JPH04115906A - Porous titania sintered body and its manufacture - Google Patents

Porous titania sintered body and its manufacture

Info

Publication number
JPH04115906A
JPH04115906A JP23745290A JP23745290A JPH04115906A JP H04115906 A JPH04115906 A JP H04115906A JP 23745290 A JP23745290 A JP 23745290A JP 23745290 A JP23745290 A JP 23745290A JP H04115906 A JPH04115906 A JP H04115906A
Authority
JP
Japan
Prior art keywords
titania
porous
sintered body
resin
porous titania
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23745290A
Other languages
Japanese (ja)
Other versions
JP2502798B2 (en
Inventor
Tetsuya Nishi
哲也 西
Itaru Sakuma
佐久間 到
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2237452A priority Critical patent/JP2502798B2/en
Publication of JPH04115906A publication Critical patent/JPH04115906A/en
Application granted granted Critical
Publication of JP2502798B2 publication Critical patent/JP2502798B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a sintered body which has uniform porous structure and is superior in mechanical strength, by a method wherein the present porous titania sintered body is constituted by gathering and sintering nonporous titania spherical bodies. CONSTITUTION:The present sintered body is constituted by gathering and sintering non porous titania spherical bodies. A mixture comprised of titania powder which is surface-treated with lipophilic agent, a polymerizable vinyl monomer and an organic solvent which is added at need and has compatibility with the above-mentioned monomer and no compatibility substantially with water is dispersed into an aqueous base and the above-mentioned monomer is polymerized. With this construction, a porous titania spherical body comprised of aggregate of titania powder coated with resin is obtained and then pressure molding is performed by gathering the resin-coated porous spherical bodies. Then the porous titania spherical bodies are heated and sintered under a temperature capable of converting the same into a nonporous state and porous titania sintered bodies having density of at least 2.5g/cm<2> can be obtained.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は多孔質チタニア(二酸化チタン)焼結体及び
その製造方法に関する。さらに詳しくは、センサ、触媒
、分離材(フィルタ)、医療用材料、断熱材、耐火材、
吸脱着素材等の各種機能材料等多くの応用分野が期待さ
れているセラミックス多孔体としての多孔質チタニア焼
結体及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to a porous titania (titanium dioxide) sintered body and a method for producing the same. More details include sensors, catalysts, separation materials (filters), medical materials, insulation materials, fireproof materials,
The present invention relates to a porous titania sintered body as a porous ceramic body that is expected to be applied in many fields of application such as various functional materials such as adsorption/desorption materials, and a method for producing the same.

(ロ)従来の技術 上記のごときセラミックス多孔体の従来の製造方法とし
ては、低温で焼成して消失するもの(例えばゴム、樹脂
、もみがら等)をバインダーとして原料セラミックス粉
末と混練し、それを成形した後高温で焼成することによ
りセラミックスのみ残してこれを焼結して製造する方法
が一般的である。そして、上記混練手法として、例えば
、■ポリビニルアルコール等の水溶性樹脂と水とセラミ
ックス粉末を混ぜる、■ポリスチレン、ポリエチレン、
ポリプロピレン等の熱可塑性樹脂とセラミックス粉末を
熱を加えて練る、■、■の樹脂とその溶剤とセラミック
ス粉末を混ぜる等の組合せが知られている。
(B) Conventional technology The conventional method for producing the above ceramic porous bodies is to knead materials that disappear when fired at low temperatures (e.g. rubber, resin, rice husks, etc.) with raw ceramic powder as a binder. A common method is to mold and then fire at a high temperature to leave only the ceramic and sinter it. The above-mentioned kneading method includes, for example, (1) mixing water-soluble resin such as polyvinyl alcohol with water and ceramic powder, (2) mixing polystyrene, polyethylene,
Combinations such as heating and kneading thermoplastic resin such as polypropylene and ceramic powder, and mixing resin and its solvent with ceramic powder as described in (1) and (3) are known.

(ハ)発明が解決しようとする課題 しかしながら、上記従来の方法ではいずれも、混練によ
って混合させるので、グリーン体の内部は樹脂分の多い
部分と少ない部分との不均一な状態にならざるを得ない
。従ってこれを焼成して得られる焼結体は不均一な細孔
しか有しないこととなる。また気孔率を大きくしようと
すると樹脂分がさらに多くなり、上記問題はますます大
きくなる。
(c) Problems to be Solved by the Invention However, in all of the above conventional methods, since the mixture is mixed by kneading, the inside of the green body is inevitably in a non-uniform state with areas with a high resin content and areas with a low resin content. do not have. Therefore, the sintered body obtained by firing this will have only non-uniform pores. Furthermore, if the porosity is increased, the resin content will further increase, and the above problem will become even more serious.

さらに、このように混練・焼成して得られるセラミック
ス多孔体は、所望の気孔率を有していてもその機械的強
度が不充分で実用に耐えない場合があった。
Furthermore, even if the ceramic porous body obtained by kneading and firing in this manner has a desired porosity, its mechanical strength is sometimes insufficient and cannot be put to practical use.

この発明はかかる状況下でなされたものであり、ことに
、多孔質構造が均一でかつ機械的強度に優れた多孔質チ
タニア焼結体及びそれを効率良く製造できる方法を提供
しようとするものである。
The present invention was made under such circumstances, and specifically aims to provide a porous titania sintered body with a uniform porous structure and excellent mechanical strength, and a method for efficiently manufacturing the same. be.

(ニ)課題を解決するための手段 かくしてこの発明によれば、非多孔質チタニア球体が集
合・焼結されてなる多孔質チタニア焼結体が提供される
。さらにこの発明によれば、親油化剤で表面処理され1
こチタニア粉体と、重合性ビニル系モノマと、必要に応
じて添加される上記モノマと相溶性てかつ水と実質的に
相溶性を荷しない有機溶剤とからなる混合物を、水系に
分散し、上記モノマを重合させることにより、樹脂で被
覆され1こチタニア粉体の集合体からなる多孔質チタニ
ア球体を得、次いてこの樹脂被覆多孔質球体を集合して
加圧成形した後、該多孔質チタニア球体を非多孔質に変
換しうる温度下で加熱焼結することにより、上記の多孔
質チタニア焼結体を得ることを特徴とする多孔質チタニ
ア焼結体の製造方法が提供される。
(d) Means for Solving the Problems Thus, according to the present invention, a porous titania sintered body is provided in which non-porous titania spheres are aggregated and sintered. Furthermore, according to the present invention, the surface of the 1
Dispersing in an aqueous system a mixture consisting of this titania powder, a polymerizable vinyl monomer, and an organic solvent that is compatible with the monomer and is not substantially compatible with water, which is added as necessary, By polymerizing the above monomer, porous titania spheres coated with a resin and consisting of an aggregate of one titania powder are obtained, and then the resin-coated porous spheres are aggregated and pressure-molded, and then the porous titania spheres are There is provided a method for producing a porous titania sintered body, characterized in that the porous titania sintered body described above is obtained by heating and sintering titania spheres at a temperature that can convert them into a non-porous body.

この発明は、チタニア(二酸化チタン)粉体から一旦製
造される樹脂被覆(複合)多孔質チタニア球体を構成要
素として集合し、これをさらに加圧・焼結して構成され
る多孔質チタニア焼結体に関するものである。この発明
の焼結体は、例えば、下記方法により製造することがで
きる。すなわち、親油化剤で表面処理されたチタニア粉
体と、重合性ビニル系モノマの混合物を調製し、また場
合によっては上記モノマと相溶性でかつ水と実質的に相
溶性を有しない有機溶剤を上記混合物に添加し、上記混
合物におけるチタニア粉体の増量に伴う粘度の上昇を抑
え、チタニア粉体の添加量範囲を拡大すると共に、水系
での上記混合物の油滴状分散において、個々の油滴を球
状に分散保持することを可能とさせ、これらにより個々
の油滴内において分散されたチタニア粉体(−次粒子)
を球状に集合して、−旦、樹脂被覆(複合)多孔質チタ
ニア球体を製造し、これをさらに所定の形状に集合して
加圧成形した後、所定温度下で加熱して被覆樹脂を除去
すると共に焼結して多孔体化する方法である。
This invention is a porous titania sintered product made by assembling resin-coated (composite) porous titania spheres made from titania (titanium dioxide) powder as constituent elements, and further pressurizing and sintering them. It's about the body. The sintered body of the present invention can be produced, for example, by the following method. That is, a mixture of titania powder surface-treated with a lipophilic agent and a polymerizable vinyl monomer is prepared, and in some cases, an organic solvent that is compatible with the monomer and substantially incompatible with water is prepared. is added to the above mixture to suppress the increase in viscosity due to an increase in the amount of titania powder in the above mixture, to expand the range of addition amount of titania powder, and to reduce the amount of individual oils in the oil droplet dispersion of the above mixture in an aqueous system. This enables the droplets to be dispersed and held in a spherical shape, and as a result, the titania powder (-order particles) dispersed within each oil droplet.
are assembled into a spherical shape to produce resin-coated (composite) porous titania spheres, which are further assembled into a predetermined shape and pressure molded, and then heated at a predetermined temperature to remove the coating resin. At the same time, the material is sintered to form a porous body.

上記方法において、表面処理されたチタニア粉体とは、
チタニア(二酸化チタン)粉体が、使用する重合性ビニ
ル系モノマの重合以前に表面処理されていれさえすれば
よいことを意味する。従って、チタニア粉体が、重合性
ビニル系モノマ中または該モノマと所定の有機溶剤との
混合物中に添加される以前に、予め表面処理されていて
もよく、また、重合性ビニル系モノマと所定の有機溶剤
と表面処理に用いる親油化剤との混合物中に、チタニア
粉体を添加して表面処理するものであってもよい。上記
表面処理とは、チタニア粉体を上記親油化剤と接触させ
て該粉体表面に上記親油化剤を吸着または結合させる処
理をいう。該処理は通常の機械的方法等により達成され
る。すなわち、親油化剤とチタニア粉体とからなる混合
物、又は親油化剤とチタニア粉体と重合性ビニル系モノ
マとからなる混合物を、常温又は冷却下で、例えばプロ
ペラ翼又はホモジナイザ等で高速撹拌することにより達
成される。
In the above method, the surface-treated titania powder is
This means that it is only necessary that the titania (titanium dioxide) powder be surface-treated before polymerization of the polymerizable vinyl monomer used. Therefore, titania powder may be surface-treated in advance before being added to a polymerizable vinyl monomer or a mixture of the monomer and a predetermined organic solvent. The surface treatment may be carried out by adding titania powder to a mixture of the organic solvent and the lipophilic agent used for the surface treatment. The above-mentioned surface treatment refers to a treatment in which the titania powder is brought into contact with the above-mentioned lipophilic agent and the lipophilic agent is adsorbed or bonded to the surface of the powder. This treatment is accomplished by conventional mechanical methods and the like. That is, a mixture of a lipophilic agent and titania powder, or a mixture of a lipophilic agent, titania powder, and a polymerizable vinyl monomer is heated at room temperature or under cooling at high speed using, for example, a propeller blade or a homogenizer. This is achieved by stirring.

この発明に用いるチタニア粉体は、通常の二酸化チタン
粉末を用いることができ、その粒径としては0.O1〜
2.0μmの間であることが好ましく、0.1〜1.5
μ艶が好ましい。
As the titania powder used in this invention, normal titanium dioxide powder can be used, and its particle size is 0. O1~
Preferably between 2.0 μm, 0.1 to 1.5
μ luster is preferred.

この発明に用いる親油化剤は、上記チタニア粉体に強力
に吸着あるいは結合する官能基を有し、かつ、重合性ビ
ニル系モノマと親和性の高い炭化水素、あるいは該モノ
マと結合しうる官能基を有する物質を用いることができ
る。このようなものとしてはたとえば、オレイン酸、ス
テアリン酸、パルミチン酸等の高級脂肪酸、アクリル酸
、メタクリル酸等の不飽和カルボン酸及び、アミノエチ
ルアクリレート、ヒドロキンエチルアクリレート、ンア
ノエチルアクリレート等の極性基を有するアクリル酸エ
ステル、チタネートカップリング剤、シランカップリン
グ剤等のカップリング剤等を挙げることかできる。この
中でも、チタネートカップリング剤やシランカップリン
グ剤の様に、チタニア粉体と強力に結合する官能基を有
するものか好ましい。例えば、チタネートカップリング
剤としては、ピロホスフェート型の親油基を有するイソ
プロピルトリス(ジオクチルピロホスフェート)、ビス
(ジオクチルピロホスフェート)チタネートか挙げられ
、ホスフェート型の親油基を有するものとしてはテトラ
オクチルビス(ノトリデンルホスフェート)チタネート
等が挙げられ、シランカップリング剤であれば、ビニル
基を有するもの、例えばビニルトリクロルノラン、ビニ
ルトリメトキノノラン、γ−メタクリルオキシプロピル
トリメトキシンラン等が挙げられる。
The lipophilic agent used in this invention is a hydrocarbon that has a functional group that strongly adsorbs or binds to the titania powder and has a high affinity with the polymerizable vinyl monomer, or a functional group that can bind to the monomer. Substances having groups can be used. Examples of such substances include higher fatty acids such as oleic acid, stearic acid, and palmitic acid, unsaturated carboxylic acids such as acrylic acid and methacrylic acid, and polar Examples include coupling agents such as acrylic esters having groups, titanate coupling agents, and silane coupling agents. Among these, those having a functional group that strongly bonds with titania powder, such as titanate coupling agents and silane coupling agents, are preferred. For example, examples of titanate coupling agents include isopropyl tris(dioctyl pyrophosphate) and bis(dioctyl pyrophosphate) titanate, which have a pyrophosphate type lipophilic group, and tetraoctyl titanate has a phosphate type lipophilic group. Examples include bis(notridenylphosphate) titanate, and examples of silane coupling agents include those having a vinyl group, such as vinyl trichlornolane, vinyltrimethoquinonolane, and γ-methacryloxypropyltrimethoxinelan.

この発明に用いる上記重合性ビニル系モノマとしては、
水系に分散された状態で球状の油滴として存在てき、か
つ重合条件下で重合体を形成しうるモノマてあれば、公
知のものをそのまま使用することかできる。また上記モ
ノマは、1種で用いられてもよく、2種以上で用いられ
てもよく、またさらに、公知の架橋剤と併用されて用い
られてもよい。上記モノマとしては、アクリル酸メチル
、アクリル酸エチル等のアクリル酸エステル、メタクリ
ル酸メチル、メタクリル酸エチル等のメタクリル酸エス
テルおよびスチレン等の芳香族ビニル化合物が好適なも
のとして挙げられる。上記架橋剤としては、例えば、エ
チレングリコールジメタクリレート、テトラエチレング
リコールジメタクリレートおよびトリメチロールプロパ
ントリメタクリレートの様な多価アルコールのメタクリ
ル酸エステルや、ジビニルベンゼン等が好適なものとし
て使用できる。また、前記重合開始剤としては、使用す
る重合性ビニル系モノマに可溶なものであればよく、例
えば通常使用される過酸化ベンゾイル、過酸化ラウロイ
ル、過酸化ジアセチル等の過酸化物およびアゾビスイソ
ブチロニトリル、アゾビスジメチルバレロニトリル等の
アゾ化合物等を挙げることができる。
The polymerizable vinyl monomer used in this invention includes:
Any known monomer that exists as spherical oil droplets when dispersed in an aqueous system and can form a polymer under polymerization conditions can be used as is. Moreover, the above-mentioned monomers may be used alone or in combination of two or more kinds, and furthermore, they may be used in combination with a known crosslinking agent. Suitable monomers include acrylic esters such as methyl acrylate and ethyl acrylate, methacrylic esters such as methyl methacrylate and ethyl methacrylate, and aromatic vinyl compounds such as styrene. Suitable examples of the crosslinking agent include methacrylic acid esters of polyhydric alcohols such as ethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, and trimethylolpropane trimethacrylate, divinylbenzene, and the like. The polymerization initiator may be any initiator as long as it is soluble in the polymerizable vinyl monomer used, such as commonly used peroxides such as benzoyl peroxide, lauroyl peroxide, and diacetyl peroxide; Examples include azo compounds such as isobutyronitrile and azobisdimethylvaleronitrile.

この発明に用いる有機溶剤としては、上記重合性ビニル
系モノマと相溶性で、かつ水と実質的に相溶性を有しな
いものが用いられる。水と実質的に相溶性を有しないと
は、水に不溶ないしは微溶性のものを意味する。またこ
の有機溶剤は、下記するチタニア粉体と重合性ビニル系
モノマとからなる混合物の粘度調整に用いられるもので
あり、従って常温で30センチポイズ(CP)以下の粘
度を有するものが好ましく、さらに用いられる重合性ビ
ニル系モノマと親和性を有するものが好ましい。このよ
うな有機溶剤としては、酢酸メチル、酢酸エチル等の酢
酸エステル、ヘキサン、ヘプタン等の炭化水素、メチル
エチルケトン、メチルイソブチルケトン等のケトン類あ
るいはベンゼン、トルエン等の芳香族炭化水素等が挙げ
られる。
The organic solvent used in this invention is one that is compatible with the polymerizable vinyl monomer and substantially incompatible with water. "Substantially incompatible with water" means insoluble or slightly soluble in water. Further, this organic solvent is used to adjust the viscosity of a mixture consisting of titania powder and a polymerizable vinyl monomer as described below. Therefore, it is preferable that the organic solvent has a viscosity of 30 centipoise (CP) or less at room temperature. It is preferable that the polymerizable vinyl monomer has an affinity with the polymerizable vinyl monomer. Examples of such organic solvents include acetic acid esters such as methyl acetate and ethyl acetate, hydrocarbons such as hexane and heptane, ketones such as methyl ethyl ketone and methyl isobutyl ketone, and aromatic hydrocarbons such as benzene and toluene.

この発明において、上記した親油化剤で表面処理された
チタニア粉体、重合性ビニル系モノマ、必要に応して添
加される有機溶剤等により、スラリ状の混合物か調製さ
れる。このスラリの調製に際して、チタニア粉体は、重
合性ビニル系モノマ100重量部に対して、通常150
〜1300重量部の範囲で用いられ、得られるチタニア
粒子の多孔質量および球形度の点から、230〜100
0重量部の範囲で用いられることが好ましい。また親油
化剤は、親油化剤の最小被覆面積および用いるチタニア
粉体の比表面積により決定されるが、通常チタニア粉体
に対して0.2〜3.0重量部の範囲で用いられる。
In the present invention, a slurry-like mixture is prepared from titania powder surface-treated with the lipophilic agent described above, a polymerizable vinyl monomer, an organic solvent added as necessary, and the like. When preparing this slurry, the amount of titania powder is usually 150 parts by weight per 100 parts by weight of the polymerizable vinyl monomer.
-1300 parts by weight, and from the viewpoint of the porosity and sphericity of the titania particles obtained, the range is 230 to 100 parts by weight.
It is preferably used in a range of 0 parts by weight. The lipophilic agent is determined by the minimum coverage area of the lipophilic agent and the specific surface area of the titania powder used, but is usually used in an amount of 0.2 to 3.0 parts by weight based on the titania powder. .

また有機溶剤は、上記スラリ状混合物を、下記する水系
中での分散時において、球状の油滴に維持できる粘度に
調製するための必要量で用いられる。
The organic solvent is used in an amount necessary to adjust the slurry mixture to a viscosity that can maintain spherical oil droplets during dispersion in an aqueous system as described below.

この量としては、重合性ビニル系モノマ100重量部に
対して、1〜200重量部の範囲で用いられることが適
しており、1〜150重量部の範囲で用いられることが
好ましい。上記量が200重量部以上の場合は、チタニ
ア粉体同志を結合する重合体の実質的強度を得ることが
困難となる点で好ましくない。
This amount is suitably used in the range of 1 to 200 parts by weight, and preferably in the range of 1 to 150 parts by weight, based on 100 parts by weight of the polymerizable vinyl monomer. If the above amount is 200 parts by weight or more, it is not preferable because it becomes difficult to obtain substantial strength of the polymer that binds the titania powder together.

また重合開始剤は、重合性ビニル系モノマの0.1〜2
.0重量%の範囲で用いるのが好ましい。上記スラリ状
混合物は、前述の表面処理と同様の機械的方法等により
、均一なスラリに調製される。
In addition, the polymerization initiator is 0.1 to 2 of the polymerizable vinyl monomer.
.. It is preferable to use it in a range of 0% by weight. The above-mentioned slurry-like mixture is prepared into a uniform slurry by a mechanical method similar to the above-mentioned surface treatment.

この発明において、上記のごとく調製されたスラリ状混
合物は、水系中に分散され、かつ該混合物中の重合性ビ
ニル系モノマの重合条件に付される。上記分散は前述と
同様の機械的方法により達成される。このとき分散条件
は、後述する粒径範囲の樹脂被覆チタニア球体が得られ
る油滴の大きさで分散されるように設定される。上記重
合は、用いる重合性ビニル系モノマの種類に応じて調節
することにより達成されるが、通常の懸濁重合の条件が
そのまま適用できる。
In this invention, the slurry mixture prepared as described above is dispersed in an aqueous system and subjected to polymerization conditions for the polymerizable vinyl monomer in the mixture. The dispersion is accomplished by mechanical methods similar to those described above. At this time, the dispersion conditions are set so that the oil droplets are dispersed in a size that yields resin-coated titania spheres having a particle size range described below. The above polymerization is achieved by adjusting the polymerization according to the type of polymerizable vinyl monomer used, but ordinary suspension polymerization conditions can be applied as they are.

上記分散・重合により、水系中て、重合性ビニル系モノ
マの重合物からなる樹脂で被覆・複合されたチタニア粉
体の集合体であって、1μm〜1jlj+の粒径を有す
る球状の樹脂被覆チタニア球体が得られる。このチタニ
ア球体は、常法により口利、乾燥される。これらのうち
、粒径15um〜50μmの球体を選別して用いるのが
、焼結体の機械的強度の点でより好ましい。
Through the above dispersion and polymerization, spherical resin-coated titania, which is an aggregate of titania powder coated and composited with a resin made of a polymer of a polymerizable vinyl monomer in an aqueous system, has a particle size of 1 μm to 1 jlj+. A sphere is obtained. The titania spheres are dried in a conventional manner. Among these, it is more preferable to select and use spheres with a particle size of 15 um to 50 um from the viewpoint of mechanical strength of the sintered body.

この発明において、上記のごとく得られる樹脂被覆多孔
質チタニア球体は、所定の形状に加圧成形される。この
ときの加圧条件は用いる上記樹脂被覆多孔質チタニア球
体の大きさにより異なるが、所望の成形体形状を保持し
得るに足る圧力で負荷される。
In this invention, the resin-coated porous titania sphere obtained as described above is pressure-molded into a predetermined shape. Pressurizing conditions at this time vary depending on the size of the resin-coated porous titania sphere used, but a pressure sufficient to maintain the desired molded shape is applied.

上記加圧成形により所望の形状に保持された樹脂被覆チ
タニア球体の集合体は、次いて加熱処理に付される。こ
の加熱処理は、上記チタニア球体の樹脂が炭化されるこ
となく円滑に除去されると共に該チタニア球体中の各チ
タニア粉体間か溶融結合する条件下、すなわち集合体を
構成する多孔質チタニア球体が実質的に非多孔質のチタ
ニア球体に変換される条件下で行われる。かかる加熱処
理における加熱温度は1150〜1550℃程度に設定
される。1150℃以下では焼結体の密度が小さすぎて
適さず、1550℃を越えるとチタニア球体内のみなら
ず、チタニア球体間が融合して焼結体としての所望の多
孔度が確保できないため好ましくない。
The aggregate of resin-coated titania spheres held in the desired shape by the pressure molding is then subjected to heat treatment. This heat treatment is carried out under conditions in which the resin of the titania spheres is smoothly removed without being carbonized, and the titania powders in the titania spheres are fused together, that is, the porous titania spheres constituting the aggregate are It is carried out under conditions that convert it into substantially non-porous titania spheres. The heating temperature in this heat treatment is set to about 1150 to 1550°C. If the temperature is below 1150°C, the density of the sintered body is too low and it is not suitable, and if it exceeds 1550°C, not only the titania spheres but also the titania spheres will fuse together, making it impossible to secure the desired porosity of the sintered body, which is undesirable. .

とくに好ましい加熱温度は1250〜1400℃である
A particularly preferred heating temperature is 1250 to 1400°C.

但し上記加熱温度への昇温状態としては、1000°C
の昇温までは、長時間(例えば5時間)かけることが、
樹脂の炭化を避ける点で必要である。一方、加熱保持時
間は、通常1〜6時間程度で充分である。
However, the temperature raised to the above heating temperature is 1000°C.
It may take a long time (for example, 5 hours) to raise the temperature to
This is necessary to avoid carbonization of the resin. On the other hand, the heating and holding time is usually about 1 to 6 hours.

このような処理により、密度2.59/cm’以上の多
孔質チタニア焼結体を得ることができる。かかる多孔質
チタニア焼結体は、非多孔質のチタニア球体(通常1〜
50μ−1好ましくは15〜50μ11)が集合一体化
された多孔体からなり、細孔分布が均一でかつ優れた機
械的強度を備えたものである。
Through such treatment, a porous titania sintered body having a density of 2.59/cm' or more can be obtained. Such a porous titania sintered body is a non-porous titania sphere (usually 1 to
It is made of a porous body in which 50μ-1 (preferably 15 to 50μ11) are aggregated and integrated, and has a uniform pore distribution and excellent mechanical strength.

そして、この細孔の気孔率や焼結体密度は、チタニア粉
体の含有量、チタニア球体の粒径等を調節することによ
り、上記特性を損なわない範囲で簡便に制御することが
できる。
The porosity of the pores and the density of the sintered body can be easily controlled within a range that does not impair the above characteristics by adjusting the titania powder content, the particle size of the titania spheres, etc.

(ホ)作用 この発明によれば、親油化剤で表面処理されたチタニア
粉体と、重合性ビニル系モノマと、必要に応じて添加さ
れる有機溶剤とからなる混合物において、チタニア粉体
の処理表面に重合性ビニル系モノマの薄層が形成される
。この状態の混合物が水系中に油滴として分散されると
、油滴は球状に保持され、その状態で各油滴内の上記重
合性ビニル系モノマが重合に付されることにより、チタ
ニア粉体が重合体により複合・被覆され、かつチタニア
粉体同志が該粉体同志の接触点で重合体により結合され
、その結果−旦、多孔質状でかつ球状の樹脂被覆チタニ
ア球体が得られることとなる。
(E) Effect According to the present invention, in a mixture consisting of titania powder surface-treated with a lipophilic agent, a polymerizable vinyl monomer, and an organic solvent added as necessary, titania powder A thin layer of polymerizable vinyl monomer is formed on the treated surface. When the mixture in this state is dispersed as oil droplets in an aqueous system, the oil droplets are held in a spherical shape, and in this state, the polymerizable vinyl monomer in each oil droplet is polymerized, resulting in titania powder. is composited and coated with a polymer, and the titania powders are bonded together by the polymer at the contact points of the powders, and as a result, porous and spherical resin-coated titania spheres are obtained. Become.

次いでこの樹脂被覆多孔質チタニア球体は、所定の形状
に加圧成形されて集合され、さらに加熱処理に付される
と、被覆樹脂は焼却除去さると共に1つの球体内で球状
に集合されたチタニア粉体同志が密に融着されて非多孔
質焼結球体となると共に、これらの非多孔質焼結球体同
志が球体の接触部で融着されて、多孔質チタニア焼結体
か得られることとなる。
The resin-coated porous titania spheres are then pressure-molded into a predetermined shape and aggregated, and then subjected to heat treatment, where the coating resin is incinerated and removed, and titania powder aggregated into a spherical shape is formed within one sphere. The bodies are closely fused together to form a non-porous sintered sphere, and these non-porous sintered spheres are fused together at the contact area of the spheres to obtain a porous titania sintered body. Become.

以下、実施例によりこの発明を説明するが、これにより
この発明は限定されるものではない。
EXAMPLES The present invention will be explained below with reference to Examples, but the present invention is not limited thereby.

(へ)実施例 [樹脂複合二酸化チタン球状粒子の調製]実施例1 2Qのビーカーにメチルメタクリレート279g、ンラ
ンカップリング剤[γ−メタクリルオキシプロピルトリ
メトキンンラン、東しンリコーン(株)製5Z−603
0] 21.09、アゾビスイソブチロニトリル0.6
09を入れ、溶解した後、二酸化チタン(ルチル型、粒
径0.2μm、帝国化工(株)製JR−60OA) 7
00gを加え、プロペラ翼を備えた撹拌装置で200O
rpmで2時間表面処理した。
(f) Example [Preparation of resin composite titanium dioxide spherical particles] Example 1 In a 2Q beaker, 279 g of methyl methacrylate, Nran coupling agent [γ-methacryloxypropyltrimethoxynran, 5Z-603 manufactured by Toshin Ricoh Co., Ltd.]
0] 21.09, azobisisobutyronitrile 0.6
After adding 09 and dissolving it, titanium dioxide (rutile type, particle size 0.2 μm, JR-60OA manufactured by Teikoku Kako Co., Ltd.) 7
00g and heated to 200O using a stirrer equipped with propeller blades.
The surface was treated for 2 hours at rpm.

5gオートクレーブに複分解ビロリン酸マグネシウム6
09とドデンルベンゼンスルホン酸ソーダ2.69を含
む水2.6に9を入れ、次いで上記スラリーを加えて乳
化させ、窒素置換しf二後、撹拌速度を50Orpmに
設定し、60℃で重合した。重合終了後、室温まで冷却
し、分散剤を塩酸で分解しに後、ろ過分離した。得られ
た粒子を走査型電子顕微鏡(SEM)で観察したところ
、約8μmの中心径を持つ、球状の粒子で、ポリメチル
メタクリレート(PMMA)樹脂により被覆され1こ二
酸化チタン球状粒子を形成していた。
5g autoclave metathesized magnesium birophosphate 6
Add 9 to 2.6 of water containing 09 and 2.69 of sodium dodenlebenzenesulfonate, then add the above slurry to emulsify, replace with nitrogen, set the stirring speed to 50 rpm, and polymerize at 60 ° C. did. After the polymerization was completed, the mixture was cooled to room temperature, the dispersant was decomposed with hydrochloric acid, and then separated by filtration. When the obtained particles were observed with a scanning electron microscope (SEM), they were found to be spherical particles with a center diameter of approximately 8 μm, and were coated with polymethyl methacrylate (PMMA) resin to form monotitanium dioxide spherical particles. Ta.

実施例2 21!のビーカーにメチルメタクリレート2799、ン
ランカップリング剤[γ−メタクリルオキンプロビルト
リメトキシシラン、東しンリコーン(株)製5Z−60
30] 21.09、アゾビスイソブチロニトリル0.
609を入れ、溶解した後二酸化チタン(ルチル型、粒
径0.2μm、帝国化工(株)製Jl’l−600A)
 7009を加え、プロペラ翼を備えた撹拌装置で20
0Orpmで2時間表面処理した。
Example 2 21! Methyl methacrylate 2799, Nran coupling agent [γ-methacryloquine propyltrimethoxysilane, Toshinricorn Co., Ltd. 5Z-60] were placed in a beaker.
30] 21.09, azobisisobutyronitrile 0.
After adding 609 and dissolving it, add titanium dioxide (rutile type, particle size 0.2 μm, Jl'l-600A manufactured by Teikoku Kako Co., Ltd.)
Add 7009 and mix with a stirrer equipped with propeller blades.
The surface was treated at 0 rpm for 2 hours.

5gオートクレーブに複分解ピロリン酸マグネノウムロ
0gとドデンルベンゼンスルホン酸ソーダ269を含む
水2.6kgを入れ、次いて上記スラリーを加えて乳化
させ、窒素置換した後、撹拌速度を40Orpmに設定
し、60℃で重合した。重合終了後、室温まで冷却し、
分散剤を塩酸で分解した後、ろ過分離した。得られた粒
子を走査型電子顕微鏡(SEM)で観察したところ、約
20μmの中心径を持つ、球状の粒子で、ポリメチルメ
タクリレート(P MMA )樹脂により被覆複合され
た二酸化チタン球状粒子を形成していた。
Put 2.6 kg of water containing 0 g of metathesized magnesium pyrophosphate and 269 g of sodium dodenlebenzene sulfonate into a 5 g autoclave, then add the above slurry to emulsify it, replace the air with nitrogen, set the stirring speed to 40 Orpm, and heat at 60°C. Polymerized with After polymerization, cool to room temperature,
After the dispersant was decomposed with hydrochloric acid, it was separated by filtration. When the obtained particles were observed with a scanning electron microscope (SEM), they were spherical particles with a center diameter of about 20 μm, forming composite titanium dioxide spherical particles coated with polymethyl methacrylate (PMMA) resin. was.

実施例3 212のビーカーにメチルメタクリレート249g、エ
チレンダレコールジメタクリレート30f!、酢酸ブチ
ル300g、チタネートカップリング剤[ヒス(ジオク
チルピロホスフェート)オキンアセテートチタネート、
味の素(株)製ブレンアクトKR−138S)210g
、アゾビスイソブチロニトリル014gを入れ、溶解し
た後、二酸化チタン(ルチル型、粒径0.2μm、帝国
化工(株)製JR−60OA) 7009を加え、プロ
ペラ翼を備えた撹拌装置で200Orpmで2時間表面
処理した。
Example 3 249g of methyl methacrylate and 30f of ethylene darecol dimethacrylate in a 212 beaker! , butyl acetate 300g, titanate coupling agent [his(dioctylpyrophosphate) oquinacetate titanate,
Blenact KR-138S (manufactured by Ajinomoto Co., Inc.) 210g
, 014 g of azobisisobutyronitrile was added and dissolved, and then titanium dioxide (rutile type, particle size 0.2 μm, JR-60OA manufactured by Teikoku Kako Co., Ltd.) 7009 was added and stirred at 200 rpm using a stirring device equipped with propeller blades. The surface was treated for 2 hours.

5Qオートクレーブに複分解ピロリン酸マグネシウム5
0gとドデンルベンゼンスルホン酸ソーダ075gを含
む水2.5kgを入れ、次いで上記スラリーを加えて乳
化させ、窒素置換し1こ後、撹拌速度を40Orpmに
設定し、60℃で重合した。重合終了後、室温まで冷却
し、分散剤を塩酸で分解しに後、ろ過分離した。得られ
た粒子を走査型電子顕微鏡(SEM)て観察したところ
、約50μmの中心径を持つ球状てポリメチルメタクリ
レート(PMMA)樹脂により被覆複合された二酸化チ
タン球状粒子を形成してい1ニ。
Magnesium pyrophosphate metathesis in 5Q autoclave 5
2.5 kg of water containing 0 g of sodium dodenlebenzene sulfonate and 075 g of sodium dodenlebenzene sulfonate were added thereto, and then the above slurry was added and emulsified. After purging with nitrogen, the stirring speed was set to 40 Orpm, and polymerization was carried out at 60°C. After the polymerization was completed, the mixture was cooled to room temperature, the dispersant was decomposed with hydrochloric acid, and then separated by filtration. When the obtained particles were observed using a scanning electron microscope (SEM), they were found to be spherical titanium dioxide spherical particles coated with polymethyl methacrylate (PMMA) resin and having a center diameter of approximately 50 μm.

[二酸化チタネート球状粒子焼結体の調製]実施例4 実施例1のようにして得られたPMMA複合二酸化チタ
ン球状粒子を0.59秤量し、これを成形用金型[12
,5xxφx27.5*xh]に充填した。成形圧I 
ton/ am’で15秒間加圧成形し、見掛は密度1
.879/cI113の成形体を得た。次いで、上記P
MMA複合二酸化チタン球状粒子成形体を5個重ねて電
気炉に入れ、1300℃におてい3時間焼成して焼結体
を得た。この焼結体の見掛は密度は3.819/c+a
”であつf二。
[Preparation of sintered titanate dioxide spherical particles] Example 4 0.59 of the PMMA composite titanium dioxide spherical particles obtained as in Example 1 were weighed, and this was placed in a mold for molding [12
, 5xxφx27.5*xh]. Molding pressure I
Pressure molded at ton/am' for 15 seconds, with an apparent density of 1
.. A molded article of 879/cI113 was obtained. Next, the above P
Five MMA composite titanium dioxide spherical particle molded bodies were stacked and placed in an electric furnace, and fired at 1300° C. for 3 hours to obtain a sintered body. The apparent density of this sintered body is 3.819/c+a
”And attu f2.

また、この焼結体を走査型電子顕微鏡(SEM)で観察
しにところ、第1図のように二酸化チタン球状粒子の原
形を失って焼結された焼結体を構成していることか観察
された。
In addition, when observing this sintered body with a scanning electron microscope (SEM), it was observed that the sintered body was composed of titanium dioxide spherical particles that had lost their original shape as shown in Figure 1. It was done.

実施例5 実施例2のようにして得られたPMMA複合二酸化チタ
ン球状粒子を0.59秤量し、これを成形用金型[12
,5xyφX 27.5■hコに充填した。成形圧l 
ton/ cm’で15秒間加圧成形し、見掛は密度1
849/cm3の成形体を得た。次いで、上記PMMA
複合二酸化チタン球状粒子成形体を5個重ねて電気炉に
入れ、1300℃におてい3時間焼成して焼結体を得た
。この焼結体の見掛は密度は3.019/cm3てあっ
た。
Example 5 0.59 of the PMMA composite titanium dioxide spherical particles obtained as in Example 2 were weighed and placed in a mold for molding [12
, 5xyφX 27.5■h. Molding pressure l
Pressure molded at ton/cm' for 15 seconds, with an apparent density of 1
A molded article having a particle size of 849/cm3 was obtained. Then, the above PMMA
Five composite titanium dioxide spherical particle molded bodies were stacked and placed in an electric furnace, and fired at 1300° C. for 3 hours to obtain a sintered body. The apparent density of this sintered body was 3.019/cm3.

また、この焼結体を走査型電子顕微鏡(SEM)で観察
したところ、第2図のように二酸化チタン球状粒子の原
形を維持したまま約22%収縮しT二焼結体を構成して
いることが観察された。′実施例6 実施例3のようにして得られ1こPMMA複合二酸化チ
タン球状粒子を0.5g秤量し、これを成形用金型[1
2,5xxφX27.5zxhコに充填しT二。成形圧
l ton/ cm’で15秒間加圧成形し、見掛は密
度1929/cm3の成形体を得1こ。次いて、上記P
MMA複合二酸化チタン球状粒子成形体を5個重ねて電
気炉に入れ、1300℃におてい3時間焼成して焼結体
を得た。この焼結体の見掛は密度は3.20g/am3
てあった。
Furthermore, when this sintered body was observed with a scanning electron microscope (SEM), as shown in Figure 2, the titanium dioxide spherical particles had shrunk by approximately 22% while maintaining their original shape, forming a T2 sintered body. It was observed that 'Example 6 0.5 g of PMMA composite titanium dioxide spherical particles obtained as in Example 3 was weighed and placed in a mold for molding [1].
Fill 2,5xxφX27.5zxh and T2. Pressure molding was carried out for 15 seconds at a molding pressure of 1 ton/cm' to obtain one molded product with an apparent density of 1929/cm3. Next, the above P
Five MMA composite titanium dioxide spherical particle molded bodies were stacked and placed in an electric furnace, and fired at 1300° C. for 3 hours to obtain a sintered body. The apparent density of this sintered body is 3.20 g/am3
There was.

また、この焼結体を走査型電子顕微鏡(SEM)で観察
したところ、第3図のように二酸化チタン球状粒子の原
形を維持したまま約20%収縮した焼結体を構成してい
ることが観察された。
Furthermore, when this sintered body was observed using a scanning electron microscope (SEM), it was found that the sintered body had shrunk by approximately 20% while maintaining the original shape of the titanium dioxide spherical particles, as shown in Figure 3. observed.

実施例7 実施例4.5及び6で得られた各チタニア焼結体をJI
SR−1601にしにかって、3点曲げ強度試験に付し
てその機械的強度を評価した。その結果を下表に示す。
Example 7 Each titania sintered body obtained in Examples 4.5 and 6 was subjected to JI
SR-1601 was then subjected to a three-point bending strength test to evaluate its mechanical strength. The results are shown in the table below.

このように、実施例4〜6のチタニア焼結体は、優れた
機械的強度を有するものであった。
Thus, the titania sintered bodies of Examples 4 to 6 had excellent mechanical strength.

(ト)発明の効果 この発明の多孔質チタニア焼結体は、非多孔質チタニア
球体が集合、一体化されたものであり、均一な細孔分布
と優れた機械的強度を兼ね備えたものである。そしてこ
の発明の製造法によれば、かかる多孔質チタニア焼結体
を効率良く製造できると共に、その気孔率や機械的強度
を再現性良く簡便に制御することができる。
(g) Effects of the invention The porous titania sintered body of this invention is a collection and integration of non-porous titania spheres, and has both a uniform pore distribution and excellent mechanical strength. . According to the manufacturing method of the present invention, such a porous titania sintered body can be efficiently manufactured, and its porosity and mechanical strength can be easily controlled with good reproducibility.

したがって、この発明によれば、工業用医療用材料やフ
ィルター、化粧品等、また、センサー素子、触媒、耐火
材料等の高機能性材料として多くの応用分野で利用でき
る実用強度を備えたセラミックス多孔質材料を簡便に提
供することか可能とな
Therefore, according to the present invention, a porous ceramic material with practical strength that can be used in many application fields as a highly functional material such as industrial medical materials, filters, cosmetics, etc., as well as sensor elements, catalysts, and fire-resistant materials, etc. Is it possible to provide materials easily?

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は各々この発明の実施例4〜6で得られ
た多孔質チタニア焼結体の粒子及び気孔構造を拡大写真
で示す図である。 、レジ ト ぐ※ 9C;
1 to 3 are enlarged photographs showing the particles and pore structures of porous titania sintered bodies obtained in Examples 4 to 6 of the present invention, respectively. , Regitogu* 9C;

Claims (1)

【特許請求の範囲】 1、非多孔質チタニア球体が集合・焼結されてなる多孔
質チタニア焼結体。 2、密度が2.5g/cm^3以上である請求項1記載
の多孔質チタニア焼結体。 3、親油化剤で表面処理されたチタニア粉体と、重合性
ビニル系モノマと、必要に応じて添加される上記モノマ
と相溶性でかつ水と実質的に相溶性を有しない有機溶剤
とからなる混合物を、水系に分散し、上記モノマを重合
させることにより、樹脂で被覆されたチタニア粉体の集
合体からなる多孔質チタニア球体を得、次いでこの樹脂
被覆多孔質球体を集合して加圧成形した後、該多孔質チ
タニア球体を非多孔質に変換しうる温度下で加熱焼結す
ることにより、請求項1記載の多孔質チタニア焼結体を
得ることを特徴とする多孔質チタニア焼結体の製造方法
[Claims] 1. A porous titania sintered body formed by aggregating and sintering non-porous titania spheres. 2. The porous titania sintered body according to claim 1, which has a density of 2.5 g/cm^3 or more. 3. Titania powder surface-treated with a lipophilic agent, a polymerizable vinyl monomer, and an organic solvent that is compatible with the above monomer and is substantially incompatible with water, which is added as necessary. A mixture consisting of the above is dispersed in an aqueous system and the monomers are polymerized to obtain porous titania spheres consisting of aggregates of resin-coated titania powder, and then the resin-coated porous spheres are aggregated and processed. A porous titania sintered body characterized in that the porous titania sintered body according to claim 1 is obtained by press-forming and then heating and sintering the porous titania spheres at a temperature that allows the porous titania spheres to become non-porous. Method for producing solids.
JP2237452A 1990-09-07 1990-09-07 Porous titania sintered body and method for producing the same Expired - Lifetime JP2502798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2237452A JP2502798B2 (en) 1990-09-07 1990-09-07 Porous titania sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2237452A JP2502798B2 (en) 1990-09-07 1990-09-07 Porous titania sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH04115906A true JPH04115906A (en) 1992-04-16
JP2502798B2 JP2502798B2 (en) 1996-05-29

Family

ID=17015555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2237452A Expired - Lifetime JP2502798B2 (en) 1990-09-07 1990-09-07 Porous titania sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP2502798B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6131369A (en) * 1984-07-20 1986-02-13 三菱レイヨン株式会社 Porous and manufacture
JPS62278177A (en) * 1986-05-28 1987-12-03 東京窯業株式会社 Manufacture of porous ceramics
JPS62283882A (en) * 1986-05-29 1987-12-09 東京窯業株式会社 Manufacture of porous ceramics
JPS63270368A (en) * 1987-04-30 1988-11-08 Okura Ind Co Ltd Production of porous ceramic
JPH02111678A (en) * 1988-10-20 1990-04-24 Mitsui Constr Co Ltd Method for preventing rust of metallic material in inorganic material, such as concrete

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6131369A (en) * 1984-07-20 1986-02-13 三菱レイヨン株式会社 Porous and manufacture
JPS62278177A (en) * 1986-05-28 1987-12-03 東京窯業株式会社 Manufacture of porous ceramics
JPS62283882A (en) * 1986-05-29 1987-12-09 東京窯業株式会社 Manufacture of porous ceramics
JPS63270368A (en) * 1987-04-30 1988-11-08 Okura Ind Co Ltd Production of porous ceramic
JPH02111678A (en) * 1988-10-20 1990-04-24 Mitsui Constr Co Ltd Method for preventing rust of metallic material in inorganic material, such as concrete

Also Published As

Publication number Publication date
JP2502798B2 (en) 1996-05-29

Similar Documents

Publication Publication Date Title
KR101278410B1 (en) Process for producing hollow microspheres and process for producing porous molded ceramic
JP6921207B2 (en) Manufacture and use of porous bead polymers in 3D printing by binder jetting
US5846639A (en) Monolithic activated carbon
US4948818A (en) Method of making porous hydrophilic-lipophilic copolymeric powders
TWI291944B (en) Process for the production of inverse opal-like structures
US8147783B2 (en) Nickel hydroxide powder and method for producing same
JP2003073180A (en) Porous compact
JPH04305286A (en) Method of recovering oil from water surface
US4898913A (en) Method of making hydrophobic copolymers hydrophilic
JP2004123834A (en) Porous hollow polymer particle, method for manufacturing porous hollow polymer particle, porous ceramic filter and method for manufacturing porous ceramic filter
EP1803493B1 (en) Method for manufacturing filters
JPH04115906A (en) Porous titania sintered body and its manufacture
AU632148B2 (en) Ceramic material
JPH0641394B2 (en) Method for producing porous titania sintered body
US5169904A (en) Method of making hydrophobic copolymers hydrophilic
JPH0775666B2 (en) Method for producing encapsulated particles
JP4217515B2 (en) Method for producing hollow resin particles
US5135989A (en) Method of making hydrophobic copolymers hydrophilic
JPH02129008A (en) Production of cellular inorganic sphere
JPH0234602A (en) Manufacture of composite polymer particle
JP3955477B2 (en) Method for producing alumina hollow particles
JPH06219865A (en) Porous titania sintered compact and its production
JP4513463B2 (en) Magnetic particles and method for producing the same
JPH0676981B2 (en) Moisture sensitive material and moisture sensitive element
JP2003034703A (en) Production method for polymer particles of polystyrene particle, etc.