JPH04112005A - Ceramic heat radiating baseplate and production thereof - Google Patents

Ceramic heat radiating baseplate and production thereof

Info

Publication number
JPH04112005A
JPH04112005A JP23159190A JP23159190A JPH04112005A JP H04112005 A JPH04112005 A JP H04112005A JP 23159190 A JP23159190 A JP 23159190A JP 23159190 A JP23159190 A JP 23159190A JP H04112005 A JPH04112005 A JP H04112005A
Authority
JP
Japan
Prior art keywords
layer
ceramic layer
porous
dense
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23159190A
Other languages
Japanese (ja)
Inventor
Kazunobu Ogawa
和伸 小川
Nobuyuki Asaoka
浅岡 伸之
Takeshi Sato
武 佐藤
Osamu Miyazawa
修 宮沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP23159190A priority Critical patent/JPH04112005A/en
Publication of JPH04112005A publication Critical patent/JPH04112005A/en
Pending legal-status Critical Current

Links

Landscapes

  • Producing Shaped Articles From Materials (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)

Abstract

PURPOSE:To enhance the heat radiation effect of the electronic parts by laminating a dense ceramic layer on a porous ceramic layer and integrally sintering them and forming the opened pores in the porous ceramic layer and forming the porous ceramic layer into the passage of a refrigerant and impregnating the opened pores with molten copper-based alloy and coagulating it. CONSTITUTION:A ceramic heat radiating baseplate 10 is obtained by laminating a dense ceramic layer 10b on both sides of a porous ceramic layer 102 and integrally sintering them. Metallic pipes 11, 12 are constituted of the metallic material whose thermal expansion coefficient is nearly equal to a ceramic baseplate 10 made of alumina. The metallic pipes are brazed by a hard solder 16 and integrated with the baseplate 10. A through-hole 17 is bored through the dense ceramic layer 10b of the lowermost layer of the baseplate 10. A gaseous refrigerant e.g. gaseous freon 13 is blown thereinto from both of the metallic pipes 11, 12 and discharged from the through-hole 17 through the porous ceramic layer 10a. Heat release of the electron parts 14, 15 is removed which are placed on the dense ceramic layer 10b of the uppermost layer. Since copper- based alloy is coagulated in the opened pores of the porous ceramic layer 10a, heat generated from the electron parts 14, 15 is rapidly cooled by the gaseous refrigerant.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はアルミナを主成分としグリーン/−1・多層積
層法により製造される半導体基板材料に関する。更に詳
しくは電子部品の発熱を放散させるセラミック放熱基板
及びその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a semiconductor substrate material containing alumina as a main component and manufactured by a green/-1 multilayer lamination method. More specifically, the present invention relates to a ceramic heat dissipation board for dissipating heat generated by electronic components and a method of manufacturing the same.

[従来の技術] 従来、この種のセラミック放熱基板は、放熱性を向上さ
せるために、メタライズ法或いはろう付は法により、熱
伝導率の高いCu金属やCu−W系焼結合金をヒートシ
ンク金属として固体状態でセラミック基板の表面に接合
していた。
[Prior Art] Conventionally, this type of ceramic heat dissipation board has been manufactured by attaching Cu metal or Cu-W sintered alloy with high thermal conductivity to heat sink metal by metallization or brazing in order to improve heat dissipation. It was bonded to the surface of the ceramic substrate in a solid state.

[発明か解決しようとする課題] しかし、上記ヒートシンク金属は、接合時の歪みによる
強度低下を避けるために、その熱膨張係数がセラミック
基板の熱膨張係数に適合するものの中から選択する必要
があり、セラミック基板としてアルミナ基板を用いた場
合には、ヒートシンク金属にCu−W、 Cu−Mo、
 W−A g等の低い熱膨張係数の焼結合金しか使用で
きす、放熱効果に一定の限界かあった。
[Problem to be solved by the invention] However, in order to avoid a decrease in strength due to distortion during bonding, the heat sink metal must be selected from those whose coefficient of thermal expansion matches that of the ceramic substrate. , when an alumina substrate is used as the ceramic substrate, the heat sink metal is Cu-W, Cu-Mo,
Only sintered alloys with a low coefficient of thermal expansion, such as W-Ag, could be used, and there was a certain limit to the heat dissipation effect.

本発明の目的は、種々のヒートシンク金属と高強度に接
合でき、しかもセラミック基板と金属との接合界面を増
大して伝熱面積を大きくてきるセラミック放熱基板及び
その製造方法を提供することにある。
An object of the present invention is to provide a ceramic heat dissipation board that can be bonded with various heat sink metals with high strength and that can increase the heat transfer area by increasing the bonding interface between the ceramic substrate and the metal, and a method for manufacturing the same. .

本発明の別の目的は、電子部品の放熱効果か高く、しか
も高密度に電子部品を実装することかできるセラミック
放熱基板及びその製造方法を提供することにある。
Another object of the present invention is to provide a ceramic heat dissipation board that has a high heat dissipation effect for electronic components and allows electronic components to be mounted at high density, and a method for manufacturing the same.

[課題を解決するための手段] 上記目的を達成するために、本発明のセラミック放熱基
板は、多孔質セラミック層の両面又は片面に緻密質セラ
ミック層か積層されて一体的に焼結され、前記多孔質セ
ラミック層に開気孔か形成された積層焼結体を支持体と
し、前記多孔質セラミック層を冷媒通路とするものであ
って、溶融した銅系合金か前記開気孔に含浸凝固したこ
とを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the ceramic heat dissipation substrate of the present invention includes a porous ceramic layer and a dense ceramic layer laminated on both or one side of the porous ceramic layer and integrally sintered. A laminated sintered body in which open pores are formed in a porous ceramic layer is used as a support, and the porous ceramic layer is used as a coolant passage, and a molten copper alloy is impregnated and solidified into the open pores. Features.

また本発明のセラミック放熱基板の製造方法では、先ず
水を分散媒とした第1アルミナゾルに第1焼結助剤と第
1水溶性バインダを添加混合して緻密質層用スラリーを
調製し、この緻密質層用スラリーを成膜乾燥して緻密質
層用グリーンシートを成形する。次いで水を分散媒とし
た第2アルミナゾルに焼結助剤を添加しないか又は前記
第1焼結助剤より少量の第2焼結助剤と第2水溶性バイ
ンダを添加混合して多孔質層用スラリーを調製し、この
多孔質層用スラリーを成膜乾燥して多孔質層用グリーン
シートを成形する。次に前記多孔質層用グリーンシート
の両面又は片面に前記緻密質層用グリーンシートを接着
剤により接着し、前記接着したグリーンシートを120
0〜1600℃で焼成して積層焼結体を形成する。更に
溶融した銅系合金を前記積層焼結体の多孔質セラミック
層に含浸して凝固させる。
In addition, in the method for manufacturing a ceramic heat dissipation board of the present invention, first, a first sintering aid and a first water-soluble binder are added and mixed to a first alumina sol using water as a dispersion medium to prepare a slurry for a dense layer. The slurry for dense layer is formed into a film and dried to form a green sheet for dense layer. Next, no sintering aid is added to the second alumina sol using water as a dispersion medium, or a second sintering aid and a second water-soluble binder are added and mixed in a smaller amount than the first sintering aid to form a porous layer. A green sheet for the porous layer is formed by preparing a slurry for the porous layer and drying the slurry for the porous layer. Next, the dense layer green sheet is adhered to both sides or one side of the porous layer green sheet, and the adhered green sheet is
A laminated sintered body is formed by firing at 0 to 1600°C. Furthermore, the porous ceramic layer of the laminated sintered body is impregnated with the molten copper alloy and solidified.

本発明の多孔質セラミック層及び緻密質セラミック層を
構成するセラミック原料は、ともにアルミナ含有量か9
0〜999%の純度の高いアルミナである。緻密質層用
スラリー及び多孔質層用スラリーはともに水を分散媒と
したアルミナゾルを主成分とする。上記アルミナゾルは
アルミニウムアルコキシドを加水分解し、それぞれの加
水分解生成物を解膠処理して得られるアルミナコロイド
液であって、いわゆるゾル−ゲル法において調製される
微細なコロイド粒子のアルミナゾルか好ましい。
The ceramic raw materials constituting the porous ceramic layer and the dense ceramic layer of the present invention both have an alumina content of 9.
It is alumina with a high purity of 0 to 999%. Both the slurry for the dense layer and the slurry for the porous layer mainly contain alumina sol using water as a dispersion medium. The alumina sol is an alumina colloid liquid obtained by hydrolyzing aluminum alkoxide and peptizing the respective hydrolysis products, and is preferably an alumina sol of fine colloidal particles prepared by a so-called sol-gel method.

緻密質層用スラリーと多孔質層用スラリーの調製方法の
相違点は、前者に焼結助剤かアルミナゾル100重量%
に対して05〜10重量%含まれるのに対して、後者に
はセラミック層の気孔率を増大させるために焼結助剤が
全く含まれないか或いは前者より少量の焼結助剤か含ま
れるところにある。アルミナの焼結助剤としては、二酸
化けい素、酸化マグネシウム、酸化カルシウム、酢酸マ
グネシウム、二酸化チタン等が挙げられる。酸化マグネ
シウム及び二酸化けい素の添加系では酸化カルシウムを
少なくとも01重量%添加することか好ましい。
The difference between the preparation methods of the slurry for the dense layer and the slurry for the porous layer is that the former uses a sintering aid or 100% by weight alumina sol.
The latter contains no sintering aid or only a smaller amount of sintering aid than the former to increase the porosity of the ceramic layer. It's there. Examples of sintering aids for alumina include silicon dioxide, magnesium oxide, calcium oxide, magnesium acetate, and titanium dioxide. In the addition system of magnesium oxide and silicon dioxide, it is preferable to add at least 0.1% by weight of calcium oxide.

水溶性バインダは緻密質層用スラリー及び多孔質層用ス
ラリーにおいて、ともにアルミナゾルの固形分に対して
10〜80重量%添加される。このバインダは焼結時の
脱バインダによりセラミック層に気孔を生じ易いため、
気孔率を減少させる場合には上記範囲で少なめにアルミ
ナゾルに添加される。水溶性バインダとしてはポリビニ
ルアルコール、水溶性アクリル等が挙げられる。緻密質
層用スラリーに含まれるバインダは多孔質層用スラリー
に含まれるバインダと異なってもよい。
The water-soluble binder is added in an amount of 10 to 80% by weight based on the solid content of the alumina sol in both the dense layer slurry and the porous layer slurry. This binder tends to create pores in the ceramic layer when the binder is removed during sintering.
When reducing the porosity, a small amount within the above range is added to the alumina sol. Examples of water-soluble binders include polyvinyl alcohol and water-soluble acrylic. The binder contained in the slurry for the dense layer may be different from the binder contained in the slurry for the porous layer.

緻密質層用スラリー及び多孔質層用スラリーを成膜する
方法としては、ドクターブレード法、押出し成形法、ロ
ール圧延法、泥しよう鋳込み法等があるが、成形歪が少
なく成形体の平滑度か良好なドクターブレード法が好ま
しい。多孔質層用スラリーを成膜するときに、このスラ
リーにアンモニア、或いはアミン類のアルカリ物質を添
加してスラリー中にゲルを生成させ、気孔率を増大させ
ることもできる。
Methods for forming slurries for dense layers and porous layers include the doctor blade method, extrusion molding method, roll rolling method, slurry casting method, etc. A good doctor blade method is preferred. When forming a slurry for a porous layer, ammonia or an alkaline substance such as amines may be added to the slurry to form a gel in the slurry, thereby increasing the porosity.

緻密質層用のスラリー及び多孔質層用のスラリーを成膜
後、30〜95℃でそれぞれ乾燥して緻密質層用グリー
ンシート及び多孔質層用グリーンシートを成形する。最
下層となる緻密質層用グリーンシートには冷媒が通る通
孔を設けてもよい。
After forming the slurry for the dense layer and the slurry for the porous layer, they are dried at 30 to 95°C, respectively, to form a green sheet for the dense layer and a green sheet for the porous layer. The green sheet for the dense layer, which is the lowest layer, may be provided with holes through which the coolant passes.

次いて多孔質層用グリーンシートの両面又は片面に接着
剤を塗布し、0〜70℃の温度で5〜200 kg/c
m’の圧力で多孔質層用グリーンシートに緻密質層用グ
リーンシートを接着し積層する。
Next, an adhesive is applied to both sides or one side of the green sheet for the porous layer, and the adhesive is applied at a temperature of 0 to 70°C at a rate of 5 to 200 kg/c.
The dense layer green sheet is adhered to the porous layer green sheet and laminated with a pressure of m'.

この接着剤としては、セルロース誘導体、アクリル系エ
マルジョン、酢酸ビニルエマルンヨン等の水系接着剤又
はアクリル系樹脂、ブチラール系樹脂、ビニール系樹脂
等の非水系接着剤を用いることができる。
As this adhesive, an aqueous adhesive such as a cellulose derivative, an acrylic emulsion, or a vinyl acetate emulsion, or a non-aqueous adhesive such as an acrylic resin, a butyral resin, or a vinyl resin can be used.

これらの積層数は多孔質層用グリーンシートの両面に緻
密質層用グリーンシートを重ね合わせて積層した3層以
外に、セラミック基板の用途に応じて緻密質層と多孔質
層とを交互に重ね合わせた多数層にすることもできる。
In addition to the three layers in which dense layer green sheets are stacked on both sides of a porous layer green sheet, dense layers and porous layers may be stacked alternately depending on the purpose of the ceramic substrate. It is also possible to have multiple layers combined.

グリーンシートを積層した後、所定の寸法に切断し、焼
成炉に入れて焼成する。焼成は目的とする気孔率を得る
ために1200〜1600℃の温度範囲で、1〜2時間
、大気圧下で行われる。焼成温度が高まる程、また焼成
時間が長くなる程、気孔率は減少する。1200℃未満
であると緻密質セラミック層の気孔率が増大し、160
0℃を越えると多孔質セラミック層の気孔率か減少して
本発明の目的が達成されない。
After the green sheets are laminated, they are cut into predetermined dimensions, placed in a firing furnace, and fired. Firing is performed at a temperature range of 1200 to 1600° C. for 1 to 2 hours under atmospheric pressure in order to obtain the desired porosity. The higher the firing temperature and the longer the firing time, the lower the porosity. If the temperature is less than 1200°C, the porosity of the dense ceramic layer increases, and the temperature is lower than 160°C.
If the temperature exceeds 0°C, the porosity of the porous ceramic layer decreases and the object of the present invention cannot be achieved.

本発明のセラミック放熱基板は焼結助剤の添加量又は焼
成温度に応じて、多孔質セラミック層の気孔率が20〜
60%の範囲に、また緻密質セラミック層の気孔率が0
.01〜5%の範囲に制御されて作られる。
In the ceramic heat dissipating substrate of the present invention, the porosity of the porous ceramic layer is 20 to 20 depending on the amount of sintering aid added or the firing temperature.
60%, and the porosity of the dense ceramic layer is 0.
.. It is controlled within the range of 0.01 to 5%.

上記焼成で得られた積層焼結体の多孔質セラミック層に
は開気孔が形成される。ここで開気孔とは閉気孔とは異
なり、焼結体の一端から他端まで連続した空隙であって
流体が通過可能な微細な孔をいう。
Open pores are formed in the porous ceramic layer of the laminated sintered body obtained by the above firing. Here, open pores are different from closed pores and refer to fine pores that are continuous from one end of the sintered body to the other and allow fluid to pass through.

この積層焼結体の多孔質セラミック層に溶融した銅系合
金を含浸した後、冷却して凝固させる。
After the porous ceramic layer of this laminated sintered body is impregnated with a molten copper alloy, it is cooled and solidified.

この積層焼結体の融点は少なくとも銅系合金の融点より
高いことが望ましい。また含浸雰囲気は酸化防止のため
、真空中で行うことが好ましい。この含浸処理は必要に
より、複数回行ってもよい。
It is desirable that the melting point of this laminated sintered body is at least higher than the melting point of the copper alloy. In order to prevent oxidation, it is preferable to carry out the impregnation in a vacuum. This impregnation treatment may be performed multiple times if necessary.

本発明の銅系合金には、Cu−Ni系の析出硬化型銅系
合金、又はCu−AM系のマルテンサイト変態硬化型銅
系合金を用いることが好ましい。
As the copper alloy of the present invention, it is preferable to use a Cu-Ni precipitation hardening copper alloy or a Cu-AM martensitic transformation hardening copper alloy.

これは銅系合金として上記合金を用いると、焼結体に接
合するときに熱膨張差により発生する界面応力が析出物
の析出時効又はマルテンサイト変態により緩和されるか
らである。
This is because when the above-mentioned alloy is used as a copper-based alloy, the interfacial stress generated due to the difference in thermal expansion when bonded to a sintered body is alleviated by precipitation aging or martensitic transformation of precipitates.

積層焼結体であるセラミック放熱基板の最上層の緻密質
セラミック層にコンデンサ、抵抗チップ等の電子部品を
搭載し、多孔質セラミック層に冷媒を通すことにより、
電子部品の発熱を放散させることができる。
By mounting electronic components such as capacitors and resistor chips on the dense ceramic layer on the top layer of the ceramic heat dissipation board, which is a laminated sintered body, and passing a coolant through the porous ceramic layer,
Heat generated by electronic components can be dissipated.

冷媒の通し方は第1図〜第4図に示すように、セラミッ
ク放熱基板1oの前後両端に金属管11及び12を接続
し、基板1oの多孔質セラミック層10aに冷媒13を
通して最り層の緻密質セラミック層10bに搭載された
電子部品14及び15の発熱を除去する方法と、第5図
及び第6図に示すように、セラミック放熱基板20の最
下層の緻密質セラミック層20bに管径4〜6mm程度
の通孔27を穿設した後、通孔27に金属管21及び2
2を層20bに垂直に挿着して、基板20の多孔質セラ
ミック層20aに冷媒23を通して最上層の緻密質セラ
ミック層20bに搭載された電子部品24及び25の発
熱を除去する方法かある。
As shown in FIGS. 1 to 4, metal tubes 11 and 12 are connected to both the front and rear ends of the ceramic heat dissipating substrate 1o, and the coolant 13 is passed through the porous ceramic layer 10a of the substrate 1o to form the outermost layer. A method for removing heat generated by electronic components 14 and 15 mounted on a dense ceramic layer 10b, and a method for removing heat generated from electronic components 14 and 15 mounted on a dense ceramic layer 10b.As shown in FIGS. After drilling a through hole 27 with a diameter of approximately 4 to 6 mm, the metal tubes 21 and 2 are inserted into the through hole 27.
2 perpendicularly to the layer 20b, and the coolant 23 is passed through the porous ceramic layer 20a of the substrate 20 to remove the heat generated by the electronic components 24 and 25 mounted on the uppermost dense ceramic layer 20b.

これらの金属管11,12.21及び22はアルミナの
セラミック基板と熱膨張係数かほぼ等しい金属材料、例
えばコバール合金等で構成される。
These metal tubes 11, 12, 21, and 22 are made of a metal material, such as a Kovar alloy, whose thermal expansion coefficient is approximately the same as that of the alumina ceramic substrate.

これらの金属管は硬ろう16、例えば銀ろう、黄銅ろう
、銅ろう等によりろう付けされ、基板10又は20と一
体化される。第1図及び第2図の3層積層のセラミック
放熱基板10は金属管11及び12に挿着され、第3図
及び第4図の5層積層のセラミック放熱基板10は金属
管11及び12の端面に接着される。第1図及び第2図
の基板1Oの最下層の緻密質セラミック層10bにはこ
の層10bの厚さに応して孔径60〜900μmの通孔
17か穿設される。通孔17及び前述した通孔27は焼
成前のグリーンシートの状態で穿設される。
These metal tubes are brazed with a hard solder 16, such as silver solder, brass solder, copper solder, etc., and integrated with the substrate 10 or 20. The three-layer laminated ceramic heat dissipation board 10 shown in FIGS. 1 and 2 is inserted into the metal tubes 11 and 12, and the five-layer laminated ceramic heat dissipation board 10 shown in FIGS. Glued to the end face. A through hole 17 having a diameter of 60 to 900 .mu.m is formed in the lowermost dense ceramic layer 10b of the substrate 1O in FIGS. 1 and 2, depending on the thickness of this layer 10b. The through holes 17 and the aforementioned through holes 27 are formed in the green sheet before firing.

また金属管11.12か接続されないセラミック放熱基
板10の両側面及びセラミック放熱基板20の周側面に
は、それぞれ冷媒13又は23か漏洩しないように封止
層10c又は20cか形成される。この封止はグリーン
シートの積層状態で緻密質層用のスラリーでコーティン
グして焼成することにより行われる。
Further, a sealing layer 10c or 20c is formed on both sides of the ceramic heat dissipation board 10 to which the metal tubes 11 and 12 are not connected, and on the circumferential side of the ceramic heat dissipation board 20 to prevent the coolant 13 or 23 from leaking, respectively. This sealing is performed by coating the stacked green sheets with a slurry for a dense layer and firing.

第1図及び第2図の基板10には、金属管11及び12
の双方から冷媒ガス、例えばフレオンガスを吹込み、多
孔質セラミック層10aを通して通孔17から排出させ
る。
The substrate 10 in FIGS. 1 and 2 includes metal tubes 11 and 12.
A refrigerant gas, for example, Freon gas, is blown in from both sides and discharged from the through hole 17 through the porous ceramic layer 10a.

第3図及び第4図の基板10には、金属管11から冷媒
ガス又は冷却水を流込み、多孔質セラミック層10aを
通して金属管12から排出させる。
A refrigerant gas or cooling water is introduced into the substrate 10 of FIGS. 3 and 4 through a metal tube 11, and is discharged from a metal tube 12 through a porous ceramic layer 10a.

第5図及び第6図の基板20には、金属管21から冷媒
ガス又は冷却水を流込み、多孔質セラミック層20aを
通して金属管22から排出させる。
A refrigerant gas or cooling water is introduced into the substrate 20 of FIGS. 5 and 6 from a metal tube 21 and is discharged from a metal tube 22 through a porous ceramic layer 20a.

上記多孔質セラミック層10a又は20aの開気孔に銅
系合金か凝固するため、電子部品14゜15又は24.
25から発生する熱は素速く冷媒ガス又は冷却水により
冷却される。
Since the copper-based alloy solidifies in the open pores of the porous ceramic layer 10a or 20a, electronic components 14, 15 or 24.
The heat generated from 25 is quickly cooled down by refrigerant gas or cooling water.

[発明の効果] 以上述べたように、本発明のセラミック放熱基板は、多
孔質セラミック層の両面又は片面に緻密質セラミック層
を積層して一体的に焼結され、かつ多孔質セラミック層
に熱伝導率の高い銅系合金か含浸凝固して形成されるた
め、種々のヒートシンク金属と高強度に接合でき、しか
もセラミック基板と金属との接合界面を増大して伝熱面
積を大きくすることができる。この結果、電子部品の放
熱効果が高く、しかも高密度に電子部品を実装すること
ができる。
[Effects of the Invention] As described above, the ceramic heat dissipation substrate of the present invention has a dense ceramic layer laminated on both or one side of a porous ceramic layer and is integrally sintered, and the porous ceramic layer is heated. Because it is formed by impregnating and solidifying a copper-based alloy with high conductivity, it can be bonded with a variety of heat sink metals with high strength, and it can also increase the heat transfer area by increasing the bonding interface between the ceramic substrate and metal. . As a result, the heat dissipation effect of the electronic components is high, and the electronic components can be mounted with high density.

特に、多孔質セラミック層に接合するときに熱膨張差に
より発生する界面応力か析出物の析出時効又はマルテン
サイト変態により緩和される析出硬化型銅系合金又はマ
ルテンサイト変態硬化型銅系合金をヒートシンク金属材
料として用いれば、高強度のセラミック基板か得られる
In particular, we use precipitation-hardening copper-based alloys or martensitic transformation-hardening copper-based alloys as heat sinks, in which the interfacial stress generated by thermal expansion differences when bonded to a porous ceramic layer is alleviated by precipitation aging or martensitic transformation of precipitates. If used as a metal material, a high-strength ceramic substrate can be obtained.

[実施例] 次に本発明の実施例を図面に基づいて詳しく説明する。[Example] Next, embodiments of the present invention will be described in detail based on the drawings.

〈実施例1〉 アルミニウムイソプロポキシド[AQ (C3H,O)
3]を加水分解してベーマイト[A Q OOH]を生
成させ、これにpH2〜4に調整した水を加えて解膠し
、アルミナ濃度5重量%の安定な擬ベーマイトゾルを得
た。
<Example 1> Aluminum isopropoxide [AQ (C3H,O)
3] was hydrolyzed to produce boehmite [A Q OOH], which was peptized by adding water adjusted to pH 2 to 4 to obtain a stable pseudo-boehmite sol with an alumina concentration of 5% by weight.

緻密質層用スラリーを調製するために、このフルに焼結
助剤としてシリカコロイド、酢酸マグネシウム、酢酸カ
ルシウムを、更に水溶性バインダとしてポリビニルアル
コールを添加した。これらの焼結助剤は緻密質セラミッ
ク層に焼結したときの組成比が AQ、O,: 5if2: MgO: Ca0=92:
 7: 2: 1になるようにそれぞれ添加した。また
バインダはこの固形分に対して40重量%添加混合した
。これにより固形分が10重量%のスラリーを調製した
In order to prepare a slurry for a dense layer, colloidal silica, magnesium acetate, and calcium acetate were added as sintering aids, and polyvinyl alcohol was added as a water-soluble binder to the slurry. When these sintering aids are sintered into a dense ceramic layer, the composition ratio is AQ, O,: 5if2: MgO: Ca0 = 92:
They were added at a ratio of 7:2:1. The binder was added in an amount of 40% by weight based on the solid content. As a result, a slurry having a solid content of 10% by weight was prepared.

このスラリーを移動担体である高密度ポリエチレンテー
プ上にドクターブレード法により厚さ1.2mmになる
ようにコーティングした後、乾燥し、スラリーの分散媒
である水を脱離させて厚さ約60μmの緻密層用グリー
ンシートを得た。
This slurry was coated on a high-density polyethylene tape as a moving carrier to a thickness of 1.2 mm using a doctor blade method, and then dried to remove water, which is the dispersion medium of the slurry, to a thickness of approximately 60 μm. A green sheet for dense layer was obtained.

一方、多孔化し易くするために焼結助剤を添加しない以
外は上記と同様にして厚さ約60μmの多孔質層用グリ
ーンシートを得た。最下層となる緻密層用グリーンシー
トに1平方Cm当り直径100μm通孔を9個穿設した
。次いで多孔質層用グリーンシートの両面に接着剤とし
て1%濃度のポリビニルブチラールのイソプロピルアル
コール溶液を塗工し、このシートの両面に上記緻密質層
用グリーンシートを重ね合わせて接着し、3層に積層さ
れた厚さ約180μmのグリーン成形体を得た。このグ
リーン成形体を80X80mmの正方形に切断した後、
両側面に緻密質層用スラリーをコーティングし、多孔質
用グリーン成形体を被覆した。
On the other hand, a green sheet for a porous layer having a thickness of about 60 μm was obtained in the same manner as above except that no sintering aid was added to facilitate porosity. Nine through holes with a diameter of 100 μm were bored per 1 square cm in the green sheet for the dense layer, which was the lowest layer. Next, an isopropyl alcohol solution of polyvinyl butyral with a concentration of 1% is applied as an adhesive to both sides of the green sheet for the porous layer, and the green sheet for the dense layer is superimposed on both sides of this sheet and adhered to form three layers. A laminated green molded body having a thickness of about 180 μm was obtained. After cutting this green molded body into a square of 80 x 80 mm,
A slurry for a dense layer was coated on both sides to cover a green molded body for a porous layer.

次に、このグリーン成形体を焼成炉に入れ、1500℃
で1時間、大気圧下で焼成して3層アルミナ基板を得た
。この3層アルミナ基板の緻密質アルミナ層及び多孔質
アルミナ層はそれぞれアルミナ含有量が92%及び99
5%のアルミナ焼結体層であった。多孔質アルミナ層に
は開気孔が形成されていた。
Next, this green molded body was placed in a firing furnace and heated to 1500°C.
A three-layer alumina substrate was obtained by firing under atmospheric pressure for 1 hour. The dense alumina layer and porous alumina layer of this three-layer alumina substrate have an alumina content of 92% and 99%, respectively.
It was a 5% alumina sintered body layer. Open pores were formed in the porous alumina layer.

更に、この3層アルミナ基板を900℃に加熱した真空
高温炉に入れ、真空にした後、この3層アルミナ基板の
多孔質アルミナ層に溶融した析出硬化型のCu−N1−
AQ金合金含浸させた。銅系合金が含浸した3層アルミ
ナ基板を上記炉から取り出して放置し室温まで冷却した
Furthermore, this three-layer alumina substrate was placed in a vacuum high-temperature furnace heated to 900°C, and after evacuating, precipitation hardening type Cu-N1- was melted into the porous alumina layer of this three-layer alumina substrate.
Impregnated with AQ gold alloy. The three-layer alumina substrate impregnated with the copper-based alloy was taken out of the furnace and allowed to cool to room temperature.

この3層アルミナ基板の多孔質層の開気孔には銅系合金
が凝固していた。またこの基板の曲げ強度は50 kg
f/mm”であった。
Copper-based alloy was solidified in the open pores of the porous layer of this three-layer alumina substrate. Also, the bending strength of this board is 50 kg.
f/mm”.

第1図及び第2図に示すように、この積層焼結した厚さ
100μmセラミック放熱基板10の緻密質層用スラリ
ーをコーティングしない前後両端をコバール合金(Fe
40%、Ni40%、Co20%)からなる金属管11
及び12に挿入して銀ろう16でろう付けした後、金属
管11及び12の双方からフレオンガスを吹込み、多孔
質セラミック層10aを通して通孔17から排出させた
ところ、最上層の緻密質セラミック層10bは極めて高
い放熱効果を示した。
As shown in FIGS. 1 and 2, both front and rear ends of the laminated and sintered ceramic heat dissipation substrate 10 with a thickness of 100 μm are coated with Kovar alloy (Fe).
40%, Ni 40%, Co 20%) metal tube 11
and 12 and brazed with silver solder 16, Freon gas was blown into both the metal tubes 11 and 12 and discharged from the through hole 17 through the porous ceramic layer 10a. 10b showed an extremely high heat dissipation effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明セラミック放熱基板の断面図。 第2図はその斜視図。 第3図は本発明の別のセラミック放熱基板の断面図。 第4図はその斜視図。 第5図は本発明の更に別のセラミック放熱基板の断面図
。 第6図はその斜視図。 10.20:セラミック放熱基板、 10a、20a:多孔質セラミック層、10b、20b
:緻密質セラミック層、13.23:冷媒。 0a 0b 第 図 第 図
FIG. 1 is a sectional view of the ceramic heat dissipation board of the present invention. FIG. 2 is a perspective view thereof. FIG. 3 is a sectional view of another ceramic heat dissipation board of the present invention. FIG. 4 is a perspective view thereof. FIG. 5 is a sectional view of yet another ceramic heat dissipation board of the present invention. FIG. 6 is a perspective view thereof. 10.20: Ceramic heat sink, 10a, 20a: Porous ceramic layer, 10b, 20b
:Dense ceramic layer, 13.23: Refrigerant. 0a 0b Figure Figure

Claims (1)

【特許請求の範囲】 1)多孔質セラミック層の両面又は片面に緻密質セラミ
ック層が積層されて一体的に焼結され、前記多孔質セラ
ミック層に開気孔が形成された積層焼結体を支持体とし
、前記多孔質セラミック層を流体通路とするセラミック
放熱基板であって、溶融した銅系合金が前記開気孔に含
浸凝固したことを特徴とするセラミック放熱基板。 2)銅系合金が析出硬化型銅系合金又はマルテンサイト
変態硬化型銅系合金である請求項1記載のセラミック放
熱基板。 3)緻密質セラミック層に多孔質セラミック層の開気孔
に連通する通孔が設けられた請求項1又は2記載のセラ
ミック放熱基板。 4)水を分散媒とした第1アルミナゾルに第1焼結助剤
と第1水溶性バインダを添加混合して緻密質層用スラリ
ーを調製し、 この緻密質層用スラリーを成膜乾燥して緻密質層用グリ
ーンシートを成形し、 水を分散媒とした第2アルミナゾルに焼結助剤を添加し
ないか又は前記第1焼結助剤より少量の第2焼結助剤と
第2水溶性バインダを添加混合して多孔質層用スラリー
を調製し、 この多孔質層用スラリーを成膜乾燥して多孔質層用グリ
ーンシートを成形し、 前記多孔質層用グリーンシートの両面又は片面に前記緻
密質層用グリーンシートを接着剤により接着し、 前記接着したグリーンシートを1200〜 1600℃で焼成して積層焼結体を形成し、溶融した銅
系合金を前記積層焼結体の多孔質セラミック層に含浸し
て凝固させる セラミック放熱基板の製造方法。 5)第1又は第2アルミナゾルのいずれか又は双方がア
ルミニウムアルコキシドを加水分解した後、この加水分
解生成物を解膠処理して得られるアルミナコロイド液で
ある請求項4記載のセラミック放熱基板の製造方法。
[Claims] 1) Supporting a laminated sintered body in which a dense ceramic layer is laminated on both or one side of a porous ceramic layer and sintered integrally, and open pores are formed in the porous ceramic layer. 1. A ceramic heat dissipation board having a porous ceramic layer as a body and a fluid passageway, the ceramic heat dissipation board characterized in that a molten copper alloy is impregnated into the open pores and solidified. 2) The ceramic heat dissipation board according to claim 1, wherein the copper-based alloy is a precipitation-hardening copper-based alloy or a martensitic transformation-hardening copper-based alloy. 3) The ceramic heat dissipation board according to claim 1 or 2, wherein the dense ceramic layer is provided with through holes communicating with the open pores of the porous ceramic layer. 4) Prepare a slurry for a dense layer by adding and mixing a first sintering aid and a first water-soluble binder to a first alumina sol using water as a dispersion medium, and drying this slurry for a dense layer to form a film. A green sheet for a dense layer is formed, and a sintering aid is not added to the second alumina sol using water as a dispersion medium, or a second sintering aid is added in a smaller amount than the first sintering aid and a second water-soluble A slurry for a porous layer is prepared by adding and mixing a binder, a green sheet for a porous layer is formed by forming and drying this slurry for a porous layer, and the above-mentioned is applied to both or one side of the green sheet for a porous layer. Dense layer green sheets are bonded with an adhesive, the bonded green sheets are fired at 1200 to 1600°C to form a laminated sintered body, and the molten copper-based alloy is bonded to the porous ceramic of the laminated sintered body. A method of manufacturing a ceramic heat dissipation substrate by impregnating and solidifying a layer. 5) Production of a ceramic heat dissipation substrate according to claim 4, wherein either or both of the first and second alumina sol is an alumina colloid liquid obtained by hydrolyzing aluminum alkoxide and then peptizing the hydrolyzed product. Method.
JP23159190A 1990-08-31 1990-08-31 Ceramic heat radiating baseplate and production thereof Pending JPH04112005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23159190A JPH04112005A (en) 1990-08-31 1990-08-31 Ceramic heat radiating baseplate and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23159190A JPH04112005A (en) 1990-08-31 1990-08-31 Ceramic heat radiating baseplate and production thereof

Publications (1)

Publication Number Publication Date
JPH04112005A true JPH04112005A (en) 1992-04-14

Family

ID=16925919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23159190A Pending JPH04112005A (en) 1990-08-31 1990-08-31 Ceramic heat radiating baseplate and production thereof

Country Status (1)

Country Link
JP (1) JPH04112005A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101980389A (en) * 2010-09-03 2011-02-23 珠海粤科京华科技有限公司 Flat plate-type ceramic package radiating module for high-power LED and manufacturing method thereof
JP2017044461A (en) * 2015-08-28 2017-03-02 住友電気工業株式会社 Heat exchanger
EP3975243A4 (en) * 2019-05-21 2023-05-24 Tomoegawa Co., Ltd. Temperature control unit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101980389A (en) * 2010-09-03 2011-02-23 珠海粤科京华科技有限公司 Flat plate-type ceramic package radiating module for high-power LED and manufacturing method thereof
JP2017044461A (en) * 2015-08-28 2017-03-02 住友電気工業株式会社 Heat exchanger
WO2017038380A1 (en) * 2015-08-28 2017-03-09 住友電気工業株式会社 Heat exchanger
EP3975243A4 (en) * 2019-05-21 2023-05-24 Tomoegawa Co., Ltd. Temperature control unit
US11985795B2 (en) 2019-05-21 2024-05-14 Tomoegawa Corporation Temperature control unit

Similar Documents

Publication Publication Date Title
US5614043A (en) Method for fabricating electronic components incorporating ceramic-metal composites
JP2003514749A (en) Method for fixing molded body formed from metal matrix composite material (MMC) to ceramic molded body
JPH05504933A (en) Direct bonding of copper to aluminum nitride substrates
KR100270149B1 (en) Silicon nitride circuit board and its manufacturing method
KR940000729B1 (en) Aluminum nitride sintered body and semiconductor substrate thereof
JPH0610927B2 (en) Ceramic substrate manufacturing method
JPH04112005A (en) Ceramic heat radiating baseplate and production thereof
JP2658435B2 (en) Lightweight substrates for semiconductor devices
JP2004128451A (en) Method of manufacturing low expansive material and semiconductor device using it
JP5057607B2 (en) GLASS CERAMIC, ITS MANUFACTURING METHOD, AND WIRING BOARD USING THE SAME
JPH0810202Y2 (en) Lightweight substrates for semiconductor devices
JPH11154719A (en) Silicon nitride circuit board, manufacture of semiconductor device and the circuit board
JPH0483368A (en) Ceramic heat radiation substrate and its manufacture
US5641718A (en) Sintered aluminum nitride and circuit substrate using sintered aluminum nitride
JPH09209058A (en) Composite material with high thermal conductivity and its production
JP2689685B2 (en) Lightweight substrates for semiconductor devices
JP4330757B2 (en) Ceramic circuit board for semiconductor mounting module and manufacturing method thereof
JPH0429465B2 (en)
JPH06349315A (en) Paste and its use
CN116835990B (en) Composite ceramic substrate, copper-clad ceramic substrate, preparation method and application
JPS6032648A (en) Method of metallizing ceramics and alloy foil for metallizing ceramics
JP2729751B2 (en) Joining method of alumina ceramics and aluminum
JP2751473B2 (en) High thermal conductive insulating substrate and method of manufacturing the same
JPH02221162A (en) Production of aluminum nitride-based sintered body
JPS59141393A (en) Brazing filler material