ヨーク手段の
内側には基板電極中心軸に沿った略均−で比較的弱い磁
界が形成され、基板は垂直で均一な磁界の中に置かれる
Further, the yoke means is arranged to completely enclose the substrate placed on the substrate electrode, and the magnetic field generated by the substrate electrode side magnetic field generating means causes the substrate electrode to be placed inside the yoke means. A generally uniform, relatively weak magnetic field along the central axis is created, and the substrate is placed in a perpendicular, uniform magnetic field.

以上により、マグネトロンスパッタ法を用いた磁性薄膜
形成装置において、均一で比較的弱い磁気異方性を持つ
磁性薄膜を高速形成することが可能に々る。
As described above, in a magnetic thin film forming apparatus using the magnetron sputtering method, it is possible to form a magnetic thin film having uniform and relatively weak magnetic anisotropy at high speed.

さらに、従来の基板に平行な磁界中で成膜する場合には
、基板の設置方向により磁化容易軸の方向が異なるため
に、基板または磁界を回転させるととkより磁気異方性
のない膜を形成する必要があった。しかし、上述したよ
うに働直で均一な磁界の中に基板を設置可能としたこと
により、基板の設置方向に関係なく基板全面において基
板のV溝の最大傾斜角力同和磁化容易軸が揃った均一な
磁気異方性を持つ磁性膜の形成が可能となシ、基板また
は磁界を回転させる機構が不要になる。
Furthermore, when forming a film in a conventional magnetic field parallel to the substrate, the direction of the axis of easy magnetization differs depending on the direction in which the substrate is installed. needed to be formed. However, as mentioned above, by making it possible to install the substrate in a uniform magnetic field, the maximum inclination angle force of the V-groove of the substrate is uniformly aligned over the entire surface of the substrate, regardless of the direction in which the substrate is installed. This makes it possible to form a magnetic film with a strong magnetic anisotropy, and eliminates the need for a mechanism for rotating the substrate or magnetic field.

〔実施例〕〔Example〕

以下、本発明の第1の発明および第2の発明を示す第1
の実施例を、第1図により説明する。
Hereinafter, the first invention showing the first invention and the second invention of the present invention will be described.
An example of this will be explained with reference to FIG.

1は真空槽、2はターゲット電極、3はターゲット、4
は絶縁板、5は電磁石、6は電磁石5のケーシング、7
は電磁石5のヨーク、8は基板電極、9は絶縁体、10
は基板、11は電磁石、12はヨーク、13は電磁石1
1のケーシング、14はターゲット電極2の電源、15
.16はそれぞれ電磁石5.11の電源である。
1 is a vacuum chamber, 2 is a target electrode, 3 is a target, 4
is an insulating plate, 5 is an electromagnet, 6 is a casing of electromagnet 5, 7
is the yoke of the electromagnet 5, 8 is the substrate electrode, 9 is the insulator, 10
is the board, 11 is the electromagnet, 12 is the yoke, 13 is the electromagnet 1
1 casing, 14 a power source for the target electrode 2, 15
.. 16 are power sources for the electromagnets 5 and 11, respectively.

上記構成においてV溝状に加工された表面10′を持つ
基板10IIca性薄膜20を形成する場合(図3)に
ついて説明する。先ず、真空槽1の内部を排気手段(図
示せず)により高真空に排気した後、アルゴンガス(A
rガス)を導入し、真空槽1の内部を所定の圧力に維持
する0次に、電源15.16によりミ磁石5.11に電
流を印加する。このとき、電磁石5により発生する磁界
と電磁石11により発生する磁界とが逆極性となるよう
電源16の極性を調整する。その結果、ターゲット電極
2と基板電極8との間には、第6の発明である第2図に
示すよりなカスプ磁界が形成され、ターゲット電極面か
ら出た磁力線17は、基板電極8の側の電磁石11から
発した磁力線18に反発されてターゲット電極2の側へ
圧縮される。
A case (FIG. 3) in which a substrate 10IIca thin film 20 having a surface 10' processed into a V-groove shape is formed in the above structure will be described. First, the inside of the vacuum chamber 1 is evacuated to a high vacuum using an exhaust means (not shown), and then argon gas (A
Then, a current is applied to the magnet 5.11 by the power source 15.16. At this time, the polarity of the power source 16 is adjusted so that the magnetic field generated by the electromagnet 5 and the magnetic field generated by the electromagnet 11 have opposite polarities. As a result, a more cusp magnetic field is formed between the target electrode 2 and the substrate electrode 8 as shown in FIG. is repelled by the magnetic lines of force 18 emitted from the electromagnet 11 and compressed toward the target electrode 2.

これにより、ヨーク12の内側中心付近には電磁石11
によりミ磁石11の中心軸方向に沿った略均−な磁界1
9が形成され、ヨーク12の内部に配置された基板10
Fi第3図に示すように、基板面にほぼ垂直で略均−か
磁界19の中に置かれる。
As a result, the electromagnet 11 is located near the inner center of the yoke 12.
Therefore, the magnetic field 1 is approximately uniform along the central axis direction of the magnet 11.
9 is formed and a substrate 10 is disposed inside the yoke 12.
As shown in FIG. 3, the F is placed in a substantially uniform magnetic field 19 that is substantially perpendicular to the substrate surface.

この状態で電源14VCよりターゲット電極2に電力を
印加するとターゲット3の表面近傍の空間でグロー放電
が発生し、ターゲット3の表面はスパッタされる。
In this state, when power is applied to the target electrode 2 from the power source 14VC, glow discharge occurs in the space near the surface of the target 3, and the surface of the target 3 is sputtered.

ターゲット3からスパッタされた磁性材の一部は、基板
10の7字状に加工された溝の表面10′に付着する。
A portion of the magnetic material sputtered from the target 3 adheres to the surface 10' of the groove formed in the figure 7 shape of the substrate 10.

このとき、基板10が基板10にほぼ垂直で略均−な磁
界19の中にあるために1基板10の表面10′  に
付着する磁性薄膜20は磁界19の方向に揃った極性を
持って成長する。従って、磁性薄膜20は、表面10′
 の最大傾斜角の方向に磁化容易軸が揃い、−様な磁気
異方性を持つことになる。
At this time, since the substrate 10 is in a substantially uniform magnetic field 19 that is substantially perpendicular to the substrate 10, the magnetic thin film 20 attached to the surface 10' of one substrate 10 grows with polarity aligned in the direction of the magnetic field 19. do. Therefore, the magnetic thin film 20 has a surface 10'
The axis of easy magnetization is aligned in the direction of the maximum inclination angle, and it has --like magnetic anisotropy.

一方、電磁石11で発生する磁界の電磁石11の内側の
成分はヨーク12に集中するために、略均−な磁界fe
Fi比較的弱い磁界となる。その結果、基板10の表面
で成長する磁性薄膜20の磁化は比較的弱く、次工程の
磁気アニールで比較的容易に磁気異方性を制御できる。
On the other hand, since the component of the magnetic field generated by the electromagnet 11 inside the electromagnet 11 is concentrated on the yoke 12, a substantially uniform magnetic field fe
Fi is a relatively weak magnetic field. As a result, the magnetization of the magnetic thin film 20 grown on the surface of the substrate 10 is relatively weak, and the magnetic anisotropy can be controlled relatively easily in the next step of magnetic annealing.

以上、本実施例によれば、ターゲット電極上で比較的強
い磁場が発生するマグネトロンスパッタ装置で、比較的
弱い均一な磁気異方性を持つ磁性薄膜を高速に形成する
ことが可能になる。
As described above, according to this embodiment, a magnetic thin film having relatively weak and uniform magnetic anisotropy can be formed at high speed using a magnetron sputtering apparatus that generates a relatively strong magnetic field on the target electrode.

さらに、垂直で均一な磁界の中に基板を設置可能とした
ことにより、基板の設置方同和関係なく基板全面におい
て基板のV溝の最大傾斜角方向に磁化容易軸が揃った均
一な磁気異方性を持つ磁性膜の形成が可能となり、基板
または磁界を回転させる機構が不要になる。
Furthermore, by making it possible to install the substrate in a vertical and uniform magnetic field, we have achieved uniform magnetic anisotropy with the axis of easy magnetization aligned in the direction of the maximum inclination angle of the V-groove of the substrate over the entire surface of the substrate, regardless of how the substrate is installed. This makes it possible to form a magnetic film with magnetic properties, eliminating the need for a substrate or a mechanism for rotating the magnetic field.

つぎに、本発明の第4の発明である第2の実施例を第4
図を用いて説明する。
Next, the second embodiment, which is the fourth invention of the present invention, will be described in the fourth embodiment.
This will be explained using figures.

第4図の構成は、本発明の第1の実施例を示す第1図と
ほぼ同じであり、基板電極8の基板10を載置する面に
ヨーク板21を追加したものである。
The configuration of FIG. 4 is almost the same as that of FIG. 1 showing the first embodiment of the present invention, except that a yoke plate 21 is added to the surface of the substrate electrode 8 on which the substrate 10 is placed.

ヨーク板21は基板10近傍の磁界分布をより均−化す
る効果を持つ、これにより、基板10に形成される磁性
薄膜20は、表面10の最大傾斜角の方向に磁化容易軸
が揃い、磁気異方性の均一性は、更に向上する。
The yoke plate 21 has the effect of making the magnetic field distribution in the vicinity of the substrate 10 more uniform.As a result, the magnetic thin film 20 formed on the substrate 10 has its axis of easy magnetization aligned in the direction of the maximum inclination angle of the surface 10, and is magnetically The uniformity of anisotropy is further improved.

ms図は、本発明の第5の発明である第3の実施例を示
すものである。
The ms diagram shows a third embodiment, which is the fifth invention of the present invention.

第5図において、その基本構成は本発明の第1の実施例
を示す第1図と同じであり、基板電極8の後方に、ケー
シング25に収納され、電源24に接続された電磁石2
2を追加したことを特徴とする。
In FIG. 5, the basic configuration is the same as in FIG. 1 showing the first embodiment of the present invention, and an electromagnet 2 is housed in a casing 25 and connected to a power source 24 behind the substrate electrode 8.
It is characterized by the addition of 2.

電磁石22の外径はt磁石11の内径よυ小さく、電磁
石22はその一部が電磁石11の内側圧配置される。
The outer diameter of the electromagnet 22 is smaller than the inner diameter of the t-magnet 11, and a portion of the electromagnet 22 is disposed inside the electromagnet 11.

ここで、本発明の第1の実施例で示した磁界をターゲッ
ト電極2と基板電極8との間に形成する。
Here, the magnetic field shown in the first embodiment of the present invention is formed between the target electrode 2 and the substrate electrode 8.

次に、電源24によりミ磁石22に通電すると、電磁石
24は励磁され磁界を発生する。この電磁石22が発生
する磁界は、電磁石11が発生する磁界と合成される。
Next, when the power supply 24 energizes the magnet 22, the electromagnet 24 is excited and generates a magnetic field. The magnetic field generated by the electromagnet 22 is combined with the magnetic field generated by the electromagnet 11.

従って、電源24で電磁石22が発生する磁界を制御す
ることにより、基板10近傍の磁界強度及び分布を調整
することができ石。
Therefore, by controlling the magnetic field generated by the electromagnet 22 with the power supply 24, the magnetic field strength and distribution near the substrate 10 can be adjusted.

この結果、基板10上に形成する磁性薄膜20の弱い磁
気異方性の均一性を更に向上させることが可能になる。
As a result, it becomes possible to further improve the uniformity of the weak magnetic anisotropy of the magnetic thin film 20 formed on the substrate 10.

以上に示した本発明の三つの実施例では、ターゲット電
極2に接続する電源14を直流電源として説明したが、
電源14は高周波電源であっても同様の効果が得られる
In the three embodiments of the present invention shown above, the power supply 14 connected to the target electrode 2 was explained as a DC power supply.
Similar effects can be obtained even if the power source 14 is a high frequency power source.

〔発明の詳細な 説明によれば、比較的弱く、基板に垂直で均一な磁界中
で成膜できるので、次工程の磁気アニールで容易忙磁気
異方性を制御可能な比較的弱く磁化した均一な磁気異方
性を持つ磁性薄膜を、マグネトロンスパッタ装置を用い
て高速に形成できるという効果がある。
[According to the detailed description of the invention, since the film can be formed in a relatively weak and uniform magnetic field perpendicular to the substrate, the magnetic anisotropy can be easily controlled in the next step of magnetic annealing. This method has the advantage that a magnetic thin film with a magnetic anisotropy can be formed at high speed using a magnetron sputtering device.

更に、成膜中に基板または磁界を回転させる必要がない
ために、機構が単純になり、かつ、ごみの発生量を少な
くできるという効果もある。
Furthermore, since there is no need to rotate the substrate or the magnetic field during film formation, the mechanism is simple and the amount of dust generated can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例でマグネトロンスパッタ
装置の電極部の縦断面図、第2図は第1図の電極部の拡
大断面図で、上半分に磁界分布を示す、第3図は基板の
近傍の磁界分布を示している。 第4図は本発明の第2の実施例の電極部縦断面図、第5
図は本発明の第6の実施例の電極部縦断面図である。 符号の説明 2・・・ターゲット電極、3・・・ターゲット、5・・
・電磁石、8・・・基板電極、10・・・基板、11・
・・電磁石、12・・・ヨーク、21・・・ヨーク板、
22・・・電磁石。 第 2図 此!FL級 差へ電極 15、ll) ′’f!Lr峨刀σ夏プr、ヨ フ を磁ん 第 \ 23 ケー 〉/フ 電方、
FIG. 1 is a longitudinal sectional view of the electrode section of a magnetron sputtering apparatus according to the first embodiment of the present invention, and FIG. 2 is an enlarged sectional view of the electrode section of FIG. 1, showing the magnetic field distribution in the upper half. The figure shows the magnetic field distribution near the substrate. FIG. 4 is a vertical sectional view of the electrode portion of the second embodiment of the present invention, and FIG.
The figure is a longitudinal cross-sectional view of an electrode portion of a sixth embodiment of the present invention. Explanation of symbols 2...Target electrode, 3...Target, 5...
・Electromagnet, 8... Substrate electrode, 10... Substrate, 11.
...Electromagnet, 12...Yoke, 21...Yoke plate,
22...Electromagnet. Figure 2 is this! Electrode 15, ll) to FL class difference ''f! Lr Akato σ Summer Pr, Yofu wo no \ 23 K 〉/Fu Denkata,

Claims (6)

【特許請求の範囲】[Claims] 1. 磁性材料をターゲット材とするスパッタ装置にお
いて、基板に垂直な均一磁界中で磁性薄膜を形成するこ
とを特徴とする磁性膜形成用スパッタ装置。
1. A sputtering apparatus for forming a magnetic film, which uses a magnetic material as a target material and forms a magnetic thin film in a uniform magnetic field perpendicular to a substrate.
2. ターゲット電極の裏側にマグネトロン放電を発生
させるための磁界発生手段をもち、かつ、前記基板を載
置する基板電極の側にも前記基板に垂直な均一磁界を形
成するための磁界発生手段を持つことを特徴とする磁性
膜形成用スパッタ装置。
2. A magnetic field generating means for generating a magnetron discharge is provided on the back side of the target electrode, and a magnetic field generating means is also provided on the side of the substrate electrode on which the substrate is placed for forming a uniform magnetic field perpendicular to the substrate. A sputtering device for forming a magnetic film, which is characterized by:
3. 前記基板電極側の磁界発生手段が前記基板電極と
同軸上に配置された電磁石と円筒状のヨークから成り、
前記円筒状のヨークは前記電磁石に内接しており、かつ
、前記基板電極の基板載置面が前記円筒状のヨークの前
記ターゲット側の端面より内側に配置されていることを
特徴とする請求項2記載の磁性膜形成用スパッタ装置。
3. The magnetic field generating means on the substrate electrode side includes an electromagnet and a cylindrical yoke arranged coaxially with the substrate electrode,
The cylindrical yoke is inscribed in the electromagnet, and the substrate mounting surface of the substrate electrode is disposed inside an end surface of the cylindrical yoke on the target side. 2. The sputtering apparatus for forming a magnetic film according to 2.
4. 前記基板電極側の磁界発生手段が前記基板電極と
同軸上に配置された電磁石と円筒状のヨーク、および円
板状のヨークから成り、前記円筒状のヨークは前記電磁
石に内接し、かつ、前記基板電極の基板載置面が前記円
筒状のヨークの前記ターゲット側の端面より内側に配置
されており、前記円板状のヨークは前記基板電極の基板
載置面又はその近傍に配置されたことを特徴とする請求
項2記載の磁性膜形成用スパッタ装置。
4. The magnetic field generating means on the substrate electrode side includes an electromagnet disposed coaxially with the substrate electrode, a cylindrical yoke, and a disk-shaped yoke, and the cylindrical yoke is inscribed in the electromagnet, and The substrate mounting surface of the substrate electrode is arranged inside the target-side end surface of the cylindrical yoke, and the disc-shaped yoke is arranged at or near the substrate mounting surface of the substrate electrode. 3. A sputtering apparatus for forming a magnetic film according to claim 2.
5. 前記基板電極側の磁界発生手段が前記基板電極と
同軸上に配置された第一の電磁石、円筒状のヨーク、お
よび第二の電磁石とから成り、前記円筒状のヨークは前
記第一の電磁石に内接し、かつ、前記基板電極の基板載
置面が前記円筒状のヨークの前記ターゲット側の端面よ
り内側に配置されており、前記第二の電磁石の外径は前
記第一の電磁石の内径より小さく、前記基板電極と同軸
上に前記第一の電磁石の内側又は後方に配置されたこと
を特徴とする請求項2記載の磁性膜形成用スパッタ装置
5. The magnetic field generating means on the substrate electrode side includes a first electromagnet, a cylindrical yoke, and a second electromagnet arranged coaxially with the substrate electrode, and the cylindrical yoke is connected to the first electromagnet. and the substrate mounting surface of the substrate electrode is arranged inside the end surface of the cylindrical yoke on the target side, and the outer diameter of the second electromagnet is larger than the inner diameter of the first electromagnet. 3. The sputtering apparatus for forming a magnetic film according to claim 2, wherein the sputtering apparatus is small and arranged coaxially with the substrate electrode inside or behind the first electromagnet.
6. 前記ターゲット電極の裏側の磁界発生手段と前記
基板電極側の磁界発生手段とにより、ターゲット電極と
基板電極の間にカスプ状の磁界を形成することを特徴と
する請求項2記載の磁性膜形成用スパッタ装置。
6. 3. The method for forming a magnetic film according to claim 2, wherein a cusp-shaped magnetic field is formed between the target electrode and the substrate electrode by the magnetic field generating means on the back side of the target electrode and the magnetic field generating means on the side of the substrate electrode. Sputtering equipment.
JP23323490A 1990-09-05 1990-09-05 Sputtering device for forming magnetic film Pending JPH04116154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23323490A JPH04116154A (en) 1990-09-05 1990-09-05 Sputtering device for forming magnetic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23323490A JPH04116154A (en) 1990-09-05 1990-09-05 Sputtering device for forming magnetic film

Publications (1)

Publication Number Publication Date
JPH04116154A true JPH04116154A (en) 1992-04-16

Family

ID=16951862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23323490A Pending JPH04116154A (en) 1990-09-05 1990-09-05 Sputtering device for forming magnetic film

Country Status (1)

Country Link
JP (1) JPH04116154A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164531A (en) * 1998-11-30 2000-06-16 Toshiba Corp Device and method for forming fine particle film, and semiconductor device and its manufacture
GB2446593A (en) * 2007-02-16 2008-08-20 Diamond Hard Surfaces Ltd Coating apparatus utilising linear magnetic field.

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164531A (en) * 1998-11-30 2000-06-16 Toshiba Corp Device and method for forming fine particle film, and semiconductor device and its manufacture
JP4564113B2 (en) * 1998-11-30 2010-10-20 株式会社東芝 Fine particle film forming method
GB2446593A (en) * 2007-02-16 2008-08-20 Diamond Hard Surfaces Ltd Coating apparatus utilising linear magnetic field.
GB2446593B (en) * 2007-02-16 2009-07-22 Diamond Hard Surfaces Ltd Methods and apparatus for forming diamond-like coatings
US8691063B2 (en) 2007-02-16 2014-04-08 Diamond Hard Surfaces Ltd. Methods and apparatus for forming diamond-like coatings

Similar Documents

Publication Publication Date Title
JP2587924B2 (en) Thin film forming equipment
EP0093412B1 (en) Magnetron sputtering apparatusand a method for forming a magnetic thinfilm on the surface of a substrate
JPS6274073A (en) Sputtering device
JPH11500490A (en) Method and apparatus for sputtering magnetic target material
JPS6320304B2 (en)
JP2007529633A (en) Sputtering apparatus for producing thin films
JPS6151410B2 (en)
JPH04116154A (en) Sputtering device for forming magnetic film
JPS58199862A (en) Magnetron type sputtering device
JPH0784659B2 (en) Sputtering target
JPS61161704A (en) Manufacture of uniaxial magnetic anisotropic film
JPH04116162A (en) Magnetic field generator for planar-magnetron sputtering system
JPS63223173A (en) Method and apparatus for forming sputtered film
JPS6367328B2 (en)
JPH02294476A (en) Cathode for magnetron sputtering
JPH1180943A (en) Magnetron sputtering cathode
JP2002069631A (en) Sputtering method and equipment therefor
JPS63210006A (en) Formation of thin amorphous carbon film
JPS62222075A (en) Thin film forming device
JP2980266B2 (en) Sputtering apparatus for forming a laminated film of a magnetic thin film and a non-magnetic thin film
JPH01287270A (en) Sputtering device
JPS59190364A (en) Sputtering device
JPS61179864A (en) Sputtering device
JPS6249974B2 (en)
JPS61272372A (en) Sputtering device