JPH04112522A - Aligner - Google Patents

Aligner

Info

Publication number
JPH04112522A
JPH04112522A JP2231944A JP23194490A JPH04112522A JP H04112522 A JPH04112522 A JP H04112522A JP 2231944 A JP2231944 A JP 2231944A JP 23194490 A JP23194490 A JP 23194490A JP H04112522 A JPH04112522 A JP H04112522A
Authority
JP
Japan
Prior art keywords
light
substrate
beams
irradiated
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2231944A
Other languages
Japanese (ja)
Inventor
Tsutomu Koike
小池 務
Ichiro Arimoto
一郎 有本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2231944A priority Critical patent/JPH04112522A/en
Publication of JPH04112522A publication Critical patent/JPH04112522A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7023Aligning or positioning in direction perpendicular to substrate surface
    • G03F9/7026Focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To detect a focal-point position and to conduct the levelling of a substrate by a method wherein a single part is irradiated with beams of light from a plurality of directions and the output electric signals of reflected beams of light detected corresponding to independent photodetection positions are processed mathematically. CONSTITUTION:Beams of light emitted from a plurality of LED's 10 are changed to parallel beams of light by using collimator lenses 9; the parallel beams of light are frequency-modulated by using amplitude modulators 8; after that, a substrate 1 is irradiated with the beams. A single part on the substrate 1 is irradiated with the light fluxes; respective reflected beams of light are photodetected by using condensing lenses 6 corresponding to independent photodetection positions; the condensed beams of light are photodetected by using photodetectors which output electric signals. Then, the signals of the individual photodetectors are processed mathematically, such as averaged or the like. By using this result, a focal-point position is detected, the substrate is leveled and the like.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、写真製版工程における重ね合わせを行なう
露光装置に関し、特にウェハの傾斜の補正を行なうため
のレベリングの改良を図ったものに関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an exposure apparatus that performs overlapping in a photolithography process, and particularly relates to an exposure apparatus that improves leveling for correcting wafer inclination. be.

〔従来の技術〕[Conventional technology]

半導体基板であるウェハ上のレジスト塗布後の露光フィ
ールド全面での焦点合わせは製品の歩留りや信頼性の向
上等を図るうえて重要である。すなわち、投影レンズが
高N A (Numerical Aperture:
開口数)化し、露光波長が短波長化するにつれて、焦点
深度は小さ(なっており、露光フィールド全面での焦点
合わせの余裕が実用上不足ぎみである。その中で、ウェ
ハのひずみやウェハの表面に存在する凹凸等のための露
光フィールド領域での傾斜のため、ますます焦点合わせ
の余裕が不足してしまうものである。そのために、ウェ
ハの傾斜を補正するためのレベリングか通常行なわれる
Focusing over the entire exposure field after resist coating on a wafer, which is a semiconductor substrate, is important for improving product yield and reliability. That is, the projection lens has a high NA (Numerical Aperture:
As the numerical aperture becomes larger (numerical aperture) and the exposure wavelength becomes shorter, the depth of focus becomes smaller, and there is practically insufficient margin for focusing over the entire exposure field. Due to the inclination in the exposure field region due to surface irregularities, etc., the margin for focusing becomes increasingly insufficient.For this reason, leveling is usually performed to correct the inclination of the wafer.

第2図は、この種のレベリングを行なう従来のレベリン
グ機構の図である。このものは、レベリングステージ2
上の基板lに、光源lOより光を発し、コリメータレン
ズ9て平行光とした後照射する。この光束は基板1上で
反射され、集光レンズ6で位置検出素子7上に集光され
る。基板1上の傾きは、この位置検出素子7上の光スポ
ットの位置ズレとして計測される。
FIG. 2 is a diagram of a conventional leveling mechanism that performs this type of leveling. This one is leveling stage 2
Light is emitted from a light source lO onto the upper substrate l, which is converted into parallel light by a collimator lens 9 and then irradiated. This light beam is reflected on the substrate 1 and focused onto the position detection element 7 by the condenser lens 6. The inclination on the substrate 1 is measured as a positional shift of the light spot on the position detection element 7.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の露光装置は以上のように構成されており、基板1
上の凹凸のために基板1に照射された光は一部が散乱さ
れ、位置検出素子7上の光スポットの位置ずれは散乱が
ない時と比べて、その位置ずれが異なってきてしまう。
A conventional exposure apparatus is configured as described above, and the substrate 1
Part of the light irradiated onto the substrate 1 is scattered due to the unevenness on the substrate 1, and the positional deviation of the light spot on the position detection element 7 becomes different from that when there is no scattering.

そのために、基板1のレベリングか十分に行えずに露光
に対する焦点合わせの余裕が実用上不足ぎみになってし
まう。
As a result, the leveling of the substrate 1 cannot be performed sufficiently, and the focusing margin for exposure becomes practically insufficient.

従って、製品歩留りを低下させたり、信頼性を損なう等
の問題点を生じるものであった。
Therefore, problems such as a decrease in product yield and a loss of reliability arise.

この発明は、上記のような問題点を解消するためになさ
れたもので、製品歩留りの向上が図れ、かつ、信頼性の
向上が図れる露光装置を提供せんとするものである。
The present invention has been made to solve the above-mentioned problems, and aims to provide an exposure apparatus that can improve product yield and reliability.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る露光装置は、複数方向から単一カ所に光
を照射し、そのおのおのの反射光を独立の受光位置に応
じた電気信号を出力する受光素子の信号を平均化等の数
学的処理を行い、その結果を用いて、焦点位置検出、基
板の水平出し等を行うようにしたものである。
The exposure apparatus according to the present invention irradiates light from multiple directions to a single location, and performs mathematical processing such as averaging the signals of the light receiving elements that output electric signals corresponding to independent light receiving positions of each reflected light. The results are used to detect the focal point position, level the substrate, etc.

また、上記各々の受光素子の信号の内強度最高の信号を
一つ選び、焦点位置検出、基板の水平出し等を行うよう
にしたものである。
Further, one signal having the highest intensity among the signals of each of the above-mentioned light receiving elements is selected to perform focal position detection, substrate leveling, etc.

〔作用〕[Effect]

本発明においては、上述のように構成したことにより、
複数方向から単一カ所に光を照射するために、反射光に
よる位置ずれへの影響を低減できる。
In the present invention, by having the configuration as described above,
Since light is irradiated to a single location from multiple directions, the influence of reflected light on positional deviation can be reduced.

〔実施例〕〔Example〕

以下、この発明の実施例を図について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図はこの発明の−の実施例による露光装置のレベリ
ング機構を示した図である。図において、lは基板、2
はレベリングステージ、3はステージ駆動点、4はステ
ージ固定点、5は照射エリア、6は集光レンズ、7は位
置検出器、8は変調器、9はコリメータレンズ、10は
LED光である。
FIG. 1 is a diagram showing a leveling mechanism of an exposure apparatus according to a negative embodiment of the present invention. In the figure, l is the substrate, 2
3 is a leveling stage, 3 is a stage driving point, 4 is a stage fixing point, 5 is an irradiation area, 6 is a condensing lens, 7 is a position detector, 8 is a modulator, 9 is a collimator lens, and 10 is an LED light.

次に動作について説明する。複数のLED 10から発
した光をコリメータレンズ9で平行光とし、振幅変調器
8で周波数変調を行った後、基板1上に照射する。この
光束は、基板1の単一箇所を照射し、そのおのおのの反
射光を独立の受光位置に応じた集光レンズ6に受光させ
、その集光させた光を電気信号を出力する受光素子で受
光させる。
Next, the operation will be explained. The light emitted from the plurality of LEDs 10 is made into parallel light by a collimator lens 9, frequency modulated by an amplitude modulator 8, and then irradiated onto the substrate 1. This light flux illuminates a single spot on the substrate 1, and each reflected light is received by a condenser lens 6 corresponding to an independent light receiving position, and the condensed light is sent to a light receiving element that outputs an electrical signal. Let it receive light.

次に、各々の受光素子の信号を平均化等の数学的処理を
行い、その結果を用いて焦点位置検出、基板の水平出し
くレベリング)等を行うことができる。
Next, the signals of each light receiving element are subjected to mathematical processing such as averaging, and the results can be used to perform focal position detection, leveling of the substrate, etc.

なお上記実施例における各々の受光素子の信号を、正規
分布等の数学的処理を行い、各々の受光素子の信号の正
規分布の内もっとも強度が高いものを一つ選び焦点位置
検出、基板の水平出し等を行うようにしてもよく、この
場合、上記実施例で示した各光散乱の光の影響を各発光
位置に応じた受光位置の他の受光位置か受けないように
変調させるための変調器8を不要にできる。
In the above embodiment, the signals of each light receiving element are subjected to mathematical processing such as normal distribution, and one of the normal distributions of signals of each light receiving element with the highest intensity is selected to detect the focal position and to horizontally align the substrate. In this case, the light receiving position corresponding to each light emitting position may be modulated so that other light receiving positions are not affected by the influence of each light scattering shown in the above embodiment. The container 8 can be made unnecessary.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明に係る露光装置によれば、複数方
向からウェハの単一箇所に光を照射するようにしたので
、反射光による位置ずれへの影響を低減でき、レベリン
グを正確に行なうことが可能である。
As described above, according to the exposure apparatus according to the present invention, since light is irradiated onto a single location on the wafer from multiple directions, the influence of reflected light on positional deviation can be reduced, and leveling can be performed accurately. Is possible.

【図面の簡単な説明】 第1図は、本発明に係る露光装置の状態を示す図、第2
図は従来の露光装置の状態を示す図である。 図において、lは基板、2はレベリングステージ、3は
ステージ駆動点、4はステージ固定点、5は照射エリア
、6は集光レンズ、7は位置検出器、8は変調器、9は
コリメータレンズ、lOはLED光である。 なお図中同一符号は同−又は相当部分を示す。
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a diagram showing the state of an exposure apparatus according to the present invention, and FIG.
The figure shows the state of a conventional exposure apparatus. In the figure, l is the substrate, 2 is the leveling stage, 3 is the stage driving point, 4 is the stage fixing point, 5 is the irradiation area, 6 is the condensing lens, 7 is the position detector, 8 is the modulator, and 9 is the collimator lens. , lO is an LED light. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (2)

【特許請求の範囲】[Claims] (1)複数方向からウェハの単一箇所に光を照射する手
段と、 その各々の反射光を独立の受光位置で受光し電気信号を
出力する受光素子と、 各々の受光素子の信号に対し数学的処理を行う手段とを
備え、 前記数学的処理の結果を用いて、焦点位置検出、基板の
水平出しを行うことを特徴とする露光装置。
(1) A means for irradiating light onto a single spot on a wafer from multiple directions, a light-receiving element that receives each reflected light at an independent light-receiving position and outputs an electrical signal, and a mathematical method for the signal of each light-receiving element. 1. An exposure apparatus comprising means for performing mathematical processing, and detecting a focus position and leveling a substrate using the results of the mathematical processing.
(2)複数方向からウェハの単一箇所に光を照射する手
段と、 その各々の反射光を独立の受光位置で受光し電気信号を
出力する受光素子と、 各々の受光素子の信号に対し正規分布を求める数学的処
理を行い受光素子の信号の内強度最高の信号を一つ選択
する手段とを備え、 その選択された信号を用いて、焦点位置検出、基板の水
平出しを行うことを特徴とする露光装置。
(2) means for irradiating light onto a single spot on the wafer from multiple directions; a light receiving element for receiving each reflected light at an independent light receiving position and outputting an electrical signal; It is characterized by comprising means for performing mathematical processing to obtain the distribution and selecting one of the signals of the light-receiving element with the highest intensity, and using the selected signal to detect the focal point position and level the substrate. Exposure equipment.
JP2231944A 1990-08-31 1990-08-31 Aligner Pending JPH04112522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2231944A JPH04112522A (en) 1990-08-31 1990-08-31 Aligner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2231944A JPH04112522A (en) 1990-08-31 1990-08-31 Aligner

Publications (1)

Publication Number Publication Date
JPH04112522A true JPH04112522A (en) 1992-04-14

Family

ID=16931511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2231944A Pending JPH04112522A (en) 1990-08-31 1990-08-31 Aligner

Country Status (1)

Country Link
JP (1) JPH04112522A (en)

Similar Documents

Publication Publication Date Title
JP3158446B2 (en) Surface position detecting device, surface position detecting method, exposure apparatus, exposure method, and semiconductor manufacturing method
JP3555230B2 (en) Projection exposure equipment
JPH08167559A (en) Method and device for alignment
JP2575621B2 (en) Mask pattern imaging device
JPH07209202A (en) Surface state inspection equipment, exposure apparatus employing it, and production of device using the exposure apparatus
JP2890943B2 (en) Position detecting method and position detecting device using the same
JPH1022213A (en) Position detector and manufacture of device using it
JP3908733B2 (en) Recording device for information recording medium master
JPH0888170A (en) Controller of position and gradient of target
JPH10284404A (en) Face position adjustment device and method, and aligner and method therefor
JPH04112522A (en) Aligner
JPS6355859B2 (en)
JP2012149984A (en) Displacement detecting deice, exposure device, and device manufacturing method
JPS6227613A (en) Position detector
JPH08162393A (en) Aligning device
JP2705102B2 (en) Charged beam exposure method
JPH0950135A (en) Alignment method
JPH104053A (en) Surface position detector and manufacture of device thereby
JPH0412523A (en) Position detector
KR20060028006A (en) Device for leveling a semiconductor wafer
JPS61242342A (en) Optical pickup device
JPH07104130B2 (en) Alignment device
KR20030006829A (en) Semiconductor wafer leveling apparatus and exposure equipment with the same
JPH05304078A (en) Focusing mechanism of exposure device
KR200144702Y1 (en) Lens focus compensator for semiconductor manufacturing equipment