JPH0411365A - Head speed control method for information storage device - Google Patents

Head speed control method for information storage device

Info

Publication number
JPH0411365A
JPH0411365A JP11358990A JP11358990A JPH0411365A JP H0411365 A JPH0411365 A JP H0411365A JP 11358990 A JP11358990 A JP 11358990A JP 11358990 A JP11358990 A JP 11358990A JP H0411365 A JPH0411365 A JP H0411365A
Authority
JP
Japan
Prior art keywords
head
speed
friction
constant
drive mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11358990A
Other languages
Japanese (ja)
Inventor
Susumu Murata
進 村田
Shinichi Nakayama
伸一 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP11358990A priority Critical patent/JPH0411365A/en
Publication of JPH0411365A publication Critical patent/JPH0411365A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moving Of Head For Track Selection And Changing (AREA)
  • Moving Of The Head For Recording And Reproducing By Optical Means (AREA)

Abstract

PURPOSE:To stably control the speed by providing a positive feedback loop of the head speed to a current amplifier and calculating the fluid friction constant in accordance with the head acceleration time for test operation and setting a friction compensation constant as the gain in the positive feedback loop based on this calculated value. CONSTITUTION:A head speed V detected by a speed detector 5 is multiplied by a friction compensation constant Kc set to a friction compensation constant setting part 9, and the output is fed back as the input of a current amplifier 3. An arithmetic circuit 20 consisting of an acceleration time measuring part 7 and an arithmetic part 8 is added. The speed control loop is provided with such control loop that a compensating current corresponding to the sped of an optical head 12 flows to a head driving mechanism 4 at the time of speed control. The constant dependent upon the friction characteristic required for determination of the compensating current is calculated and set in accordance with the acceleration time for test driving of the head. Thus, the head speed is stably controlled.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は例えば光デイスク装置のように記録媒体上の目
標トラックへヘッドを移動して記録媒体のデ・−夕の記
録、再生を行う情報記憶装置において、ヘッドを記録媒
体上の目標トラックに高速にアクセスするためのヘッド
速度制御方法に関する。 なお以下各図において同一の符号は同一もしくは相当部
分を示す。
The present invention relates to an information storage device, such as an optical disk device, which records and reproduces data on a recording medium by moving the head to a target track on the recording medium. This invention relates to a head speed control method for accessing. Note that in the following figures, the same reference numerals indicate the same or corresponding parts.

【従来の技術】[Conventional technology]

第3図はこの種の情報記憶装置の一例としての光デイス
ク装置の機構部の構成例を示す。同図において情報が記
録されている光ディスク10はスピンドルモータ11に
よって高速に回転され、光デイスク10上の情報の記録
・再生は光ヘッド12を介して行われる。ここで光ヘッ
ド12はヘッド駆動機構4を介して光ディスク10の半
径方向に移動され、目標トラックに位置決めされた後、
光ヘッド12から照射される光ビーム13で情報の記録
・再生が行われる。 第2図は光デイスク10上の目標トラックに光へラド1
2を高速に移動させるための速度制御のブロック図であ
る。一般に速度制御はデジタル制御が利用される。目標
トラックとシーク開始時点の現在トラックとの差、つま
り目標トラック移動量01を目標値として、トラックの
横断回数を計数し7てヘッドの現実の移動量を検出する
移動量検出器6の出力であるヘッド移動量6aと目標ト
ラック移動量01との偏差X(即ちその時点において目
標トラックに到達するに要するヘッドの残された移動量
)を入力とし、基準速度発生器1から基準速度Vsが出
力される。この基準速度Vsとヘッド速度■との偏差は
サンプラ22によって特定のサンプリング間隔ごとにゲ
イン発生部2に入力され、電流増幅器3を経てヘッド駆
動機構4により光ヘッド12は基準速度Vsに従うよう
に速度制御される。 ここで移動量検出器6および速度検出器5は一般に光ビ
ーム13がトラックを横切る際に検出されるトラックエ
ラー信号や光ヘッド12に設けた外部エンコーダの出力
信号等を直接カウントしてヘッドの移動量を検出し、ま
た、これらの信号周期から速度を算出する等の方法がと
られる。 第4図は速度制御時の各部の動作波形を示す図である。 即ち同図(A)は速度制御時における光ヘッド12の実
際の速度Vの推移(実線カーブ)と基準速度Vs(破線
カーブ)との関係の例を示し、同図(B)は同図(A)
に対応してヘッド送り機構4に流れる駆動電流iの推移
を示す。一般に基準速度Vsは最高速度’JaaxO部
と定減連部とを持つ。よってヘッド駆動機構4に流れる
電流iは光ヘッド12の速度■が基準速度Vsに到達す
るまでは最大電流となり、その後は基準速度Vsと光ヘ
ッド12の速度■との偏差に応じてサンプリング時間t
sで変動する。この結果、光ヘッド12の速度■は基準
速度Vsに到達するまで、すなわち最高速度V wax
になるまで定加速となり、その後、基準速度Vsのパタ
ーンに沿うように速度制御され、等連部を経て目標トラ
ックまで減速される。
FIG. 3 shows an example of the structure of a mechanical section of an optical disk device as an example of this type of information storage device. In the figure, an optical disk 10 on which information has been recorded is rotated at high speed by a spindle motor 11, and recording and reproduction of information on the optical disk 10 is performed via an optical head 12. Here, the optical head 12 is moved in the radial direction of the optical disk 10 via the head drive mechanism 4, and after being positioned on the target track,
Information is recorded and reproduced using a light beam 13 emitted from an optical head 12. FIG. 2 shows the optical disc 10 with a target track on the
FIG. 2 is a block diagram of speed control for moving 2 at high speed. Generally, digital control is used for speed control. The difference between the target track and the current track at the start of the seek, that is, the target track movement amount 01, is set as the target value, and the output of the movement amount detector 6 which counts the number of track crossings and detects the actual movement amount of the head. The deviation X between a certain head movement amount 6a and the target track movement amount 01 (that is, the remaining movement amount of the head required to reach the target track at that point) is input, and the reference speed generator 1 outputs the reference speed Vs. be done. The deviation between the reference speed Vs and the head speed ■ is input by the sampler 22 to the gain generator 2 at specific sampling intervals, and via the current amplifier 3, the head drive mechanism 4 drives the optical head 12 so that the speed follows the reference speed Vs. controlled. Here, the movement amount detector 6 and the speed detector 5 generally directly count the track error signal detected when the light beam 13 crosses the track, the output signal of an external encoder provided in the optical head 12, etc., and move the head. Methods such as detecting the amount and calculating the speed from these signal periods are used. FIG. 4 is a diagram showing operation waveforms of each part during speed control. That is, FIG. 5A shows an example of the relationship between the change in the actual speed V of the optical head 12 (solid line curve) and the reference speed Vs (dashed line curve) during speed control, and FIG. A)
3 shows the transition of the drive current i flowing through the head feeding mechanism 4 in response to the graph. Generally, the reference speed Vs has a maximum speed 'JaaxO section and a constant decrease section. Therefore, the current i flowing through the head drive mechanism 4 becomes the maximum current until the speed ■ of the optical head 12 reaches the reference speed Vs, and thereafter the sampling time t changes depending on the deviation between the reference speed Vs and the speed ■ of the optical head 12.
It varies with s. As a result, the speed ■ of the optical head 12 reaches the reference speed Vs, that is, the maximum speed V wax
After that, the speed is controlled so as to follow the pattern of the reference speed Vs, and the speed is decelerated to the target track through the constant section.

【発明が解決しようとする課題】[Problem to be solved by the invention]

第3図のように一般的にヘッド駆動機構4は可動部の支
持方法として軸受21を使用しているので、駆動時に軸
受から摩擦が発生する。摩擦力は軸受固有の固体摩擦と
軸受に使用している潤滑油の粘性による流体摩擦からな
る。流体摩擦は潤滑油の粘性値と駆動時の速度に比例す
るが、粘性値は第5図に示すような温度特性を持ってい
るので、低温になる程その値は急増する。よってヘッド
駆動機構4で光ヘッド12を駆動する際、発生する摩擦
力とヘッド速度■との関係は第6図のようになる。 すなわち光ヘッド12の速度15が十分小さい時は摩擦
力はほぼ個体摩!IFsとなるが、光ヘッド12の速度
が増加すると、それに応じて流体摩擦が発生して摩擦力
も増加する。さらに周囲温度によって低温時摩擦特性1
日は高温時摩擦特性19を大きく上まわる。なおこれら
の現象は、ヘッド駆動機構4の構成の簡素化、低コスト
化に有効なすべり軸受を軸受21に使用したときに顕著
に出現する。 ところで光ヘツド駆動時に発生する摩擦力は結果的にヘ
ッド駆動機構4の駆動力を低下させることに等しい。よ
って速度制御時のループゲインは周囲温度の低下や光ヘ
ッド12の■の増加によって低下、変動してしまうため
、目標トラックに到達する時間が増大してしまうという
問題があった。 一方、この問題を解決する方法として速度制御のゲイン
2を大きくする方法があるが、デジタル制御ではサンプ
リング時間の遅れの影響のため速度誤差が増加し、その
結果、目標トラックに到達した時、ヘッドの速度が所定
の速度範囲内に収まらず、安定した位置決めができない
という新たな問題が発生してしまう。そこで本発明はこ
の問題を解消できるヘッド速度制御方法を提供すること
を課題とする。
As shown in FIG. 3, since the head drive mechanism 4 generally uses a bearing 21 to support the movable part, friction is generated from the bearing during driving. Frictional force consists of solid friction inherent to the bearing and fluid friction due to the viscosity of the lubricating oil used in the bearing. Fluid friction is proportional to the viscosity value of the lubricating oil and the driving speed, but since the viscosity value has temperature characteristics as shown in FIG. 5, its value increases rapidly as the temperature decreases. Therefore, when the optical head 12 is driven by the head drive mechanism 4, the relationship between the frictional force generated and the head speed (2) is as shown in FIG. In other words, when the speed 15 of the optical head 12 is sufficiently small, the frictional force is almost solid friction! IFs, but as the speed of the optical head 12 increases, fluid friction occurs and the frictional force increases accordingly. Furthermore, depending on the ambient temperature, the friction characteristics at low temperatures1
The friction property at high temperatures greatly exceeds 19. Incidentally, these phenomena appear more conspicuously when a sliding bearing, which is effective in simplifying the structure of the head drive mechanism 4 and reducing costs, is used for the bearing 21. Incidentally, the frictional force generated when the optical head is driven is equivalent to reducing the driving force of the head drive mechanism 4 as a result. Therefore, the loop gain during speed control decreases or fluctuates due to a decrease in ambient temperature or an increase in the diameter of the optical head 12, resulting in a problem that the time required to reach the target track increases. On the other hand, one way to solve this problem is to increase the speed control gain 2, but with digital control, the speed error increases due to the effect of sampling time delay, and as a result, when the target track is reached, the head A new problem arises in that the speed of the object does not fall within a predetermined speed range, making it impossible to perform stable positioning. Therefore, it is an object of the present invention to provide a head speed control method that can solve this problem.

【課題を解決するための手段】[Means to solve the problem]

前記の課題を解決するために本発明の方法は、「記録媒
体(光ディスク10など)上の目標トラックへヘッド(
光ヘッド12など)を移動して、このヘッドを介し前記
目標トラック上のデータの記録再生を行う情報記憶装置
であって、 前記ヘッドの移動を行わせるヘッド駆動機構(4など)
と、 前記ヘッドの移動量を検出する移動量検出器(6など)
と、 前記ヘッドの速度を検出する速度検出器(5など)と、 前記の検出速度が前記ヘッドの目標トラックまでの移動
量に応じた所定の速度パターンに従うように前記ヘッド
駆動機構への駆動電流を可変制御する制御手段(基準速
度発生器1.サンプラ22゜ゲイン2など)とを備えた
情報記憶装置において、前記ヘッドの移動時に前記ヘッ
ド駆動機構に発生する摩擦力を補償するための前記検出
速度に(摩擦補償定数Kcの割合で)比例した電流を前
記ヘッド駆動機構の駆動電流に加えるように1するもの
とする。 なお前記の摩擦補償定数Kcは例えば、予め所定の駆動
電流iをヘッド駆動装置4に流し、この装置4(従って
ヘッド12)を所定の速度まで加速したときの加速時間
から求めることができる。
In order to solve the above-mentioned problems, the method of the present invention is to "move a head (to a target track on a recording medium (such as optical disk 10)
An information storage device that moves an optical head (such as an optical head 12) to record and reproduce data on the target track via the head, the information storage device comprising: a head drive mechanism (such as 4) that moves the head;
and a movement amount detector (such as 6) that detects the movement amount of the head.
a speed detector (such as 5) that detects the speed of the head; and a drive current to the head drive mechanism so that the detected speed follows a predetermined speed pattern depending on the amount of movement of the head to the target track. In an information storage device equipped with a control means (reference speed generator 1, sampler 22° gain 2, etc.) for variably controlling 1 so that a current proportional to the speed (at the rate of the friction compensation constant Kc) is added to the drive current of the head drive mechanism. The friction compensation constant Kc can be determined, for example, from the acceleration time when a predetermined drive current i is passed through the head drive device 4 in advance and the device 4 (therefore, the head 12) is accelerated to a predetermined speed.

【作 用】[For use]

速度制御時にヘッド駆動機構4に発生する摩擦力による
駆動力の低下を補償するために、光ヘッド12の速度に
応じた補償電流をヘッド駆動機構4に流すような制御ル
ープを速度制御ループ内に設ける。またさらに補償電流
を決定するのに必要な摩擦特性に依存する定数をヘッド
のテスト駆動時の加速時間から算出して設定することで
、周囲温度や摩擦特性の個体差に対応できるようにする
。 r実施例】 次に第3図ないし第6図を参照しつつ第1図を用いて本
発明の詳細な説明する。第1図は本発明の一実施例とし
ての速度制御のブロック図で第2図に対応するものであ
る。第1図において第2図と異なる点は、速度検出器5
で検出されるヘッド速度■に摩擦補償定数設定部9に設
定された摩擦補償定数Kcを掛は合わせてその出力を電
流増幅器3の入力として正帰還させた点と、摩擦補償定
数Kcをテスト駆動時の加速時間から算出するため、加
速時間計測部7と演算部8から構成される演算回路20
を付加した点である。 最初に速度制御時の運動方程式から摩擦力と加速時間の
関係を説明する。まず第4図に示した速度制御時の加速
時間taにおいて、ヘッド駆動機構4には定電流iaが
流れるので、その時の駆動力Fh、ヘッド駆動機構4の
軸受21に発生する摩擦力をFf、光ヘッド12の重量
をmとおけば、ヘッド位置をXとして、 F h = m M +F f −(1)となる。ここ
で摩擦力Ffは軸受21に固有な固定摩擦Fsと使用し
ている潤滑油に依存する流体摩擦Fdからなるので Ff =Fs +Fd =Fs +Kd  −i・−(
2)となる。ここでKdは潤滑油の粘性で決定される流
体摩擦定数であり、第6図における摩擦特性18゜19
の傾きである。よって(2)式を(1)式に代入すれば
Fh =m52 +Ki十Fs−(3)となる。(3)
式をヘッド速度V=Xとして解き加速時間ta後のヘッ
ド速度をVisaχとおくととなる。ここで固体摩擦F
sは軸受に固有な値であり、周囲温度、速度によってほ
とんど変化しない。よって事前に固体摩擦Fsを測定し
ておけば、(4)式から流体摩擦定数Kdをパラメータ
にして加速時間taが決定される。言い換えれば両者の
関係を事前に計算して求めておけば、逆に加速時間ta
から流体摩擦定数Kdをすぐに求めることができる。 次にテスト動作を行い摩擦補償定数Kcを設定する手順
を説明する。テスト動作開始時に摩擦補償定数設定部9
の内容はリセットされ、ゼロが設定される。すなわち摩
擦補償のループは動作せず、従来の速度制御と全く同じ
である。次に適当な距離(最高速度Vmaxが存在しう
る距#)を移動量とした速度制御を開始する。同時に加
速時間計測部7は時間を測定し始めて、最高速度V I
Iaxに到達するまでの加速時間ta(第4図参照)を
求める。 加速時間taは演算部8に入力され、例えばあらかじめ
このようにして求めた加速時間taと流体摩擦定数Kd
との相関を示すROM等を利用したテーブルから加速時
間taに対応する流体摩擦定数Kdを決定する。さらに
演算部8はこのように決定した流体摩擦定数Kdをもと
に摩擦補償定数Kcを次式(5)のように算出する。 Kc  −Kp ここでKvは速度検出器感度(V ol t/ m /
 s)、Kfはヘッド駆動機構4の力定数(N/A■p
ere)、Kpは電流増幅器感度(A mpere /
 V o 12 t)、Kdは流体摩擦定数(N/m/
s)である。以上の手順でテスト動作時の加速時間ta
から摩擦補償定数Kcが設定部9に設定される。その後
は通常の速度制御が行われる。 次に実際の速度制御について説明する。目標トラック移
動量01とヘッド移動量6aとの偏差Xを入力として基
準速度発生器1から基準速度Vsが出力される。次に基
準速度Vsとヘッド速度■との偏差はサンプラ22によ
って特定のサンプリング間隔ごとにゲイン発生部2の入
力となり、電流指令値isを出力するが、ヘッド速度■
に摩擦補償定数Kcを掛は合わせた値が電流指令値is
に加えられ電流増幅器30入力となるので、ヘッド駆動
機構4に流れる電流は、流体摩擦Fdで損失となる駆動
力を補償した電流値となる。よってヘッド駆動機構4は
たとえ摩擦力が発生してあ駆動力が低下することは無く
、光ヘッド12の速度制御を安定に行うことができる。 なお、周囲温度が時間の経過とともに変化することも考
えられ、流体摩擦力の大きさも変動する可能性もあるの
で、テスト動作および摩擦補償定数Kcの算出・設定は
、特定の時間間隔で繰り返し行うことが好ましい。
In order to compensate for the drop in driving force due to the frictional force generated in the head drive mechanism 4 during speed control, a control loop is included in the speed control loop that causes a compensation current to flow through the head drive mechanism 4 in accordance with the speed of the optical head 12. establish. Furthermore, by calculating and setting a constant that depends on the frictional characteristics required to determine the compensation current from the acceleration time during test drive of the head, it is possible to cope with individual differences in ambient temperature and frictional characteristics. Embodiment Next, the present invention will be explained in detail using FIG. 1 while referring to FIGS. 3 to 6. FIG. 1 is a block diagram of speed control as an embodiment of the present invention, and corresponds to FIG. 2. The difference between FIG. 1 and FIG. 2 is that the speed detector 5
The head speed detected by the head speed ■ is multiplied by the friction compensation constant Kc set in the friction compensation constant setting section 9, and the output thereof is fed back positively as the input of the current amplifier 3, and the friction compensation constant Kc is tested. In order to calculate from the acceleration time of
This is the addition of . First, the relationship between friction force and acceleration time will be explained from the equation of motion during speed control. First, during the acceleration time ta during speed control shown in FIG. 4, a constant current ia flows through the head drive mechanism 4, so the drive force Fh at that time and the friction force generated in the bearing 21 of the head drive mechanism 4 are expressed as Ff, If the weight of the optical head 12 is set as m, and the head position is set as X, then F h = m M +F f - (1). Here, the frictional force Ff consists of the fixed friction Fs specific to the bearing 21 and the fluid friction Fd depending on the lubricating oil used, so Ff = Fs + Fd = Fs + Kd -i・-(
2). Here, Kd is the fluid friction constant determined by the viscosity of the lubricating oil, and the friction characteristic in Fig. 6 is 18°19
is the slope of Therefore, by substituting equation (2) into equation (1), we get Fh = m52 + Ki + Fs - (3). (3)
Solving the equation by setting head speed V=X and setting the head speed after acceleration time ta as Visaχ. Here, solid friction F
s is a value specific to the bearing and hardly changes depending on the ambient temperature and speed. Therefore, if the solid friction Fs is measured in advance, the acceleration time ta can be determined from equation (4) using the fluid friction constant Kd as a parameter. In other words, if the relationship between the two is calculated and determined in advance, the acceleration time ta
The fluid friction constant Kd can be immediately obtained from . Next, a procedure for performing a test operation and setting the friction compensation constant Kc will be explained. Friction compensation constant setting section 9 at the start of test operation
The contents of are reset and set to zero. In other words, the friction compensation loop does not operate, and the operation is exactly the same as conventional speed control. Next, speed control is started using an appropriate distance (distance # in which the maximum speed Vmax can exist) as the amount of movement. At the same time, the acceleration time measuring section 7 starts measuring time, and the maximum speed VI
The acceleration time ta (see FIG. 4) until reaching Iax is determined. The acceleration time ta is input to the calculation unit 8, and for example, the acceleration time ta obtained in this way and the fluid friction constant Kd
The fluid friction constant Kd corresponding to the acceleration time ta is determined from a table using a ROM or the like showing the correlation with the acceleration time ta. Furthermore, the calculation unit 8 calculates a friction compensation constant Kc as shown in the following equation (5) based on the fluid friction constant Kd determined in this way. Kc - Kp where Kv is the speed detector sensitivity (Vol t/m/
s), Kf is the force constant of the head drive mechanism 4 (N/A■p
ere), Kp is the current amplifier sensitivity (A mpere /
V o 12 t), Kd is the fluid friction constant (N/m/
s). With the above steps, the acceleration time ta during test operation is
A friction compensation constant Kc is set in the setting section 9 from . After that, normal speed control is performed. Next, actual speed control will be explained. A reference speed Vs is output from the reference speed generator 1 by inputting the deviation X between the target track movement amount 01 and the head movement amount 6a. Next, the sampler 22 inputs the deviation between the reference speed Vs and the head speed ■ to the gain generator 2 at specific sampling intervals, and outputs the current command value is, but the head speed ■
Multiplying by the friction compensation constant Kc, the combined value is the current command value is
The current flowing through the head drive mechanism 4 has a current value that compensates for the driving force lost due to the fluid friction Fd. Therefore, the head driving mechanism 4 can stably control the speed of the optical head 12 without reducing the driving force even if frictional force is generated. Note that the ambient temperature may change over time, and the magnitude of the fluid friction force may also change, so test operations and calculation and setting of the friction compensation constant Kc should be repeated at specific time intervals. It is preferable.

【発明の効果】【Effect of the invention】

本発明によればヘッドを目標トラックへ高速に移動する
ための速度制御時にヘッド駆動機構の軸受に発生する周
囲温度、潤滑油粘性に依存した流体摩擦力による駆動力
の低下を防ぐため、流体摩擦力に相当する駆動力を得ら
れるように補償電流をヘッド駆動機構の駆動電流に加え
るための、ヘッド速度から電流増幅器への正帰還ループ
を設け、さらに流体摩擦定数をテスト動作時のヘッド加
速時間から算出し、その値をもとに前記の正帰還ループ
内のゲインである摩擦補償定数Kcを裁定するようにし
たので、 速度制御時に摩擦力が発生してもヘッド駆動機構の駆動
力が低下することは無く、速度制御を安定して行うこと
ができ、目標トランクの到達時開が増大してしまうこと
はない。またテスト動作を行って摩擦補償用のループゲ
インを設定しているので、個体差1周囲部度の変化等に
よって摩擦特性が変動しても安定した制御を行うことが
できる。
According to the present invention, in order to prevent a decrease in driving force due to fluid frictional force depending on the ambient temperature and lubricating oil viscosity generated in the bearing of the head drive mechanism during speed control for moving the head to a target track at high speed, fluid friction A positive feedback loop from the head speed to the current amplifier is provided in order to add a compensation current to the drive current of the head drive mechanism so as to obtain a drive force corresponding to the force, and the fluid friction constant is also tested by measuring the head acceleration time during operation. Based on this value, the friction compensation constant Kc, which is the gain in the positive feedback loop, is determined, so even if frictional force is generated during speed control, the driving force of the head drive mechanism will decrease. Therefore, speed control can be performed stably, and the number of openings upon reaching the target trunk will not increase. Furthermore, since the loop gain for friction compensation is set by performing a test operation, stable control can be performed even if the friction characteristics change due to individual differences, changes in the circumference, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例としての速度制御のブロック
図、 第2図は第1図に対応する従来のブロック図、第3図は
情報記憶装置の一例としての光デイスク装置の構成を示
す図、 第4図はヘッドの速度制御時の速度および駆動電流の波
形の例を示す図、 第5図は軸受の潤滑油の温度と粘性の関係例を示す図、 第6図はヘッド駆動機構に発生する摩擦力の例を示す図
である。 に基準速度発生器、2ニゲイン発生部、3:電流増幅器
、4:ヘッド駆動機構、5:速度検出器、6:移動量検
出器、7:加速時間計測部、8:演算部、9:摩擦補償
定数設定部、2o:演算回路、22:サンプラ、Kc 
:摩擦補償定数、■:へ牙4図 第 図 第3図 第 図
Fig. 1 is a block diagram of speed control as an embodiment of the present invention, Fig. 2 is a conventional block diagram corresponding to Fig. 1, and Fig. 3 shows the configuration of an optical disk device as an example of an information storage device. Figure 4 is a diagram showing an example of the speed and drive current waveforms during head speed control, Figure 5 is a diagram showing an example of the relationship between the temperature and viscosity of lubricating oil for a bearing, and Figure 6 is a diagram showing an example of the relationship between the temperature and viscosity of the lubricating oil of the bearing. FIG. 3 is a diagram showing an example of frictional force generated in the mechanism. Reference speed generator, 2nd gain generator, 3: Current amplifier, 4: Head drive mechanism, 5: Speed detector, 6: Travel amount detector, 7: Acceleration time measuring section, 8: Arithmetic section, 9: Friction Compensation constant setting section, 2o: Arithmetic circuit, 22: Sampler, Kc
:Friction compensation constant, ■:Hega 4 Figure 3 Figure 3

Claims (1)

【特許請求の範囲】 1)記録媒体上の目標トラックへヘッドを移動してこの
ヘッドを介し前記目標トラック上のデータの記録、再生
を行う情報記憶装置であって 前記ヘッドの移動を行わせるヘッド駆動機構と、前記ヘ
ッドの移動量を検出する移動量検出器と、前記ヘッドの
速度を検出する速度検出器と、前記の検出速度が前記ヘ
ッドの目標トラックまでの移動量に応じた所定の速度パ
ターンに従うように前記ヘッド駆動機構への駆動電流を
可変制御する制御手段とを備えた情報記憶装置において
、前記ヘッドの移動時に前記ヘッド駆動機構に発生する
摩擦力を補償するための前記検出速度に比例した電流を
前記ヘッド駆動機構の駆動電流に加えるようにしたこと
を特徴とする情報記憶装置のヘッド速度制御方法。
[Scope of Claims] 1) An information storage device that moves a head to a target track on a recording medium and records and reproduces data on the target track via this head, which head moves the head. a drive mechanism, a movement amount detector for detecting the amount of movement of the head, a speed detector for detecting the speed of the head, and a predetermined speed in which the detected speed corresponds to the amount of movement of the head to a target track and a control means for variably controlling a drive current to the head drive mechanism so as to follow a pattern, wherein the detected speed is adjusted to compensate for a frictional force generated in the head drive mechanism when the head moves. A head speed control method for an information storage device, characterized in that a proportional current is added to the drive current of the head drive mechanism.
JP11358990A 1990-04-27 1990-04-27 Head speed control method for information storage device Pending JPH0411365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11358990A JPH0411365A (en) 1990-04-27 1990-04-27 Head speed control method for information storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11358990A JPH0411365A (en) 1990-04-27 1990-04-27 Head speed control method for information storage device

Publications (1)

Publication Number Publication Date
JPH0411365A true JPH0411365A (en) 1992-01-16

Family

ID=14616049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11358990A Pending JPH0411365A (en) 1990-04-27 1990-04-27 Head speed control method for information storage device

Country Status (1)

Country Link
JP (1) JPH0411365A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09320061A (en) * 1996-05-30 1997-12-12 Olympus Optical Co Ltd Speed control device for head
US7498760B2 (en) 2005-09-30 2009-03-03 Brother Kogyo Kabushiki Kaisha Drive control apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09320061A (en) * 1996-05-30 1997-12-12 Olympus Optical Co Ltd Speed control device for head
US7498760B2 (en) 2005-09-30 2009-03-03 Brother Kogyo Kabushiki Kaisha Drive control apparatus

Similar Documents

Publication Publication Date Title
US4835752A (en) Device for driving and controlling optical head for use in optical disk system
US5345348A (en) Controlling the moving speed of a magnetic head by varying the gain in response to the sign of the error signal
US5872674A (en) Actuator bias prediction using lookup-table hysteresis modeling
JPH0411365A (en) Head speed control method for information storage device
KR100406453B1 (en) Disk storage device and method of deciding the position of the head
JPH05174393A (en) Method and device for access control of disk device
JPH04321936A (en) Head movement control method and optical disk device
US6239572B1 (en) Servo control apparatus
JPS61279914A (en) Actuator driver
JPS61222035A (en) Optical information recording and reproducing device
JP3303363B2 (en) Head control method and head control device
JP2795998B2 (en) Speed control device for magnetic disk drive
JPH0755718Y2 (en) Optical disk seek device
JPS6310382A (en) Device for moving and controlling optical head
JPH02154377A (en) Magnetic disk device
JPH0337187Y2 (en)
JPH0233731A (en) Optical disk device
JP2732590B2 (en) Recording medium processing device
JPS62239481A (en) Information recording and reproducing device
JP2740255B2 (en) Optical disk drive
JP2743882B2 (en) Integral type feedforward compensation method for positioning servo mechanism and magnetic head positioning control device
JP2825167B2 (en) Information recording / reproducing device
JPH03259469A (en) Access servo circuit for optical disk device
JPH0498622A (en) Track servo device for optical information recording and reproducing device
JPH04364275A (en) Speed controller for magnetic disk device