JPH0411532B2 - - Google Patents

Info

Publication number
JPH0411532B2
JPH0411532B2 JP59263163A JP26316384A JPH0411532B2 JP H0411532 B2 JPH0411532 B2 JP H0411532B2 JP 59263163 A JP59263163 A JP 59263163A JP 26316384 A JP26316384 A JP 26316384A JP H0411532 B2 JPH0411532 B2 JP H0411532B2
Authority
JP
Japan
Prior art keywords
polyglycerin
polymerization
exchange resin
glycerin
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59263163A
Other languages
Japanese (ja)
Other versions
JPS61140534A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP59263163A priority Critical patent/JPS61140534A/en
Publication of JPS61140534A publication Critical patent/JPS61140534A/en
Publication of JPH0411532B2 publication Critical patent/JPH0411532B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Polyethers (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、着色の少ないポリグリセリンの製造
方法に関するものである。 ポリグリセリンは、食品用乳化剤、化粧品の保
湿剤、可塑剤、界面活性剤等の原料として使用さ
れている。 従来、ポリグリセリンは、グリセリンの蒸留残
渣よりの回収、グリセリンの脱水縮合、エピクロ
ルヒドリンからの直接合成等により製造されてい
るが、これらの方法では精製が難しく、又、製造
されたポリグリセリンは着色がはげしいこと、重
合度が広い範囲に亘つていること等の欠点があつ
た。 又、グリセリンにグリシドールを付加重合させ
る方法では、一般にエポキシ基の開環触媒である
水酸化アルカリ、アミン等が使用されているが、
この方法も製造されたポリグリセリンは精製が難
しく、着色がはげしいという欠点があつた。 そこで、本発明者等は着色が少なく、精製が簡
単なポリグリセリンの製造法を確立すべく、鋭意
検討した結果、本発明を完成させるに至つた。 即ち、本発明はグリセリン、又はポリグリセリ
ンにグリシドールを付加反応させ、より高重合度
のポリグリセリンを製造するに際し、触媒として
スルホン酸基を交換基とする陽イオン交換樹脂を
使用し、さらに反応温度を110〜120℃で行なうこ
とを特徴とするポリグリセリンの製造方法であ
る。 本発明において触媒として使用する陽イオン交
換樹脂は有機のスルホン酸型カチオン交換体、例
えば、スルホン化されたスチレンとジビニルベン
ゼン共重合体、スルホン化され架橋されたスチレ
ン重合体、又はスルホン酸性のフエノールホルム
アルデヒド共重合体等であり、好ましいものは、
スルホン化されたスチレンとジビニルベンゼン共
重合体である。交換樹脂は酸の形で、又、塩の形
のものは予め通常の方法で酸の形にして使用す
る。 具体例としては、三菱化成社のダイヤイオン
SK−1A、−1B、−110、PK−204、−220、−228、
ローム・アンド・ハース社のアンバーライトIR
−118、−120、−200、−252等の名称で市販されて
いる交換樹脂(以上、いずれも登録商標名)が挙
げられる。 該陽イオン交換樹脂の使用量は、グリセリン当
り0.01〜0.1重量倍が適当である。0.01重量倍より
少ない場合は反応速度が遅く、又、0.1重量倍よ
り多いと反応速度が早い為、初期の反応温度制御
が難しくなる。 反応温度は厳密に110〜120℃の範囲である。
110℃未満では、未反応グリセリン、ジグリセリ
ン等が増加し、重合度が広範囲になり、又120℃
を越えると、一般的に陽イオン交換樹脂の耐熱温
度以上となる為、好ましくない。 この厳重な温度範囲が製品ポリグリセリンの分
子量分布を狭く、重合度を高くする効果をもたら
す。そして、この得られたポリグリセリンは、水
溶性が良い為、水中油型の食品添加用乳化剤等の
原料として期待される。 得られるポリグリセリンの重合度は、グリセリ
ン又はポリグリセリンとグリシドールの比率を変
えることにより任意に調整可能である。 反応は、通常反応器中にグリセリン又はポリグ
リセリンと、触媒の陽イオン交換樹脂を入れ、浮
遊させて撹拌下、グリシドールを少量づつ添加す
る方法で行う。なお、交換樹脂において、固定床
式でも流動床式でも採用可能である。又、この反
応は窒素ガス等不活性ガス下で行うことが好まし
く、必要に応じて加圧してもよい。反応終了は、
グリシドールの転化率が99%以上で判断される。 このようにして得られた生成物は、触媒陽イオ
ン交換樹脂を別することにより簡単に精製する
ことができ、目的物ポリグリセリンは非常に着色
が少なく、重合度が狭く、且つ高い。 次に、本発明を例をあげて説明するが、これら
によつて本発明を限定するものではない。 実施例 1 500mlの撹拌機付フラスコに、92gr(1.0mol)
のグリセリン13grのイオン交換樹脂ダイヤイオン
PK−228(三菱化成社登録商標名)をとり、窒素
ガスで置換し、90℃に加熱撹拌しながら減圧で下
脱水を行つた。次に110〜120℃に保ち、370gr
(5.0mol)のグリシドールを3〜4時間で滴下し
た。 未反応のグリシドールを減圧にて除去し、イオ
ン交換樹脂を別したところ、ポリグリセリン
452grが得られ、その色相は殆んど無色透明でガ
ードナー1以下、ヒドロキシル価966、平均重合
度6であつた。 上記実施例1、加えて実施例3及び比較例2に
おいて得られたポリグリセリンを通常の方法でシ
リル化し、ガスクロマトグラフイー(面積百分
率)で組成分析を行つた。結果は次表の通り。
The present invention relates to a method for producing polyglycerin with little coloring. Polyglycerin is used as a raw material for food emulsifiers, cosmetic moisturizers, plasticizers, surfactants, etc. Conventionally, polyglycerin has been produced by recovery from glycerin distillation residue, dehydration condensation of glycerin, direct synthesis from epichlorohydrin, etc. However, purification is difficult with these methods, and the produced polyglycerin is not colored. It had disadvantages such as being aggressive and having a wide range of polymerization degrees. In addition, in the method of addition polymerizing glycidol to glycerin, alkali hydroxide, amine, etc., which are ring-opening catalysts for epoxy groups, are generally used.
The polyglycerin produced by this method also had the drawbacks of being difficult to purify and being heavily colored. Therefore, the present inventors conducted intensive studies to establish a method for producing polyglycerin that is less colored and easy to purify, and as a result, they completed the present invention. That is, the present invention involves adding glycidol to glycerin or polyglycerin to produce polyglycerin with a higher degree of polymerization, using a cation exchange resin having a sulfonic acid group as an exchange group as a catalyst, and further increasing the reaction temperature. This is a method for producing polyglycerin, characterized in that the process is carried out at 110 to 120°C. The cation exchange resin used as a catalyst in the present invention is an organic sulfonic acid type cation exchanger, such as a sulfonated styrene and divinylbenzene copolymer, a sulfonated crosslinked styrene polymer, or a sulfonic acid phenol. Formaldehyde copolymers, etc., and preferred ones are:
It is a sulfonated styrene and divinylbenzene copolymer. The exchange resin is used in the acid form, and those in the salt form are converted into the acid form in advance by a conventional method. A specific example is Mitsubishi Kasei's Diaion.
SK−1A, −1B, −110, PK−204, −220, −228,
Rohm & Haas Amberlight IR
Examples include exchange resins commercially available under the names -118, -120, -200, -252, etc. (all of the above are registered trademarks). The appropriate amount of the cation exchange resin used is 0.01 to 0.1 times the weight of glycerin. When it is less than 0.01 times the weight, the reaction rate is slow, and when it is more than 0.1 times the weight, the reaction rate is fast, making it difficult to control the initial reaction temperature. The reaction temperature is strictly in the range 110-120°C.
At temperatures below 110℃, unreacted glycerin, diglycerin, etc. increase, and the degree of polymerization widens;
Exceeding this is generally not preferable because the temperature exceeds the heat resistance temperature of the cation exchange resin. This strict temperature range has the effect of narrowing the molecular weight distribution of the product polyglycerin and increasing the degree of polymerization. Since the obtained polyglycerin has good water solubility, it is expected to be used as a raw material for oil-in-water type emulsifiers for food additives and the like. The degree of polymerization of the obtained polyglycerin can be arbitrarily adjusted by changing the ratio of glycerin or polyglycerin to glycidol. The reaction is usually carried out by placing glycerin or polyglycerin and a cation exchange resin as a catalyst in a reactor, suspending them, and adding glycidol little by little while stirring. In addition, for exchange resin, either a fixed bed type or a fluidized bed type can be adopted. Further, this reaction is preferably carried out under an inert gas such as nitrogen gas, and may be pressurized if necessary. At the end of the reaction,
The conversion rate of glycidol is judged to be 99% or higher. The product thus obtained can be easily purified by separating the catalytic cation exchange resin, and the target polyglycerin has very little color and a narrow and high degree of polymerization. Next, the present invention will be explained by giving examples, but the present invention is not limited to these. Example 1 92gr (1.0mol) in a 500ml flask with a stirrer
glycerin 13gr ion exchange resin diamond ion
PK-228 (registered trademark of Mitsubishi Kasei Corporation) was taken, the air was replaced with nitrogen gas, and the mixture was heated to 90°C and dehydrated under reduced pressure while stirring. Then keep at 110-120℃, 370gr
(5.0 mol) of glycidol was added dropwise over 3 to 4 hours. When unreacted glycidol was removed under reduced pressure and the ion exchange resin was separated, polyglycerin
452gr was obtained, and its hue was almost colorless and transparent with a Gardner value of 1 or less, a hydroxyl value of 966, and an average degree of polymerization of 6. The polyglycerols obtained in Example 1, as well as Example 3 and Comparative Example 2, were silylated by a conventional method, and the composition was analyzed by gas chromatography (area percentage). The results are shown in the table below.

【表】 実施例 2 イオン交換樹脂としてアンバーライトIR−120
(ローム・アンド・ハース社登録商標名)を使用
した以外、実施例1と同様に反応し、精製した。
このポリグリセリンの色相もガードナー1以下ヒ
ドロキシル価966、平均重合度6であつた。又、
その組成も殆んど実施例1と同様であつた。 実施例 3 グリシドールを222gr(3.0mol)に変更した以
外、実施例1と同様に反応し、精製した。得られ
た295grのポリグリセリンの色相はガードナー1
以下、ヒドロキシル価1061、平均重合度4であつ
た。 比較例 1 触媒として粉砕した水酸化ナトリウム1.2grを
使用した以外、実施例1と同様に反応させた結
果、粗製ポリグリセリン455grを得、その色相は
褐色で、ガードナー14であつた。 次に、上記粗製ポリグリセリンに、10%酢酸水
溶液25grを加え、80〜90℃に加熱して1時間撹拌
した後、10〜5Torr、110〜120℃で1時間脱水し
た。90℃に冷却して吸着剤として0.2grのケイソ
ウ土を加え、1時間撹拌した後、過して329gr
の精製ポリグリセリンを得た。その色相は褐色
で、ガードナー12、ヒドロキシル965、平均重合
度6であつた。 比較例 2 反応温度を90〜95℃にした以外、実施例1と同
様に反応し、精製した。得られたポリグリセリン
452grの色相は、殆んど無色透明でガードナー1
以下、ヒドロキシル価1060、平均重合度4であつ
た。
[Table] Example 2 Amberlite IR-120 as ion exchange resin
The reaction and purification were carried out in the same manner as in Example 1, except that (Rohm & Haas Co., Ltd. registered trademark) was used.
The hue of this polyglycerin also had a hydroxyl value of less than Gardner 1, 966, and an average degree of polymerization of 6. or,
Its composition was also almost the same as in Example 1. Example 3 The reaction and purification were carried out in the same manner as in Example 1 except that glycidol was changed to 222 gr (3.0 mol). The hue of the obtained 295gr polyglycerin is Gardner 1.
The hydroxyl value was 1061 and the average degree of polymerization was 4. Comparative Example 1 The reaction was carried out in the same manner as in Example 1 except that 1.2 gr of pulverized sodium hydroxide was used as a catalyst. As a result, 455 gr of crude polyglycerin was obtained, and its color was brown and Gardner 14. Next, 25 gr of a 10% aqueous acetic acid solution was added to the crude polyglycerin, heated to 80 to 90°C and stirred for 1 hour, and then dehydrated at 10 to 5 Torr and 110 to 120°C for 1 hour. Cool to 90℃, add 0.2gr of diatomaceous earth as an adsorbent, stir for 1 hour, and filter to 329gr.
Purified polyglycerin was obtained. Its hue was brown, Gardner was 12, hydroxyl was 965, and the average degree of polymerization was 6. Comparative Example 2 Reaction and purification were carried out in the same manner as in Example 1, except that the reaction temperature was 90 to 95°C. Obtained polyglycerin
The hue of 452gr is almost colorless and transparent, Gardner 1
Below, the hydroxyl value was 1060 and the average degree of polymerization was 4.

Claims (1)

【特許請求の範囲】[Claims] 1 グリセリン又はポリグリセリンにグリシドー
ルを付加反応させ、より高重合度のポリグリセリ
ンを製造するに際し、触媒としてスルホン酸基を
交換基とする陽イオン交換樹脂を使用し、さらに
反応温度を110〜120℃で行なうことを特徴とする
ポリグリセリンの製造方法。
1. When glycidol is added to glycerin or polyglycerin to produce polyglycerin with a higher degree of polymerization, a cation exchange resin having a sulfonic acid group as an exchange group is used as a catalyst, and the reaction temperature is increased to 110 to 120°C. A method for producing polyglycerin, characterized by carrying out the process.
JP59263163A 1984-12-14 1984-12-14 Production of polyglycerol Granted JPS61140534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59263163A JPS61140534A (en) 1984-12-14 1984-12-14 Production of polyglycerol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59263163A JPS61140534A (en) 1984-12-14 1984-12-14 Production of polyglycerol

Publications (2)

Publication Number Publication Date
JPS61140534A JPS61140534A (en) 1986-06-27
JPH0411532B2 true JPH0411532B2 (en) 1992-02-28

Family

ID=17385652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59263163A Granted JPS61140534A (en) 1984-12-14 1984-12-14 Production of polyglycerol

Country Status (1)

Country Link
JP (1) JPS61140534A (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5302695A (en) * 1991-03-19 1994-04-12 Shell Oil Company Polycondensation of epoxy alcohols with polyhydric alcohols and thermal condensation to form polyethercyclicpolyols
US5371244A (en) * 1991-03-19 1994-12-06 Shell Oil Company Polycondensation of dihydric alcohols and polyhydric alcohols and thermal condensation to form polyethercyclicpolyols
US5204444A (en) * 1991-03-19 1993-04-20 Shell Oil Company Polycondensation of epoxy alcohols with polyhdric alcohols and thermal condensation to form polyethercyclicpolyols
US5233055A (en) * 1991-03-19 1993-08-03 Shell Oil Company Copolymerization of polyethercyclicpolyols with epoxy resins
US5198532A (en) * 1991-03-19 1993-03-30 Shell Oil Company Polycondensation of epihalohydrin and polyhydric alcohols and thermal condensation to form polyethercyclicpolyols
US5338870A (en) * 1991-03-19 1994-08-16 Shell Oil Company Thermal condensation of polyhydric alcohols to form polyethercyclicpolyols
US5302728A (en) * 1991-03-19 1994-04-12 Shell Oil Company Polycondensation of phenolic hydroxyl-containing compounds and polyhydric alcohols and thermal condensation to form polyethercyclipolyols
US5286882A (en) * 1992-10-13 1994-02-15 Shell Oil Company Polyethercyclicpolyols from epihalohydrins, polyhydric alcohols and metal hydroxides or epoxy alcohol and optionally polyhydric alcohols with addition of epoxy resins
US5371243A (en) * 1992-10-13 1994-12-06 Shell Oil Company Polyethercyclicpolyols from epihalohydrins, polyhydric alcohols, and metal hydroxides
US5428178A (en) * 1992-10-13 1995-06-27 Shell Oil Company Polyethercyclipolyols from epihalohydrins, polyhydric alcohols, and metal hydroxides or epoxy alcohols and optionally polyhydric alcohols with thermal condensation
JP2002226790A (en) * 2001-02-06 2002-08-14 Arakawa Chem Ind Co Ltd Method for producing polymerized rosin
TW200426136A (en) * 2002-11-28 2004-12-01 Daicel Chem A polyglycerine, a fatty acid ester of a polyglycerine and process for the preparations thereof
US7289329B2 (en) 2004-06-04 2007-10-30 Siemens Vdo Automotive Corporation Integration of planar transformer and/or planar inductor with power switches in power converter
JP5036989B2 (en) 2005-09-01 2012-09-26 株式会社ダイセル Polyglycerin and method for producing the same
US9994674B2 (en) 2011-02-22 2018-06-12 Basf Se Polymers based on glycerol carbonate

Also Published As

Publication number Publication date
JPS61140534A (en) 1986-06-27

Similar Documents

Publication Publication Date Title
JPH0411532B2 (en)
JP2732921B2 (en) Method for producing polyglycerin
JPH051291B2 (en)
US4960953A (en) Process for preparing polyglycerols
KR0138910B1 (en) Preparation of bisphenol
US8822736B2 (en) Process for preparing polymers of polyhydric alcohols
HU177078B (en) Process for preparing pure methyl-tert.butyl-ether
JPH11246458A (en) Production of bisphenol
US4299997A (en) Process for producing ethylene glycol mono-tert-butyl ether
JP3934707B2 (en) Improved process for the production of ion exchange resins used as catalysts for the synthesis of bisphenols
WO1992005134A1 (en) Process for the production of di-trimethylolpropane
US5072049A (en) Process for the preparation of bis(4-hydroxyphenyl) sulfone
US20030013926A1 (en) Process for producing bisphenol a
KR20030094400A (en) Method for the preparation of cumylphenol
GB2113207A (en) Preparation of alkylene carbonates
US3758610A (en) Preparation of isoprene from isobutylene and methylal
SE445995B (en) PROCEDURE FOR THE PREPARATION OF METHYL-TERT.BUTYLETER
JPH0745447B2 (en) Method for recovering N-vinylformamide
JPS6337819B2 (en)
US4052458A (en) Process for preparing 2-(1-cyclohexenyl)-cyclohexanone
JPH06116256A (en) Production of erythritan
JPS6334134B2 (en)
JPH0211533A (en) Preparation of styrene-reacted phenol
SU1351914A1 (en) Method of producing cyclohexanediene-1,3
JPS63250336A (en) Production of propylene glycol tertiary butyl ether