JPH06219865A - Porous titania sintered compact and its production - Google Patents

Porous titania sintered compact and its production

Info

Publication number
JPH06219865A
JPH06219865A JP2751193A JP2751193A JPH06219865A JP H06219865 A JPH06219865 A JP H06219865A JP 2751193 A JP2751193 A JP 2751193A JP 2751193 A JP2751193 A JP 2751193A JP H06219865 A JPH06219865 A JP H06219865A
Authority
JP
Japan
Prior art keywords
titania
porous
sintered body
porous titania
fired
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2751193A
Other languages
Japanese (ja)
Inventor
Keishin Ohara
佳信 尾原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2751193A priority Critical patent/JPH06219865A/en
Publication of JPH06219865A publication Critical patent/JPH06219865A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To increase the hardness of a porous titania sintered compact by sintering a compact at >=1,300 deg.C and to obtain a porous titania sintered compact maintaining its porosity by using polymethyl methacrylate coated titania balls having 50-150mum average particle diameter. CONSTITUTION:Titania powder 1 is aggregated with polymethyl methacrylate resin 2 which vanishes at a sintering temp. to form polymethyl meth-acrylate coated titania balls 3 having 50-150mum average particle diameter. The balls 3 are then compacted and the resulting compact 4 is sintered at >=1,300 deg.C to obtain the objective porous titania sintered compact 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば工業用医療用材
料、センサ、触媒担体、耐火材等の高機能材料として多
くの応用分野で利用できる多孔質チタニア焼結体および
その製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous titania sintered body which can be used in many fields of application as high-performance materials such as industrial medical materials, sensors, catalyst carriers, refractory materials, etc., and a method for producing the same. Is.

【0002】[0002]

【従来の技術】従来より、チタニア等のセラミックス多
孔質体が、その比表面積を極めて増加させることができ
るから、センサや触媒として有用であることが知られて
いる。
2. Description of the Related Art Conventionally, it has been known that porous ceramics such as titania can be extremely increased in specific surface area and are therefore useful as sensors and catalysts.

【0003】そのようなセラミックス多孔質体の製造方
法としては、特開平2−239169号公報に開示されている
ように、焼成する際に消失する合成樹脂等の結合材を用
いてセラミックス粉体から樹脂被覆セラミックス球体を
作成し、その樹脂被覆セラミックス球体を成形して、焼
成することにより、上記結合材を消失させて、セラミッ
クス多孔質体を製造する方法が知られている。
As a method for producing such a porous ceramic body, as disclosed in Japanese Patent Laid-Open No. 2-239169, a binder such as a synthetic resin that disappears during firing is used to remove a ceramic powder from a ceramic powder. There is known a method of producing a resin-coated ceramic sphere, molding the resin-coated ceramic sphere, and firing the sphere to eliminate the binder, thereby producing a ceramic porous body.

【0004】このように多孔質体とすることによって、
その比表面積を増加させることが可能であるから、セン
サや触媒担体等の機能の発現を調節したり、向上させた
りでき、また、セラミックス粉体と比べて、その操作性
も高めることができるものとなっている。
By thus forming a porous body,
Since it is possible to increase its specific surface area, it is possible to control or improve the expression of functions of a sensor, a catalyst carrier, etc., and also to improve its operability as compared with ceramic powder. Has become.

【0005】ところで、セラミックス多孔質体は、強度
を高めるために、その硬度が高い方が望ましく、また、
温度変化の大きい環境下において使用する際には、その
熱膨張率が低い方が好ましい。
By the way, it is desirable that the hardness of the porous ceramic body is high in order to enhance its strength.
When used in an environment where the temperature changes greatly, it is preferable that the coefficient of thermal expansion be low.

【0006】[0006]

【発明が解決しようとする課題】ところが、上記従来の
方法では、得られた多孔質セラミックス焼結体の硬度等
を向上させるために、焼結温度を、1300℃以上に高めれ
ばよいが、そのような焼結温度によって得られる焼結体
は、焼結の際に結晶が成長するために多孔質性が失われ
るという問題を生じている。
However, in the above-mentioned conventional method, in order to improve the hardness and the like of the obtained porous ceramics sintered body, the sintering temperature may be raised to 1300 ° C. or higher. The sintered body obtained at such a sintering temperature has a problem that the porosity is lost due to crystal growth during sintering.

【0007】[0007]

【課題を解決するための手段】請求項1記載の多孔質チ
タニア焼結体は、以上の課題を解決するために、チタニ
ア粉末を集合させた粒径50〜150 μmのチタニア体を、
成形して1300℃以上で焼結してなることを特徴としてい
る。
[Means for Solving the Problems] In order to solve the above problems, a porous titania sintered body according to claim 1 is a titania body having a particle size of 50 to 150 μm, in which titania powder is aggregated,
It is characterized by being formed and sintered at 1300 ° C or higher.

【0008】請求項2記載の多孔質チタニア焼結体の製
造方法は、焼結時の温度で消失する結合材によってチタ
ニア粉体を集合させてチタニア体を平均粒径50〜150 μ
mに作成し、上記チタニア体を成形して成形品を得た
後、上記成形品を1300℃以上で焼結して多孔質チタニア
焼結体を得ることを特徴としている。
In the method for producing a porous titania sintered body according to a second aspect of the present invention, the titania powder is aggregated by a binder that disappears at the temperature during sintering, and the titania body has an average particle size of 50 to 150 μm.
It is characterized in that a porous titania sintered body is obtained by molding the above-mentioned titania body to obtain a molded article, and then sintering the above-mentioned molded article at 1300 ° C. or higher.

【0009】請求項3記載の多孔質チタニア焼結体の製
造方法は、焼結時の温度で消失する結合材によってチタ
ニア粉体を集合させてチタニア体を平均粒径50〜150 μ
mに作成し、次に、上記チタニア体を焼成してチタニア
焼成体を得た後、上記チタニア焼成体を成形して焼成体
成形品を得た後、上記焼成体成形品を1300℃以上で焼結
して多孔質チタニア焼結体を得ることを特徴としてい
る。
In the method for producing a porous titania sintered body according to a third aspect of the present invention, the titania powder is aggregated by a binder that disappears at the temperature during sintering, and the titania body has an average particle size of 50 to 150 μm.
m, and then the above-mentioned titania body was fired to obtain a titania fired body, and then the above titania fired body was molded to obtain a fired body molded product, and the above-mentioned fired body molded product was heated at 1300 ° C or higher. It is characterized in that a porous titania sintered body is obtained by sintering.

【0010】上記チタニア体は、チタニア粉体を焼結時
の温度で消失する結合材によって集合させて得られる。
より具体的には、焼結時の温度で消失するアクリル酸等
の重合性モノマーとチタニア粉体と、必要に応じて有機
溶媒とを混合した混合溶液を、上記混合溶液と混和しな
い溶液、例えば水溶液中に分散させて、ほぼ球状の上記
混合溶液を上記溶液中に懸濁させる。
The titania body is obtained by assembling titania powder with a binder that disappears at the temperature during sintering.
More specifically, a mixed solution prepared by mixing a polymerizable monomer such as acrylic acid that disappears at the temperature during sintering and a titania powder, and an organic solvent as necessary, a solution that is immiscible with the mixed solution, for example, The mixed solution having a substantially spherical shape is dispersed in an aqueous solution and suspended in the solution.

【0011】その後、上記重合性モノマーを重合させ
て、上記モノマーの重合したポリマーにより結合されて
集合したチタニア粉体、すなわち、チタニア体を得る。
このとき、上記ポリマーが、結合材としての機能を備え
ている。
Then, the above-mentioned polymerizable monomer is polymerized to obtain a titania powder, that is, a titania body, which is bound and assembled by the polymer obtained by polymerizing the above-mentioned monomer.
At this time, the polymer has a function as a binder.

【0012】また、上記混合溶液を溶液に懸濁させる際
の、混合溶液の粘度、組成、溶液の粘度、組成、懸濁時
の攪拌速度等を調節することにより、得られるチタニア
体の粒度を調整することができ、その粒度範囲は、50〜
150 μmに調製することが好ましい。
When the above-mentioned mixed solution is suspended in the solution, the particle size of the obtained titania body can be controlled by adjusting the viscosity of the mixed solution, the composition, the viscosity of the solution, the composition, the stirring speed during suspension, and the like. It can be adjusted and its particle size range is from 50 to
It is preferably adjusted to 150 μm.

【0013】上記チタニア粉体としては、最終的に得ら
れる焼結体が、センサ、触媒、分離材、医療用材料、断
熱材、耐火材等の高温機能材料として好適に使用できる
物であればよい。
As the above-mentioned titania powder, if the finally obtained sintered body can be suitably used as a high temperature functional material such as a sensor, a catalyst, a separating material, a medical material, a heat insulating material, a refractory material, etc. Good.

【0014】また、チタニア粉体の粒子径は、大粒径の
粒子を使用する場合、チタニア体を調製する際に混合溶
液を水溶液中に懸濁して重合させる時に、分散した油滴
状の混合溶液からチタニア粉体が水相に脱離し易く、不
都合である。
The particle size of the titania powder is such that, when particles having a large particle size are used, when the titania body is prepared, the mixed solution is suspended in an aqueous solution and polymerized, and dispersed in the form of oil droplets. This is inconvenient because the titania powder is easily released from the solution into the aqueous phase.

【0015】一方、小粒径の粒子を使用する場合、粘度
低下剤として有機溶剤を多量に添加しても、懸濁時に、
上記混合溶液が球状の油滴として水溶液中に分散し得る
まで、粘度を低下させることが困難である。これらのこ
とから、チタニア粉体の粒子径としては0.01〜2.0 μm
の間であることが好ましく、さらに、0.1 〜1.5 μmが
好ましい。
On the other hand, in the case of using particles having a small particle diameter, even if a large amount of an organic solvent is added as a viscosity reducing agent, at the time of suspension,
It is difficult to reduce the viscosity until the mixed solution can be dispersed in the aqueous solution as spherical oil droplets. From these, the particle size of titania powder is 0.01-2.0 μm.
It is preferably between 0.1 and 1.5 μm.

【0016】上記混合溶液に、チタニア粉体と重合性モ
ノマーとの親和性を高めるために、親油化剤を用いても
よい。上記親油化剤としては、上記チタニア粉末に強力
に吸着あるいは結合する官能基を有し、かつ、重合性モ
ノマーと親和性の高い炭化水素、あるいは上記重合性モ
ノマーと結合し得る官能基を有する物質を用いることが
できる。
A lipophilic agent may be used in the mixed solution in order to increase the affinity between the titania powder and the polymerizable monomer. The lipophilic agent has a functional group capable of strongly adsorbing or binding to the titania powder, and a hydrocarbon having a high affinity for the polymerizable monomer, or a functional group capable of binding to the polymerizable monomer. A substance can be used.

【0017】このような物質としては、例えば、オレイ
ン酸、ステアリン酸、パルミチン酸等の高級脂肪酸、ア
クリル酸、メタクリル酸等の不飽和カルボン酸、アミノ
エチルアクリレート、ヒドロキシエチルアクリレート、
シアノエチルアクリレート等の極性基を有するアクリル
酸エステル、あるいは、チタネートカップリング剤やシ
ランカップリング剤等を挙げることができる。
Examples of such substances include higher fatty acids such as oleic acid, stearic acid and palmitic acid, unsaturated carboxylic acids such as acrylic acid and methacrylic acid, aminoethyl acrylate and hydroxyethyl acrylate.
Examples thereof include acrylic acid esters having a polar group such as cyanoethyl acrylate, or titanate coupling agents or silane coupling agents.

【0018】上記のような親油化剤の中でも、チタネー
トカップリング剤やシランカップリング剤等のようにチ
タニア粉末と強力に結合する官能基を有するものが好ま
しい。例えば、ピロホスフェート型のチタネートカップ
リング剤であるイソプロピルトリス(ジオクチルピロホ
スフェート)、ビス(ジオクチルピロホスフェート)チ
タネート、あるいはホスフェート型のチタネートカップ
リング剤であるテトラオクチルビス(ジトリデシルホス
フェート)チタネート等が挙げられ、また、シランカッ
プリング剤であれば、ラジカル重合可能な官能基を有す
るビニルトリクロルシラン、ビニルトリメトキシシラ
ン、γ−メタクリルオキシプロピルトリメトキシシラン
等が挙げられる。
Among the lipophilic agents as described above, those having a functional group capable of strongly binding to the titania powder, such as titanate coupling agents and silane coupling agents, are preferable. Examples include pyrophosphate-type titanate coupling agents such as isopropyl tris (dioctylpyrophosphate), bis (dioctylpyrophosphate) titanate, and phosphate-type titanate coupling agents tetraoctylbis (ditridecylphosphate) titanate. Examples of the silane coupling agent include vinyltrichlorosilane, vinyltrimethoxysilane, and γ-methacryloxypropyltrimethoxysilane having a radically polymerizable functional group.

【0019】また、上記混合溶液を溶液中に分散させる
際に、懸濁状態を維持できるように分散剤を、上記混合
溶液および溶液中の少なくとも何れか一方に混和しても
よい。そのような分散剤としては、ドデシルベンゼンス
ルホン酸ソーダ等の界面活性剤を用いることができる。
When the mixed solution is dispersed in the solution, a dispersant may be mixed with at least one of the mixed solution and the solution so that a suspension state can be maintained. As such a dispersant, a surfactant such as sodium dodecylbenzene sulfonate can be used.

【0020】[0020]

【作用】上記の請求項1記載の構成によれば、平均粒径
50〜150 μmのチタニア体を用いるから、1300℃以上で
の焼成時にチタニアの結晶が成長しても、チタニア体間
の孔部を残すことができることにより、多孔質チタニア
焼結体であり、かつ、焼結温度が1300℃以上であるの
で、結晶形をアナターゼ型からルチル型により多く変化
させて、ルチル型の割合を増加させることができるか
ら、より大きな硬度を有する多孔質チタニア焼結体とす
ることができ、かつ、熱膨張率を低下させることができ
る。
According to the structure described in claim 1, the average particle size is
Since a titania body of 50 to 150 μm is used, even if a titania crystal grows during firing at 1300 ° C. or higher, it is possible to leave pores between the titania bodies, which makes it a porous titania sintered body, and Since the sintering temperature is 1300 ° C. or higher, the crystal form can be changed from the anatase type to the rutile type, and the proportion of the rutile type can be increased, so that a porous titania sintered body having greater hardness can be obtained. And the coefficient of thermal expansion can be reduced.

【0021】上記の請求項2記載の方法によれば、平均
粒径50〜150 μmのチタニア体を用いるから、1300℃以
上での焼成時にチタニアの結晶が成長しても、チタニア
体間の孔部を残すことができることにより、多孔質チタ
ニア焼結体を得ることができると共に、焼結温度が1300
℃以上であるので、従来より大きな硬度を有し、従来よ
り低い熱膨張率を備える多孔質チタニア焼結体を得るこ
とができる。
According to the method described in claim 2, since the titania body having an average particle size of 50 to 150 μm is used, even if the titania crystals grow during firing at 1300 ° C. or higher, pores between the titania bodies are formed. By making it possible to leave a part, it is possible to obtain a porous titania sintered body and the sintering temperature is 1300
Since the temperature is not lower than 0 ° C, it is possible to obtain a porous titania sintered body having a hardness higher than that of the related art and a coefficient of thermal expansion lower than that of the related art.

【0022】上記の請求項3記載の方法によれば、平均
粒径50〜150 μmのチタニア体を焼成してチタニア焼成
体を得ると、そのチタニア焼成体は、焼成時に結合材が
消失し、かつ、各チタニア粉末間で結合することから、
上記チタニア体の形状をほぼ維持できる。
According to the above method of claim 3, when a titania fired body is obtained by firing a titania body having an average particle size of 50 to 150 μm, the titania fired body loses the binder during firing, And since it binds between each titania powder,
The shape of the titania body can be almost maintained.

【0023】そのようなチタニア焼結体を成形して用い
るから、1300℃以上での焼成時にチタニアの結晶が成長
しても、チタニア焼結体間の孔部を残すことができるこ
とにより、多孔質チタニア焼結体を得ることができる。
この際、焼結温度が1300℃以上であるので、従来より大
きな硬度を有し、低い熱膨張率を備える多孔質チタニア
焼結体を得ることができる。
Since such a titania sintered body is molded and used, even if a crystal of titania grows during firing at 1300 ° C. or more, the pores between the titania sintered bodies can be left, so that the porous body is porous. A titania sintered body can be obtained.
At this time, since the sintering temperature is 1300 ° C. or higher, it is possible to obtain a porous titania sintered body having a hardness higher than that of the conventional one and a low coefficient of thermal expansion.

【0024】さらに、多孔質チタニア焼結体を得るため
に焼結する際に、予め結合材が除去されているので、結
合材の残留による不都合が軽減できる。
Furthermore, since the binder is removed in advance when sintering to obtain the porous titania sintered body, the inconvenience caused by the residual binder can be reduced.

【0025】[0025]

【実施例】本発明の一実施例について図1ないし図4に
基づいて説明すれば、以下の通りである。多孔質チタニ
ア焼結体の製造方法では、まず、樹脂被覆チタニア球体
を調製し、その樹脂被覆チタニア球体を所定の形状に加
圧成形して成形品を得た後、その成形品を焼成して多孔
質チタニア焼成体を得る。このとき、上記樹脂被覆チタ
ニア球体を焼成して多孔質チタニア焼結体を得た後、そ
の多孔質チタニア焼結体を加圧成形して多孔質成形品を
得た後、その多孔質成形品をさらに焼成して多孔質チタ
ニア焼成体を得ることもできる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The following will describe one embodiment of the present invention with reference to FIGS. In the method for producing a porous titania sintered body, first, a resin-coated titania sphere is prepared, the resin-coated titania sphere is pressure-molded into a predetermined shape to obtain a molded article, and then the molded article is baked. A porous titania fired body is obtained. At this time, after the resin-coated titania spheres are fired to obtain a porous titania sintered body, the porous titania sintered body is pressure-molded to obtain a porous molded article, and then the porous molded article is obtained. Can be further fired to obtain a porous titania fired body.

【0026】まず、上記樹脂被覆チタニア球体の調製方
法例について説明する。上記調製方法例では、最初に、
1リットルのビーカーに、重合性モノマーとしてのメチ
ルメタクリレート 279g、親油化剤としてのシランカッ
プリング剤〔γ−メタクリルオキシプロピルトリメトキ
シシラン、東レシリコーン(株)製、SZ6030〕21.0g、
重合開始剤としてのアゾビスイソブチロニトリル0.60g
を投入して混合し、完全に溶解させた混合溶液を得た。
First, an example of a method for preparing the resin-coated titania sphere will be described. In the above preparation method example, first,
In a 1 liter beaker, 279 g of methyl methacrylate as a polymerizable monomer, 21.0 g of a silane coupling agent [γ-methacryloxypropyltrimethoxysilane, Toray Silicone Co., Ltd., SZ6030] as a lipophilic agent,
Azobisisobutyronitrile as polymerization initiator 0.60g
Was charged and mixed to obtain a completely dissolved mixed solution.

【0027】その後、酸化チタン(チタニア)〔ルチル
型、平均粒径 0.2μm、帝国化工(株)製、JR-600A 〕
700gを上記混合溶液に加えて混合物を得た後、プロペ
ラ翼を備えた攪拌装置を用いて、上記混合物内に上記プ
ロペラ翼を挿入して2000rpmにて30分間回転させること
により、上記チタニアの表面に対して親油性を付与する
表面処理を施し、スラリー状混合物を得た。
Then, titanium oxide (titania) [rutile type, average particle size 0.2 μm, manufactured by Teikoku Chemical Co., Ltd., JR-600A]
After adding 700 g to the above mixed solution to obtain a mixture, using a stirrer equipped with a propeller blade, insert the propeller blade into the mixture and rotate at 2000 rpm for 30 minutes to obtain the surface of the titania. Was subjected to a surface treatment for imparting lipophilicity to a slurry-like mixture.

【0028】次に、5リットルの内容積を有するオート
クレーブに、水 2.6kgを投入し、続いて、分散剤とし
ての複分解ピロリン酸マグネシウム60gとドデシルベン
ゼンスルホン酸ソーダ 2.6gとを上記水に混合して混合
水溶液を得、次いで、上記スラリー状混合物を上記混合
水溶液に加えて懸濁させた。
Next, 2.6 kg of water was put into an autoclave having an internal volume of 5 liters, and subsequently 60 g of metathesis magnesium pyrophosphate as a dispersant and 2.6 g of sodium dodecylbenzenesulfonate were mixed with the above water. To obtain a mixed aqueous solution, and then the slurry-like mixture was added to and suspended in the mixed aqueous solution.

【0029】その後、上記オートクレーブ内を窒素置換
した後、オートクレーブ内を攪拌速度500rpmおよび液温
60℃に設定して前記メチルメタクリレートを重合させ
た。その重合の終了後、オートクレーブ内の液温を室温
まで冷却し、前記分散剤を塩酸で分解して懸濁液を得
た。
Then, the inside of the autoclave was replaced with nitrogen, and then the inside of the autoclave was stirred at a stirring speed of 500 rpm and at a liquid temperature.
The methyl methacrylate was polymerized at 60 ° C. After the completion of the polymerization, the liquid temperature in the autoclave was cooled to room temperature, and the dispersant was decomposed with hydrochloric acid to obtain a suspension.

【0030】その次に、上記懸濁液をろ過して粒子状物
と液体とに分離した。上記粒子状物を走査型電子顕微鏡
(SEM)を用いて観察したところ、約 120ミクロン
(以下、μmと記載する)の平均粒径を有する略球状の
粒子で、図1に示すように、チタニア1が複数個集合
し、ポリメチルメタクリレート(PMMA)樹脂2によ
り被覆されたPMMA被覆チタニア球体3であった。
Next, the above suspension was filtered to separate it into a particulate matter and a liquid. When the above particulate matter was observed using a scanning electron microscope (SEM), it was a substantially spherical particle having an average particle diameter of about 120 microns (hereinafter referred to as μm). As shown in FIG. 1 was a plurality of PMMA-coated titania spheres 3 coated with polymethylmethacrylate (PMMA) resin 2.

【0031】〔実施例1〕上記のようにして得られたP
MMA被覆チタニア球体3を1g取り、成形用金型(直
径12mm、深さ20mm)に充填し、上記のように充填したP
MMA被覆チタニア球体3を、3トン/cm2 の圧力にて
加圧し成形して成形品4を得た。
Example 1 P obtained as described above
1 g of the MMA-coated titania sphere 3 was taken, filled in a molding die (diameter 12 mm, depth 20 mm), and filled as described above.
The MMA-coated titania sphere 3 was pressed at a pressure of 3 ton / cm 2 and molded to obtain a molded product 4.

【0032】続いて、上記成形品4を電気炉に入れ、14
00℃で1時間焼成することにより、密度3.04g/cm3
多孔質チタニア焼結体5を得た。上記多孔質チタニア焼
結体5のモース硬度は、6.5 〜7.0 であり、その熱膨張
率は、7.14×10-6/℃であった。
Then, the molded product 4 is placed in an electric furnace and
By firing at 00 ° C. for 1 hour, a porous titania sintered body 5 having a density of 3.04 g / cm 3 was obtained. The porous titania sintered body 5 had a Mohs hardness of 6.5 to 7.0 and a coefficient of thermal expansion of 7.14 × 10 −6 / ° C.

【0033】また、SEMを用いて上記多孔質チタニア
焼結体5の破断面を観察すると、図2の図面代用写真に
示すように、緻密なチタニア球体からなり、各チタニア
球体間に孔部が形成され、かつ、各孔部の形状がよく揃
って孔径分布が狭い均一な多孔質チタニア焼結体が得ら
れた。なお、上記孔径は20μmから50μmであった。
When the fracture surface of the porous titania sintered body 5 is observed by using SEM, as shown in the drawing-substitute photograph of FIG. 2, it is composed of dense titania spheres, and pores are formed between the titania spheres. A uniform porous titania sintered body was obtained in which the pores were well formed and the pore size distribution was narrow. The pore size was 20 μm to 50 μm.

【0034】〔実施例2〕図3に示すように、前記のよ
うにして得られたPMMA被覆チタニア球体3を、アル
ミナルツボに入れて1100℃で1時間焼成して、平均粒径
約 100μmの略球状の多孔質チタニア焼結体6を得た。
上記多孔質チタニア焼結体6を、1g取り、成形用金型
(直径12mm、深さ20mm)に充填し、上記のように充填し
た多孔質チタニア焼結体6を、1トン/cm2 の圧力にて
加圧し成形して焼結体成形品4’を得た。
Example 2 As shown in FIG. 3, the PMMA-coated titania spheres 3 obtained as described above were placed in an alumina crucible and fired at 1100 ° C. for 1 hour to give an average particle size of about 100 μm. A substantially spherical porous titania sintered body 6 was obtained.
1 g of the above-mentioned porous titania sintered body 6 was filled into a molding die (diameter 12 mm, depth 20 mm), and the porous titania sintered body 6 filled as described above was filled with 1 ton / cm 2 . A sintered compact 4'was obtained by pressurizing with pressure.

【0035】続いて、上記焼結体成形品4’を電気炉に
入れ、1400℃で1時間焼成することにより、密度3.34g
/cm3 の多孔質チタニア焼結体5’を得た。上記多孔質
チタニア焼結体5’のモース硬度は、6.5 〜7.0 であ
り、その熱膨張率は、7.14×10-6/℃であった。
Subsequently, the sintered compact 4'is put in an electric furnace and fired at 1400 ° C. for 1 hour to give a density of 3.34 g.
A porous titania sintered body 5'having a density of / cm 3 was obtained. The porous titania sintered body 5 ′ had a Mohs hardness of 6.5 to 7.0 and a coefficient of thermal expansion of 7.14 × 10 −6 / ° C.

【0036】また、SEMを用いて上記多孔質チタニア
焼結体5’の破断面を観察すると、図4の図面代用写真
に示すように、緻密なチタニア球体からなり、各チタニ
ア球体間に孔部が形成され、その上、各孔部の形状がよ
く揃って孔径分布が狭い均一な多孔質チタニア焼結体が
得られた。なお、上記孔径は10μmから40μmであっ
た。
Further, observing the fracture surface of the porous titania sintered body 5'using an SEM, as shown in the drawing-substitute photograph of FIG. 4, it consists of dense titania spheres, and the pores are formed between the titania spheres. Was formed, and on top of that, a uniform porous titania sintered body was obtained in which the shapes of the pores were well aligned and the pore size distribution was narrow. The pore size was 10 μm to 40 μm.

【0037】このように上記の各実施例の方法では、平
均粒径が約 120μmのPMMA被覆チタニア球体3を用
いることにより、1400℃という焼成温度にて多孔質チタ
ニア焼結体を得ることができ、その上、得られた多孔質
チタニア焼結体5・5’は、従来の硬度(モース硬度5.
5 〜6.0 )より、その硬度を高めることができ、さら
に、従来の熱膨張率(10.2×10-6/℃)より、その熱膨
張率を低くすることができる。
As described above, in the method of each of the above-mentioned embodiments, by using the PMMA-coated titania spheres 3 having an average particle diameter of about 120 μm, a porous titania sintered body can be obtained at a firing temperature of 1400 ° C. In addition, the obtained porous titania sintered body 5.5 'has a conventional hardness (Mohs hardness of 5.
The hardness can be increased from 5 to 6.0), and the coefficient of thermal expansion can be made lower than the conventional coefficient of thermal expansion (10.2 × 10 −6 / ° C.).

【0038】ところで、従来では、多孔質チタニア焼結
体の硬度を高めたり、熱膨張率を低くしたりするため
に、焼成温度を1300°以上に上げると、焼成時にチタニ
アの結晶が成長して、多孔質体の孔部が塞がり、比表面
積の増加等の優れた特性を発揮するための多孔質性が損
なわれていた。
By the way, in the past, when the firing temperature was raised to 1300 ° or higher in order to increase the hardness of the porous titania sintered body and to lower the coefficient of thermal expansion, titania crystals grew during firing. However, the pores of the porous body are blocked, and the porosity for exhibiting excellent properties such as an increase in specific surface area is impaired.

【0039】しかしながら、上記構成は、従来より、高
温で焼成することにより、TiO2の結晶形をアナターゼ型
(低温型)からルチル型(高温型)により多く変化させ
ることができて、ルチル型の割合を増加させることがで
きるから、その硬度を高め、かつ、熱膨張率を低下させ
ることができる。
However, in the above-described structure, the crystal form of TiO 2 can be changed from the anatase type (low temperature type) to the rutile type (high temperature type) by firing at a high temperature, and thus the rutile type Since the ratio can be increased, the hardness can be increased and the coefficient of thermal expansion can be decreased.

【0040】その上、上記構成は、従来より高温で焼成
しても、従来使用されたセラミックス粉体の取扱い難さ
を回避しながら、その比表面積を増加させるという多孔
質性を維持でき、かつ、硬度や熱膨張率を向上させるこ
とができるから、振動が多く、または温度環境の変化の
大きい所等のように使用条件が過酷な場所にも好適に使
用できて、上記構成の適用範囲を広げることができるも
のとなっている。
In addition, the above structure can maintain the porosity of increasing the specific surface area while avoiding the difficulty of handling the conventionally used ceramic powder, even if the ceramic powder is fired at a higher temperature than before. Since the hardness and the coefficient of thermal expansion can be improved, it can be suitably used even in places where the operating conditions are severe, such as places where there are many vibrations or changes in the temperature environment, and the application range of the above configuration can be improved. It can be expanded.

【0041】その上、上記の製造方法は、上記のような
優れた特性を有する多孔質チタニア焼結体を、簡便にか
つ再現性良好に製造できる。したがって、上記方法は、
工業用医療用材料、センサ、触媒担体、耐火材等の高機
能材料として多くの応用分野でさらに利用できるセラミ
ックス多孔質体を、安定に供給することができる。
In addition, the above-mentioned manufacturing method can easily manufacture the porous titania sintered body having the above-mentioned excellent characteristics with good reproducibility. Therefore, the above method
It is possible to stably supply a porous ceramic body that can be further used in many application fields as a highly functional material such as an industrial medical material, a sensor, a catalyst carrier, and a refractory material.

【0042】特に、上記構成は、チタニアの備えるNOx
還元触媒として高い選択性を備え、耐振動性や、耐熱衝
撃性を有しているから、自動車等の排気ガスからNOx
低減するための触媒として極めて有用に使用することが
できる。
In particular, the above structure has NO x in the titania.
Since it has high selectivity as a reduction catalyst, and has vibration resistance and thermal shock resistance, it can be used very effectively as a catalyst for reducing NO x from exhaust gas from automobiles and the like.

【0043】[0043]

【発明の効果】本発明の請求項1記載の多孔質チタニア
焼結体は、以上のように、チタニア粉末を集合させた粒
径50〜150 μmのチタニア体を、成形して1300℃以上で
焼結してなる構成である。
As described above, the porous titania sintered body according to claim 1 of the present invention is obtained by molding a titania body having a particle size of 50 to 150 μm, which is an aggregate of titania powder, at 1300 ° C. or higher. It is a structure formed by sintering.

【0044】それゆえ、上記構成は、比表面積を高めて
優れた特性を発揮するための多孔質性を維持しながら硬
度等を向上させることができるから、適用範囲を広げる
ことが可能となるという効果を奏する。
Therefore, the above-mentioned constitution can improve the hardness and the like while maintaining the porosity for increasing the specific surface area and exhibiting excellent characteristics, so that the range of application can be expanded. Produce an effect.

【0045】本発明の請求項2記載の多孔質チタニア焼
結体およびその製造方法は、焼結時の温度で消失する結
合材によってチタニア粉末を集合させてチタニア体を平
均粒径50〜150 μmに作成し、次に、上記チタニア体を
成形して成形品を得た後、上記成形品を1300℃以上で焼
結して多孔質チタニア焼結体を得る方法である。
According to the second aspect of the present invention, the porous titania sintered body and the method for producing the same have a structure in which the titania powder is aggregated by a binder that disappears at the temperature during sintering, and the titania body has an average particle size of 50 to 150 μm. Then, the titania body is molded to obtain a molded product, and then the molded product is sintered at 1300 ° C. or higher to obtain a porous titania sintered body.

【0046】それゆえ、上記方法は、多孔質性を維持し
ながら硬度等を向上させた多孔質チタニア焼結体を安定
に得ることができるから、適用範囲を広げることができ
る多孔質チタニア焼結体を製造することが安定にできる
という効果を奏する。
Therefore, the above method can stably obtain a porous titania sintered body whose hardness and the like are improved while maintaining the porosity, so that the applicable range can be expanded. This has the effect that the body can be manufactured stably.

【0047】本発明の請求項3記載の多孔質チタニア焼
結体の製造方法は、以上のように、焼結時の温度で消失
する結合材によってチタニア粉末を集合させてチタニア
体を平均粒径50〜150 μmに作成し、次に、上記チタニ
ア体を焼成してチタニア焼成体を得た後、上記チタニア
焼成体を成形して焼成体成形品を得た後、上記焼成体成
形品を1300℃以上で焼結して多孔質チタニア焼結体を得
る方法である。
As described above, the method for producing a porous titania sintered body according to claim 3 of the present invention is such that the titania powder is aggregated by the binder that disappears at the temperature during sintering to obtain an average particle size of the titania body. 50 to 150 μm, and then the above titania body is fired to obtain a titania fired body, and then the above titania fired body is molded to obtain a fired body molded product, and the above fired body molded product is 1300 It is a method of obtaining a porous titania sintered body by sintering at a temperature of ℃ or more.

【0048】それゆえ、上記方法は、さらに、結合材の
残留を低減できて、上記結合材による悪影響を軽減した
多孔質チタニア焼結体を得ることが可能であるという効
果を奏する。
Therefore, the above method is further effective in that it is possible to obtain the porous titania sintered body in which the residual amount of the binder can be reduced and the adverse effect of the binder can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1における多孔質チタニア焼結
体の製造方法における工程図である。
FIG. 1 is a process drawing of a method for manufacturing a porous titania sintered body in Example 1 of the present invention.

【図2】上記の多孔質チタニア焼結体の粒子構造を示す
図面代用写真である。
FIG. 2 is a drawing-substituting photograph showing a particle structure of the above porous titania sintered body.

【図3】本発明の実施例2における多孔質チタニア焼結
体の製造方法における工程図である。
FIG. 3 is a process drawing of a method for manufacturing a porous titania sintered body in Example 2 of the present invention.

【図4】上記の多孔質チタニア焼結体の粒子構造を示す
図面代用写真である。
FIG. 4 is a drawing-substituting photograph showing a particle structure of the above porous titania sintered body.

【符号の説明】[Explanation of symbols]

1 チタニア 2 PMMA樹脂(結合材) 3 PMMA被覆チタニア球体(チタニア体) 4 成形品 5 焼結体(多孔質チタニア焼結体) 1 Titania 2 PMMA resin (bonding material) 3 PMMA-coated titania spheres (titania body) 4 Molded product 5 Sintered body (porous titania sintered body)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】チタニア粉末を集合させた粒径50〜150 μ
mのチタニア体を、成形して1300℃以上で焼結してなる
ことを特徴とする多孔質チタニア焼結体。
1. A particle size of aggregated titania powder of 50 to 150 μm.
A porous titania sintered body, which is obtained by molding a titania body of m and sintering it at 1300 ° C. or higher.
【請求項2】焼結時の温度で消失する結合材によってチ
タニア粉末を集合させてチタニア体を平均粒径50〜150
μmに作成し、次に、上記チタニア体を成形して成形品
を得た後、上記成形品を1300℃以上で焼結して多孔質チ
タニア焼結体を得ることを特徴とする多孔質チタニア焼
結体の製造方法。
2. A titania powder is aggregated by a binder that disappears at the temperature during sintering to obtain a titania body having an average particle size of 50 to 150.
The porous titania is characterized in that it is made to have a size of μm, and then the above titania body is molded to obtain a molded product, and then the above molded product is sintered at 1300 ° C. or higher to obtain a porous titania sintered body. Manufacturing method of sintered body.
【請求項3】焼結時の温度で消失する結合材によってチ
タニア粉末を集合させてチタニア体を平均粒径50〜150
μmに作成し、次に、上記チタニア体を焼成してチタニ
ア焼成体を得た後、上記チタニア焼成体を成形して焼成
体成形品を得、続いて、上記焼成体成形品を1300℃以上
で焼結して多孔質チタニア焼結体を得ることを特徴とす
る多孔質チタニア焼結体の製造方法。
3. The titania powder is aggregated by a binder that disappears at the temperature during sintering to obtain a titania body having an average particle size of 50 to 150.
μm, then, the above titania body is fired to obtain a titania fired body, and then the above titania fired body is molded to obtain a fired body molded product, and subsequently, the above fired body molded product is heated to 1300 ° C. or higher. A method for producing a porous titania sintered body, characterized in that the porous titania sintered body is obtained by sintering.
JP2751193A 1993-01-21 1993-01-21 Porous titania sintered compact and its production Pending JPH06219865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2751193A JPH06219865A (en) 1993-01-21 1993-01-21 Porous titania sintered compact and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2751193A JPH06219865A (en) 1993-01-21 1993-01-21 Porous titania sintered compact and its production

Publications (1)

Publication Number Publication Date
JPH06219865A true JPH06219865A (en) 1994-08-09

Family

ID=12223162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2751193A Pending JPH06219865A (en) 1993-01-21 1993-01-21 Porous titania sintered compact and its production

Country Status (1)

Country Link
JP (1) JPH06219865A (en)

Similar Documents

Publication Publication Date Title
JP3273604B2 (en) Composite particles, methods of making and using the same
KR101278410B1 (en) Process for producing hollow microspheres and process for producing porous molded ceramic
CA1317316C (en) Process for the production of porous ceramics using decomposable polymeric microspheres and the resultant product
Tang et al. Fabrication of macroporous alumina with tailored porosity
US20070202318A1 (en) Composition and method for making a proppant
KR102552387B1 (en) Manufacturing method of heat-expandable microsphere and use thereof
JP6704732B2 (en) Porous material for ceramic composition and use thereof
JP3417943B2 (en) Porous body
JP2010525930A (en) Controlled distribution of chemicals in ceramic systems.
WO2015005363A1 (en) Pore-forming material for ceramic composition and application for same
JP4991057B2 (en) Method for producing porous ceramic filter
JP2004123834A (en) Porous hollow polymer particle, method for manufacturing porous hollow polymer particle, porous ceramic filter and method for manufacturing porous ceramic filter
EP0410601B1 (en) Composite ceramic material
JPH06219865A (en) Porous titania sintered compact and its production
JP4096053B2 (en) Method for producing oriented ceramic sintered body such as titanium dioxide
JP2000344585A (en) Production of ceramic porous body
JPH0641394B2 (en) Method for producing porous titania sintered body
JP2007070161A (en) Porous composite body, and method for producing the same
JP3985042B2 (en) Ultralight ceramic foam and manufacturing method thereof
JPH02129008A (en) Production of cellular inorganic sphere
JPH0656506A (en) Production of ceramic material and its molding using finely powdered fire-proofing oxide
JP2958472B2 (en) High strength porous member and method of manufacturing the same
Gauthier et al. Packing of bimodal mixtures of colloidal silica
JPH04115906A (en) Porous titania sintered body and its manufacture
JP3316634B2 (en) Manufacturing method of porous ceramics